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Abstract

Much progress has been made in the field of sentiment
analysis in the past years. Researchers relied on textual
data for this task, while only recently they have started in-
vestigating approaches to predict sentiments from multime-
dia content. With the increasing amount of data shared on
social media, there is also a rapidly growing interest in ap-
proaches that work “in the wild”, i.e. that are able to deal
with uncontrolled conditions. In this work, we faced the
challenge of training a visual sentiment classifier starting
from a large set of user-generated and unlabeled contents.
In particular, we collected more than 3 million tweets con-
taining both text and images, and we leveraged on the sen-
timent polarity of the textual contents to train a visual sen-
timent classifier. To the best of our knowledge, this is the
first time that a cross-media learning approach is proposed
and tested in this context. We assessed the validity of our
model by conducting comparative studies and evaluations
on a benchmark for visual sentiment analysis. Our empir-
ical study shows that although the text associated to each
image is often noisy and weakly correlated with the image
content, it can be profitably exploited to train a deep Con-
volutional Neural Network that effectively predicts the sen-
timent polarity of previously unseen images.

1. Introduction
Everyday, billions of user-generated contents, such as

text posts and digital photos, are created and shared on so-
cial media platforms. Therefore, blogs, microblogs, and so-
cial networks are now considered vital channels for com-
munication and information exchange. The large amount of

shared data, on the one hand, is a treasure trove of people’s
sentiments and opinions about a vast spectrum of topics.
On the other hand, it opens challenges for the exploration
of large multimedia datasets that were not previously avail-
able. The possibility of analyzing online users’ opinions has
attracted the attention of many researchers in both academia
and industry, thanks to the close correlation between user
sentiment dynamics and their real life activities. So, opin-
ion mining and sentiment analysis have been applied in a
broad set of domains, such as market prediction [32], po-
litical elections [24, 35], and crisis management [3, 14], to
name but a few.

From its origin, sentiment analysis has mainly relied on
textual contents, while only recently researchers have be-
gun working on automatically detecting sentiments from vi-
sual and multimodal contents [8, 10, 22, 42, 50, 49]. The
visual sentiment analysis is receiving increasing attention
also due the tendency for microblog users to post pictures
and/or videos with short textual descriptions or no text at
all. As the old saying goes “A picture is worth a thousand
words”, in fact from the earliest cave paintings to the most
recent posts, sharing images is one of the most immediate
and effective way to communicate. If, on one hand, people
with different backgrounds can easily understand the main
content of an image or video, on the other hand, emotions
and sentiments that arise in the human viewer are highly
subjective. Decades of research on image annotation and
search have helped to mitigate the semantic gap problem
[15, 26]. However, the subjectivity of sentiment and the
affective gap between image features and the affective con-
tent of an image [42], make the visual sentiment analysis
a very challenging task. This reflect also the difficulties in
generating high-quality labeled images for training visual
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sentiment classifiers.
In this paper, we focus on discovering the sentiment po-

larity (positive, negative or neutral) of a given image. We
follow the current trend of facing sentiment “in the wild”,
that is, in all sort of varying conditions of the everyday
world that we share with others (as opposed to testing situ-
ation in laboratories). For this scope, social networks, such
as Twitter and Facebook, are particularly suitable as sources
of data for our analysis, thanks to the huge variation of con-
tents shared by their users.

The vast majority of the existing visual sentiment clas-
sifiers have been trained on sentiment-related images, typ-
ically annotated using crowd-sourcing. As other state-of-
the-art approaches, we exploit deep learning models to build
our visual sentiment classifiers. However, differently from
previous supervised approaches, we propose an end-to-end
pipeline to train the visual classifier starting from a large-
scale dataset of unlabeled tweets (text and images). First,
we use a tandem Long Short Term Memory Recurrent Neu-
ral Network-Support Vector Machine (LSTM-SVM) archi-
tecture to classify the sentiment polarity of the texts. Then,
we exploit the images of the tweets, labeled according to
the sentiment polarity of the associated text, to fine-tune
a deep Convolutional Neural Network (CNN) architecture,
by leveraging on transfer learning. Although the text of the
tweets is often noisy or misleading with respect to the image
content (e.g. irrelevant comments), we show that our cross-
media approach can be profitably used for learning visual
sentiment classifiers in the wild. In fact, our results on a
manually annotated benchmark for visual sentiment analy-
sis show that the prediction accuracy of our trained CNN
models is better than, or in the worst cases, in line with,
state-of-the-art classifiers trained on sentiment-related data
sets.

