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BACKGROUND: In the current Anthropocene, there is a need to better understand the 9 

catastrophic effects that climate and land use change may have on ecosystems, Earth system 10 

components and the whole system Earth. The concept of critical transitions, or tipping, contributes 11 

to this understanding. Tipping occurs in a system when it is forced outside the basin of attraction 12 

of the original equilibrium, resulting in a critical transition to an alternative, often less desirable, 13 

stable state. In this context, the search for early-warning signals for such imminent critical 14 

transitions is ongoing. In particular, spatial self-organization in ecosystems, such as the 15 

spontaneous formation of regular vegetation patterns, so-called Turing patterns, was thought to 16 

be a prominent early-warning signal.  17 

 18 

ADVANCES: However, recent findings indicate that such spatial self-organization should not 19 

necessarily be interpreted as an early-warning signal for critical transitions. Instead, spatial self-20 

organization can cause ecosystems to evade tipping points, and can thereby be a signal of 21 

resilience. These findings are based on recent mathematical analyses of spatial models and on 22 

novel observations of real ecosystems. Both revealed multistability, meaning that many different 23 

spatial patterns can co-occur under the same environmental conditions, and each of these patterns 24 

can stay stable for a wide range of conditions. This enables complex system states to persist 25 

beyond tipping points through spatial self-organization. Moreover, if a complex system with tipping 26 

properties experiences a perturbation, subsequent change of the system does not necessarily lead 27 

to tipping of the complete system. Instead, the change can stay localized, because the system 28 

allows for alternative states to coexist in space, thus called coexistence states. These spatial 29 

patterns can also persist beyond tipping points with worsening conditions through this alternative 30 
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pathway. We refer to both Turing patterns and coexistence states as spatial pattern formation. 31 

Evasion of tipping through these various pathways of spatial pattern formation may be relevant for 32 

many ecosystems and Earth system components that are hitherto interpreted as prone to tipping, 33 

including for the Earth as a whole. 34 

 35 

OUTLOOK: To further study how complex systems evade tipping through spatial pattern 36 

formation, savanna ecosystems can be considered as a concrete archetypal example, because of 37 

the alternative states and spatial patterns observed for them. Moreover, universal conditions for 38 

evading tipping points in both ecosystems and Earth system components can be derived by 39 

mathematical analyses. Scenarios can be revealed by which Turing patterns with small amplitude 40 

can grow and form large-scale localized interacting structures, thereby aiding complex systems to 41 

evade tipping. The effects that global change has on the spatial boundaries between coexistence 42 

states should be studied, and the impacts of restrictions of spatial domain, localized and non-local 43 

homogenizing effects by humans should be revealed. This approach will advance our 44 

understanding and predictions of critical transitions in nature and reveal how these may be 45 

avoided or reversed. 46 

 47 
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 48 

 49 

Evasion of tipping points. We illustrate the response of complex systems to changes in external 50 

conditions (i.e., a bifurcation diagram). Solid lines denote stable non-patterned equilibria, and 51 

dashed lines unstable equilibria. Homogeneous dark grey squares depict high density of the 52 

system state variable and homogeneous light grey squares illustrate low density. (A) Classic view. 53 
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The classic view is that spatial self-organization can be interpreted as an early-warning signal for 54 

tipping points towards an alternative stable state; here illustrated as the emergence of Turing 55 

patterns before the tipping point. (B) Multistability of Turing patterns. Recent model analysis 56 

revealed multistability of Turing patterns in Busse balloons, supported by satellite observations of 57 

real ecosystems. A Busse balloon is the region in parameter space in mathematical models where 58 

multistability of patterned equilibria occurs. Here, spatial self-organization through Turing 59 

instability arises in parameter regions before the tipping point at the Turing bifurcation, persisting 60 

beyond the tipping point, thereby constituting a pathway evading tipping through spatial pattern 61 

formation. (C) Multistability of coexistence states. Evading tipping can also be due to multistability 62 

of coexistence states. Following perturbation, the spatial system allows for alternative stable states 63 

in space, or coexistence states, thereby evading tipping of the complete system. These spatial 64 

patterns originate in the bistability region before the tipping point; the evolving spatial patterns 65 

can also persist beyond the tipping point with worsening external conditions, thereby constituting 66 

an alternative pathway evading tipping points.   67 
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The concept of tipping points and critical transitions helps understanding the catastrophic 87 

effects that global change may have on ecosystems, Earth system components and the 88 

whole system Earth. The search for early-warning indicators is ongoing, and spatial self-89 

organization has been interpreted as one of such signals. Here we review how spatial self-90 

organization can aid complex systems to evade tipping points, and can therefore be a 91 

signal of resilience instead. Evading tipping through various pathways of spatial pattern 92 

formation may be relevant for many ecosystems and Earth system components that 93 

hitherto are identified as tipping-prone, including for the entire system Earth. We propose 94 
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a systematic analysis that may reveal the broad range of conditions for which tipping is 95 

evaded, and resilience emerges.  96 

 97 

The concept of critical transitions, or tipping points, contributes to the understanding of planetary 98 

changes in the Anthropocene (1-3). This idea entails that ecosystems or Earth system components 99 

undergoing global change can typically persist and stay in a similar equilibrium state. The 100 

impending danger, however, is that this is only the case until a tipping point is reached, at which 101 

this (often desired) stable state disappears and the system undergoes a critical or catastrophic 102 

transition towards an alternative equilibrium (1, 2, 4). The latter is a state that will also prevail if 103 

the external change goes back to its original value, thus displaying hysteresis (1, 5). Classic 104 

examples of ecosystems thought to exhibit critical transitions with tipping points between 105 

alternative stable states are: clear lakes becoming turbid because of nutrient overloading (6), 106 

barren deserts replacing vegetated areas in dry savannas, or drylands in general, due to drought 107 

or overgrazing (5, 7), and savannas replacing tropical forests because of deforestation associated 108 

with fire, possibly combined with less rainfall (8-10).  109 

Mechanisms that cause such tipping dynamics are positive feedbacks: i.e., processes that 110 

amplify change imposed on complex systems. In the above mentioned ecosystems, positive 111 

feedbacks are: increased turbidity in lakes leading to less macrophyte plants, which hinders 112 

nutrient uptake thus leading to even more turbidity (6); less vegetation resulting in less water 113 

infiltration into the soil in dry savannas, which in turn leads to even lesser vegetation (5, 7); fewer 114 

forest trees in tropical forests because of deforestation and fires allowing more grass growth, 115 

fueling more fires and preventing forest tree establishment, thus leading to even fewer forest trees 116 