The main contributions of our work can be summarized
as follows:

• We present an empirical study to analyze visual senti-
ments in the wild, starting from a large-scale dataset of
unlabeled user-generated content. To the best of our
knowledge, this is the first work that proposes a cross-
media approach to learn a classifier for predicting the
sentiment polarity of a given image. In particular, we
show that we are able to train visual sentiment clas-
sifiers that are comparable to, or better than, state-of-
the-art classifiers trained on sentiment-related labeled
images.

• Overall, we collected and analysed more that 3 mil-
lion tweets in order to construct the Twitter for Sen-
timent Analysis (T4SA) dataset. T4SA is composed
of about 1 million high-confidence tweets for which
we provide the textual sentiment classification, and the
corresponding 1.4M images. We make all the collected

tweets as well as the T4SA dataset publicly available
to encourage further research1.

• We publicly release our trained visual sentiment clas-
sifiers, namely Hybrid-T4SA and VGG-T4SA, and we
conduct comparative studies and evaluations on bench-
marks for visual sentiment analysis.

2. Related Work
For what concerns the detection of sentiment polarity in

texts extracted from Twitter, first works considered simple
linguistic features, such as word unigrams, word bigrams
and parts-of-speech, using machine learning algorithms like
Naive Bayes, Maximum Entropy and Support Vector Ma-
chines (SVM). Among the pioneers of these approaches are
Go et al. [18] and Bermingham and Smeaton [7]. In the last
few years, deep neural networks contributed to considerable
performance improvements with respect to other popular
learning algorithms, such as SVM. In particular, Long Short
Term Memory Networks (LSTM), which we employed for
this work, and Convolutional Neural Networks (CNN) were
tested on several shared tasks, such as the Semeval Senti-
ment analysis in Twitter [34], which is considered by the
Natural Language Processing community the most impor-
tant benchmark for this task. The results obtained by the
submitted systems, such as the ones by Deriu et al. [16]
and Rouvier et al. [39], have shown that the combination
of these learning techniques with the adoption of word em-
beddings, a compact real-value vector word representation
which takes into account word similarity [31] [36], is able
to set the state-of-the-art with minimal feature engineering,
which makes such architectures more robust and flexible
than previous ones.

While there is a large literature on extracting emotional
information from textual content, research on image-based
sentiment analysis is still in its early stages. First ap-
proaches to infer affects from images were based on su-
pervised or semi-supervised frameworks that map low-level
features of images into human emotions [29, 42]. To over-
come the affective gap between low-level features and emo-
tional content of an image, Borth et al. [8], Yuan et al. [51]
and Jou et al. [22] employed visual entities or attributes
to extract mid-level visual representations. The main con-
tribution of [8] and [22] was building a large scale visual
sentiment ontology, called VSO and Multilingual VSO, re-
spectively, which consist of thousands of semantic objects
(Adjective Noun Pairs – ANP) strongly linked to emotions.
Using their ontologies they also proposed a bank of detec-
tors, namely SentiBank and MVSO, that can automatically
extract these mid-level representations. For the sentiment
prediction task, a classifier is learned on the top of these
mid-level representations that are used as image features.

1http://www.t4sa.it



This means that the ANP’s textual sentiments are not ex-
plicitly used for the sentiment prediction. Just recently, Li
et al. [27] investigated the fusion of the sentiment predic-
tion obtained using ANP responses as image features with
the sentiment prediction obtained using the ANP’s textual
sentiment values. The approaches used in [22, 27] relied
on deep learning algorithms, which recently have signifi-
cantly changed the research landscape in a broad set of do-
mains, such as visual object recognition and image classifi-
cation. Following the success of deep learning, many other
approaches based on deep neural networks have been pro-
posed for visual sentiment prediction and image emotion
classification [9, 11, 20, 37, 50]. Most of these have in com-
mon the use of CNNs trained, or fine-tuned, on sentiment-
related and labeled data. In [9, 11, 20, 22], state-of-the-art
CNN architectures (e.g. AlexNet [23], PlaceCNN [52], and
GoogleNet [44]) were exploited. In [50], You et al. pro-
posed a custom CNN architecture specifically designed for
visual sentiment prediction. Since their network was trained
on weakly labeled images, they also proposed an approach,
called PCNN, to reduce the impact of noisy training images.
There are also several publications on analyzing sentiments
using multi-modalities, such as text and image. For exam-
ple, Cao et al. [10] proposed a late fusion is used to com-
bine the predictions obtained from text and image, while
You et al. [49] proposed a cross-modality consistent regres-
sion (CCR) scheme for joint textual and visual analysis. Re-
cently, multimodal learning approaches have been proposed
for joint textual and visual understanding. Baecchi et al. [5]
proposed a multimodal feature learning schema based on
CBOW and denoising autoencoders to perform sentiment
analysis. In [30], the authors proposed a deep end-to-end
architecture where each modality is encoded is an appropri-
ate sub-network (an RNN for text and a CNN for images)
and then fused in a multimodal layer. Similarly, Ma et al.
[28] encodes both modalities with convolutional networks.

Differently from all the approaches previously presented,
in our work we are interested in (i) understanding human
sentiments by exploiting a large-scale dataset of unlabeled
images collected from social-media, (ii) training sentiment
classifiers without any prior knowledge of the collected
data. Although textual information accompanying social
media images is often incomplete and noisy, it can be ef-
fectively exploited to enable unsupervised sentiment analy-
sis. A first step in this direction was taken in [47] where
an Unsupervised SEntiment Analysis (USEA) for social-
media images, based on nonnegative matrix factorization,
was proposed. Our work differs from that of Wang et al.
[47] in the way of exploiting the textual information and
in the final classifier. In fact, we train a deep neural net-
work that can be used to predict the sentiment of any new
image without using any textual information for those im-
ages, while USEA infers sentiments for images by jointly

considering visual and textual information.

3. Data Collection
Both the textual and the multimedia data used in this

work have been collected from Twitter, by means of a
streaming crawler. The data collection process took place
from July to December 2016, lasting around 6 months in
total. During this time span we exploited Twitter’s Sample
API2 to access a random 1% sample of the stream of all
globally produced tweets. All the tweets collected in this
way have undergone a filtering step where we have applied
a set of simple rules in order to retain only data that could
be useful for our sentiment analysis task. Specifically, we
discarded:

1. retweets;

2. tweets not containing any static image (i.e., we also
discarded tweets containing only videos and/or ani-
mated GIFs);

3. tweets not written in the English language;

4. tweets whose text was less than 5 words long.

Rules 1 and 2 help increasing the quality of collected mul-
timedia data. In detail, enforcing Rule 1 avoids collecting
large numbers of duplicated images, while Rule 2 ensures
that each collected tweet have at least a static image for the
visual sentiment classification task. Rules 3 and 4 are in-
stead aimed at guaranteeing that we have enough textual
data for the textual sentiment classification task.

The above set of rules filtered as much as 98.7% of all
the tweets collected from the Twitter stream. Anyway, the
huge volume of tweets produced globally still allowed to
collect a stream of more than 43 useful (i.e., not filtered out)
tweets per minute, on average. At the end of the data collec-
tion process, the total number of tweets in our dataset is ∼
3.4M, corresponding to ∼ 4M images. Then, we classified
the sentiment polarity of the texts (as described in Section
4) and we selected the tweets having the most confident tex-
tual sentiment predictions to build our Twitter for Sentiment
Analysis (T4SA) dataset. T4SA contains little less than a
million tweets, corresponding to ∼ 1.5M images. We pub-
licly release all the collected tweets and the T4SA dataset.

4. From Textual to Visual Sentiment Analysis
The text extracted from the collected tweets has been

classified according to the sentiment polarity using an
adapted version for the English language of the ItaliaNLP
Sentiment Polarity Classifier [13]. This system was suc-
cessfully employed in the SENTIment POLarity Classifi-
cation task [6], which was organized within Evalita 2016,

2https://dev.twitter.com/streaming/reference/get/statuses/sample



the 5th evaluation campaign of Natural Language Process-
ing and Speech tools for Italian. This classifier is based on
a tandem LSTM-SVM architecture. SVM classification al-
gorithms use “sparse” and “discrete” features in document
classification tasks, making really hard the detection of re-
lationships in sentences, which is often the key factor in
detecting the overall sentiment polarity in documents [45].
On the contrary, LSTM networks are a specialization of Re-
current Neural Networks (RNN) which are able to capture
long-term dependencies in a sentence. This type of neu-
ral network was recently tested on Sentiment Analysis and
proved to outperform previous systems [34]. In this work,
the tandem system uses LSTM to learn the feature space
and to capture temporal dependencies, while the SVMs are
used for classification. SVMs combine the document em-
bedding produced by the LSTM in conjunction with a wide
set of general-purpose features qualifying the lexical and
grammatical structure of the text.

We employed a bidirectional LSTM (bi-LSTM) architec-
ture since these kind of architecture allows to capture long-
range dependencies from both directions of a document by
constructing bidirectional links in the network [41].

In the training phase, the bi-LSTM network is trained
considering the training documents and the corresponding
gold labels. Once the statistical model of the bi-LSTM neu-
ral network is computed, for each document of the train-
ing set, a document vector (document embedding) is com-
puted exploiting the weights that can be obtained from the
penultimate network layer (the layer before the SoftMax
classifier) by giving in input the considered document to
the LSTM network. The document embeddings are used as
features during the training phase of the SVM classifier in
conjunction with a set of widely used document classifica-
tion features. Once the training phase of the SVM classifier
is completed the tandem architecture is considered trained.
The same stages are involved in the classification phase: for
each document an embedding vector is obtained exploiting
the previously trained LSTM network. Finally the embed-
ding is used jointly with other document classification fea-
tures (see Section 5.2 for further details) by the SVM clas-
sifier which outputs the predicted class.

In order to evaluate the performance of our Sentiment
Classifier, we performed a 10-fold cross validation over
6,293 tweets belonging to the dataset distributed for the
SemEval-2013 Task on Sentiment Analysis in Twitter. We
used a subset (approximately the 60%) of the original
dataset since at the time we downloaded the tweets through
the scripts provided by the task organizers, just a subset of
all the dataset was still available in Twitter. Our classifier
reported an average F1-score of 66.15. This result is partic-
ularly good considering that the winner of the competition,
the NRC-Canada team [33], achieved a F1-score of 69.02
using all the available training data.

Our Sentiment Classifier was used to analyze the text
of a large set of user-generated multimedia contents (con-
taining both text and images). We selected data with the
most confident textual sentiment predictions and we used
these predictions to automatically assign sentiment labels
to the corresponding images. The aim was to automatically
build a training set for learning a visual classifier able to
discover the sentiment polarity of a given image. We mod-
eled this task as a three-way image classification problem in
which each image can be classified as either positive, neu-
tral, or negative. We exploited deep Convolutional Neural
Networks (CNNs) as trainable classifiers due to their effec-
tiveness in numerous vision tasks [1, 2, 23, 38, 43]. Deep
CNNs allow a machine to automatically learn representa-
tions of data with multiple levels of abstraction that can
be used for detection or classification tasks. A deep CNN
is a feed-forward neural network composed of a possibly
large number of convolutional layers with learnable filter
banks that can be seen as a trainable stack of feature extrac-
tors. Each layer of a deep network extracts useful knowl-
edge from its input to generate a feature with a higher level
of abstraction, and all the layers are jointly optimized us-
ing backpropagation in order to predict difficult high level
concepts directly from pixels. Convolutions are particularly
suitable for visual data, since they are able to model the
spatial correlation of neighboring pixels better than normal
fully connected layers. For a classification problem, the fi-
nal outputs of the CNN are the confidences for each class
the network has been trained on.

To build our visual classifier, we leveraged on transfer
learning. We used a balanced subset of our dataset T4SA
to fine-tune known and successful deep CNNs architectures
pretrained on generic datasets of images. Doing so, we are
able to exploit additional knowledge already stored in the
trained network while training for sentiment prediction. In
particular, we used HybridNet [52] and VGG-19 [43] mod-
els. In Section 5.2, we describe the fine-tuning process used
for building our visual sentiment classifiers.

5. Experimental Evaluation
5.1. Dataset Preparation

All the ∼3.4M tweets collected as reported in Section
3 were analyzed by the textual sentiment polarity classi-
fier described in Section 4. In order to produce a reliable
dataset for learning a visual sentiment classifier, we selected
only the tweets classified with a confidence > 0.853. The
resulting dataset contains 371, 341 Positive, 629, 566 Neu-
tral, and 31, 327 Negative tweets. As expected, the dataset
proved to be very imbalanced, a frequent and known issue
in social media sentiment data [25]. In order to increase

3Using this threshold, the classifier achieves state of the art accuracy of
0.71 in terms of F-score.



Sentiment T4SA

T4SA w/o
near-

duplicates B-T4SA

(tweets) (images) (images) (images)

Positive 371,341 501,037 372,904 156,862
Neutral 629,566 757,895 444,287 156,862
Negative 179,050 214,462 156,862 156,862
Sum 904,395 1,473,394 974,053 470,586

Table 1. Our Twitter for Sentiment Analysis (T4SA) dataset and
its subsets used for learning our visual classifiers. Each tweet (text
and associated images) is labeled according to the sentiment polar-
ity of the text, predicted by our tandem LSTM-SVM architecture.

the number of Negative tweets we selected a lower filter-
ing threshold for this class, obtaining 179, 050 examples.
Notably, in our experiments conducted on T4SA, the differ-
ence in precision on the classification of positive, neutral,
and negative never exceeds 1% and thus, the lower thresh-
old used for selecting negative examples did not impact the
quality of the learning. Starting from this dataset, we se-
lected a balanced subset of images to train visual sentiment
classifiers. To do so, we performed the following steps:

• We labeled each image of T4SA on the basis of the
corresponding textual sentiment classification.

• We removed corrupted and near-duplicate images re-
sulting in ∼ 974K unique images.

• We selected a balanced subset composed by 156, 862
images for each class, resulting in 470, 586 images.
We call this subset B-T4SA.

• We split B-T4SA in training, validation and test sub-
sets, corresponding approximately to 80%, 10%, and
10% of the images.

Details on T4SA and its subsets are summarized in Table
1. Notice that the size of the balanced subset (i.e., B-T4SA)
was highly influenced by the low number of tweets classi-
fied as negative. Moreover, these negatives contain many
artificial images (e.g. screenshots and memes), which made
our analysis more challenging. In fact, we encountered dif-
ficulties in automatically collecting negative tweets that also
contain natural images by using only a random sample of all
globally produced tweets. However, in order to avoid pos-
sible biases in our analyses, we deliberately avoided to use
any keyword during the data collection process.

5.2. Experimental Settings

Text Analysis Settings As described in Section 4, we em-
ployed a bidirectional LSTM to learn a document embed-
ding into a feature space. We applied a dropout factor of
0.45 to both input gates and to the recurrent connections in

order to prevent overfitting, a typical issue in neural net-
works [17]. For what concerns the optimization process,
categorical cross-entropy is used as a loss function and op-
timization is performed by the rmsprop optimizer [46]. We
used the Keras [12] deep learning framework to develop the
LSTM network.

Each input word to the LSTM is represented by a low di-
mensional, continuous and real-valued vector, also known
as word embedding [31], and all the word vectors are
stacked in a word embedding matrix. For this work, we used
GloVe [36] pre-trained vectors since these are computed
considering the word context information. GloVe website
provides freely available pre-trained vectors computed from
a 2B English tweets corpus.

The document embedding produced by the LSTM is
used in conjunction with other document features by the
SVM classifier. The other document features focused on
a wide set of features ranging across different levels of lin-
guistic description. The features are organised into three
main categories: raw and lexical text features, morpho-
syntactic features and lexicon features. With the exception
of the lexicon features, these features were already tested
and described in [13]. To extract the lexicon features we
exploited three freely available resources: The Bing Liu
Lexicon [19], which includes approximately 6,000 English
words, the MultiPerspective Question Answering Subjec-
tivity Lexicon [48], which consists of approximately 8,200
English words, and the SentiWordNet 3.0 Lexicon [4] that
consists of more than 117,000 words. For each word in
these lexicons the associated polarity is provided. In ad-
dition, we manually developed a lexicon of positive and
negative emoticons, which are usually a strong indicator of
tweet polarity. By exploiting the described resources, the
following features were extracted: positive/negative emoti-
con distribution, sentiment polarity n-grams, sentiment po-
larity modifiers, the distribution of sentiment polarity, the
most frequent sentiment polarity and changes of polarity in
tweet sections. The last lexicon feature is calculated using
the word embedding produced by Glove and it is obtained
by computing separately the average of the word embed-
dings of the nouns, adjectives, and verbs of the tweet.

Image Analysis Settings We used B-T4SA training sub-
set to fine-tune two different pretrained networks, namely:
AlexNet pretrained on ILSVRC2012 [40] + Places205 [52]
(also called HybridNet [52]) and VGG-19 [43] pretrained
on ILSVRC2012 4. We replaced the last fully connected
layer fc8 with a new one having 3 outputs, and we ex-
perimented two different fine-tuning strategies we named

3http://nlp.stanford.edu/projects/glove/
4Both the pre-trained models can be downloaded from the Caffe

Mode Zoo (http://caffe.berkeleyvision.org/model_
zoo.html)

http://caffe.berkeleyvision.org/model_zoo.html
http://caffe.berkeleyvision.org/model_zoo.html


Sentiment Twitter Testing Dataset
5 agree ≥ 4 agree ≥ 3 agree

Positive 581 689 769
Negative 301 427 500
Sum 882 1,116 1,269

Table 2. Twitter Testing Dataset [50].

Model Twitter Testing Dat. B-T4SA
(pos, neg) test set

5
agree

≥ 4
agree

≥ 3
agree

(pos, neu, neg)

Random Classifier 0.500 0.500 0.500 0.333
CNN [50] 0.722 0.686 0.667 -
PCNN [50] 0.747 0.714 0.687 -
Hybrid-T4SA FT-F 0.766 0.748 0.723 0.499
Hybrid-T4SA FT-A 0.741 0.709 0.686 0.491
VGG-T4SA FT-F 0.768 0.737 0.715 0.506
VGG-T4SA FT-A 0.785 0.755 0.725 0.513

Table 3. Prediction accuracy on the different test sets.

FT-F and FT-A. In FT-A we fine-tune all the trainable lay-
ers, while in FT-F the parameters of convolutional layers
are fixed and only the last fully connected layers fc6-8 are
trained.

We trained both networks with both the fine-tune strate-
gies using Caffe [21] for 15 epochs using SGD with mo-
mentum µ = 0.9, a learning rate of 0.001 divided by 10
every 5 epochs, and L2 regularization with a weight decay
of 10−5. For HybridNet we used a batch size of 128, while
for VGG-19 we used a batch size of 32 and batch accumu-
lation of 2 to lower the GPU memory footprint.

We assessed the performance of our models using our
B-T4SA test set and the so-called Twitter Testing Dataset
presented in [50]. The latter contains a total of 1, 269
images having a positive or negative sentiment that have
been manually labeled by five Amazon Mechanical Turk
(AMT) workers. The images are partitioned into three sub-
sets, namely “Five agree”, “At least four agree”, and “At
least three agree”, on the basis of the labeling results from
the five AMT workers. The details of this dataset are re-
ported in Table 2. Twitter Testing Dataset was also used in
[9, 20, 27, 50], allowing for a through comparison of our
systems with the state-of-the-art.

5.3. Results

In Table 3, we reported the accuracy obtained by the
fine-tuned models in our B-T4SA test set and in all the
subsets provided by the Twitter Testing Dataset. As base-
line references, we report the results obtained by a random
classifier and by the CNN and PCNN models [50]. The
results show that the models trained with our cross-media

approach effectively classify the images of Twitter Testing
Dataset which were manually annotated. In particular, our
best model (VGG-T4SA FT-A) correctly classifies 78.5%
of the five agree testing images, outperforming similar mod-
els trained on high-quality sentiment-related hand-labeled
data [50]. Since the Twitter Testing Dataset only pro-
vides binary labels (positive/negative) as groundtruth, we
obtained a binary classification from our three-way model
taking the maximum confidence between the positive and
the negative confidences. We also performed experiments
using two-way fine-tuned nets trained only on positives and
negatives images provided by our training set, but we ob-
served that there is no significant difference in performance
with respect to predictions derived from three-way models.

Notice that the range of the accuracy values obtained on
our B-T4SA is lower because those experiments concern a
three-way classification. Moreover, the groundtruth for the
evaluation is not hand-labeled since it is derived from the
analysis of the textual information collected “in the wild”,
thus it contains noisy labels that inevitably lower the ac-
curacy upper bound. Figure 1 reports the most confident
classifications on this test set. From a qualitative point of
view, in several cases the sentiment polarity of the images
is better represented by the prediction of our model than
the sentiment polarity inferred from the text associated to
the images. Since the textual sentiment analysis was used
to label both testing and training images, this, on one hand,
explains the relatively lower accuracy obtained by our mod-
els on the B-T4SA test set and, on the other hand, confirms
that we used sufficiently large set of training data to allow
the deep neural network to handle noisy labels. Moreover,
we observed that the use of the neutral class is particularly
suitable for analyzing web images, which often depict sim-
ple objects or commercial products. For this reason we used
a three-way model, unlike other state-of-the-art approaches
which use a binary classification model [9, 20, 50].

Many papers on visual sentiment analysis report the
5-fold cross-validation accuracy on the Twitter Testing
Dataset [9, 20, 27, 50], in which the prediction of each
fold is computed with a model fine-tuned on the other four
folds. In order to compare to those approaches, we also
tested our models in this setting, and we reported the 5-fold
accuracy obtained in Table 4. However, we think that this
measure is inappropriate for our cross-media approach since
it tends to highlight how well a pretrained model adapts
to a specific task or dataset. In fact, as evidenced by the
results, models trained on generic (not sentiment-related)
datasets, like AlexNet and VGG-19, not necessarily per-
form worse than the same models previously finetuned on
a sentiment-related dataset. For example our best approach
(VGG-T4SA FT-A), achieves a 5-fold accuracy of 0.896 on
the five agree subset, that corresponds only to an improve-
ment of 1.5% with respect to VGG-19 trained on a generic



Groundtruth: NEG, Prediction: NEG Groundtruth: NEG, Prediction: NEU Groundtruth: NEG, Prediction: POS

Groundtruth: NEU, Prediction: NEG Groundtruth: NEU, Prediction: NEU Groundtruth: NEU, Prediction: POS

Groundtruth: POS, Prediction: NEG Groundtruth: POS, Prediction: NEU Groundtruth: POS, Prediction: POS

Figure 1. The most confident classifications of our model on our B-T4SA test set, grouped by all possible (groundtruth, predicted class)
couples. Rows (from top to bottom) contains images labeled respectively negative, neutral and positive on the basis of textual sentiment
analysis. Columns (from left to right) contain images visually classified respectively as negative, neutral and positive by our model.

dataset. Moreover, our technique is based on a cross-media
approach, i.e. it relies on labels not coming from a visual
inspection of the images. Thus, we think that a fine-tuning
of our models on manually labeled images is inappropriate
for our goal. In any case, also in this test setting, our models
outperform other state-of-the-art visual classifiers, such as

PCNN, DeepSentiBank and MVSO, which were trained on
high-quality sentiment-related dataset.

Taken together, these results indicate that our cross-
media learning approach is a first, important step towards
building systems able to learn the sentiment polarity of im-
ages autonomously from the Web.



Method Training details
Twitter Testing Dataset

5
agree

≥ 4
agree

≥ 3
agree

Approaches without intermediate fine-tuning
GCH [42] (res from [50]) ∗ - 0.684 0.665 0.66
SentiBank [8] (res from [50]) ◦ - 0.709 0.675 0.662
LCH [42] (res from [50]) ∗ - 0.710 0.671 0.664
GCH+ BoW [42] (res from [50]) ∗ - 0.710 0.685 0.665
LCH+ BoW [42] (res from [50]) ∗ - 0.717 0.697 0.664
Sentribute [51] (res from [50]) ◦ - 0.738 0.709 0.696
CNN [50] • Custom architecture tr on Flickr (VSO) [8] 0.783 0.755 0.715
AlexNet [23] (res from [9]) • AlexNet [23] tr on ILSVRC2012 [40] 0.817 0.782 0.739
PlaceCNN [52] (res from [9]) • AlexNet [23] tr on Places205 [52] 0.830 - -
GoogleNet [44] (res from [20]) • GoogleNet [44] tr on ILSVRC2012 [40] 0.861 0.807 0.787
HybridNet • AlexNet [23] tr on (ILSVRC2012 [40] + Places205 [52]) 0.867 0.814 0.781
VGG-19 • VGG-19 [43] tr on ILSVRC2012 [40] 0.881 0.835 0.800

Approaches using an intermediate fine-tuning
PCNN [50] • Custom architecture tr on Flickr (VSO) [8] + ft on Flickr (VSO) [8] 0.773 0.759 0.723
DeepSentiBank [11] (res from [9]) ◦• AlexNet [23] tr on ILSVRC2012 [40] + ft on Flickr (VSO) [8] 0.804 - -
MVSO [EN] [22] (res from [9]) ◦• DeepSentiBank [11] ft on MVSO-EN [22] 0.839 - -
Hybrid-T4SA FT-A (Ours) • AlexNet [23] tr on (ILSVRC2012 [40] + Places205 [52]) + ft on B-T4SA 0.864 0.830 0.800
Hybrid-T4SA FT-F (Ours) • AlexNet [23] tr on (ILSVRC2012 [40] + Places205 [52]) + ft on B-T4SA 0.873 0.832 0.810
VGG-T4SA FT-F (Ours) • VGG-19 [43] tr on ILSVRC2012 [40] + ft on B-T4SA 0.889 0.857 0.815
VGG-T4SA FT-A (Ours) • VGG-19 [43] tr on ILSVRC2012 [40] + ft on B-T4SA 0.896 0.866 0.820
∗ Approch based on low-level features
◦ Approch based on mid-level features
• Approch based on deep learning

Table 4. 5-Fold Cross-Validation Accuracy of different methods on Twitter Testing Dataset. tr stands for ‘trained’; ft stands for ‘fine-tuned’.
Note that in these experiments all the deep models are again fine-tuned on four folds of the Twitter Testing Dataset. During cross-validation
we fine-tuned all the weights of our FT models.

6. Conclusions
This application paper deals with the problem of training

a visual sentiment classifier from a large set of multimedia
data, without the need of human annotators. We leveraged
on a cross-media learning approach showing that even if
the textual information associated to Web images is often
noisy and ambiguous, it is still useful for learning robust
visual classifiers. To this scope, we collected and used more
than 3 million tweets, and we experimentally shown that our
approach is effective for learning visual sentiment classifier
in the wild. We publicly released all the collected data and
our trained models for future research and applications.
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