(10-12). At tipping points, positive reinforcing feedbacks overwhelm the negative balancing 117 

feedback processes that maintain the desired state of ecosystems, often leading to the 118 

catastrophic loss of ecosystem services to humans.   119 

There are many possibilities of how positive feedbacks may overtake negative feedbacks 120 

and tipping can be triggered. Tipping occurs as a result of the loss of resilience, which is 121 

interpreted as the amount of environmental change or the strength of perturbation a system can 122 

withstand before it tips to another basin of attraction (13). Three of the most prominent 123 

possibilities have been classified as follows (14): bifurcation induced tipping (B-tipping) happens 124 

when a parameter shift (e.g. change in environmental conditions) reduces the basin of attraction 125 

of the original stable state to zero; noise-induced tipping (N-tipping) occurs as a perturbation of 126 
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the system state, e.g. due to environmental noise or disturbance, knocks the system outside the 127 

basin of attraction of the original state; rate-induced tipping (R-tipping) arises when an 128 

environmental (parameter) change is faster than the restorative attraction to the original state. 129 

The restorative attraction to the original state, or the speed after which an equilibrium state is 130 

restored, is called engineering resilience, or stability, in the ecological literature (13).  131 

This idea of tipping or critical transitions is not only important for ecosystems at local 132 

scale, but also for many regional-scale Earth system components (15, 16). Two examples are: 133 

tipping of the Arctic ice sheets because of warming, inducing changes of surface albedo, leading to 134 

more warming (17-19), and tipping of the Atlantic Ocean circulation induced by changes in surface 135 

water fluxes (20-22). The same notion of tipping points also underlies the concept of hazardous 136 

planetary boundaries at the global scale (23), and has similarly been applied to the Earth’s 137 

biosphere as a whole, as a response to climate and land use changes (3, 24). So, this concept is 138 

relevant for all spatial scales ranging from ecosystems to the entire complex system Earth. 139 

For spatially extended ecosystems, such as drylands, savannas and peatlands, it has been 140 

highlighted that critical transitions are associated with the formation of self-organized spatial 141 

patterns of vegetation (2, 25). In these systems, as environmental conditions worsen, a uniform 142 

coverage becomes unstable to non-uniform (spatial) disturbances, due to the spatial processes, 143 

leading to the formation of regular spatial patterns. Such spatial destabilization of a uniform state 144 

is called a Turing instability or Turing bifurcation, after Alan Turing who first studied this in 145 

reaction-diffusion systems (26). After a Turing instability, so-called Turing patterns emerge, that 146 

can have various spatial forms depending on environmental conditions, and this has previously 147 

been interpreted as preceding a tipping point to an alternative ecosystem state (25). Most notably 148 

in drylands, the following vegetation patterns are observed, here listed in the order with which 149 

they appear with worsening environmental conditions, such as increasing drought or grazing: bare 150 

gaps in homogeneous vegetation cover; labyrinthine or striped vegetation cover; spotty vegetation 151 

in homogeneous bare soil (25, 27-30).  152 

The mechanistic base of Turing instability is that the positive feedback mentioned earlier is 153 

scale-dependent in spatially extended systems: the positive feedback dampens and is 154 

subsequently replaced by a negative feedback further away in space, generating scale-dependent 155 

feedbacks, due to spatial processes (31). The crucial spatial effects of these processes leading to 156 

scale-dependent feedbacks are typically neglected when assuming that systems are homogeneous. 157 

In drylands, for example, the scale-dependent feedback relates to increased infiltration of water 158 
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into the soil and larger soil water uptake at places where vegetation is growing. This generates 159 

surface and soil water flows towards the vegetation, at the cost of available water further away 160 

(28, 29), ultimately resulting in spatial patterns from concentrated vegetation at some places and 161 

bare soil in the other.  162 

 163 

Evading tipping points through Turing patterns 164 

 165 

The regular spatial patterns resulting from Turing instability were until now understood as early-166 

warning signals for tipping points or critical transitions towards an alternative state (B-tipping) in 167 

various ecosystems (2, 25). However, recent mathematical analyses, combined with novel satellite 168 

observations of real ecosystems, reveal a drastic alternative view (32-34). These analyses exposed 169 

the existence of pattern-driven multistability described by Busse balloons, after F.H. Busse (35, 170 

32, 33). The Busse balloon (Fig. 1) indicates a region of the parameter space in mathematical 171 

models for which a large range of wavelengths of regular spatial patterns (vegetation in the dry 172 

savanna example) are possible and stable. Also, when conditions or parameters in the model are 173 

changed, a specific spatial organization can remain stable, meaning the wavelength does not 174 

change for a wide range of environmental conditions, until the edge of the Busse balloon is 175 

reached. Here, the spatial organization and ecosystem state variable, such as ecosystem 176 

productivity, may adjust in a non-critical or non-catastrophic way (Fig. 1). This can be at 177 

parameter values for which, in the non-spatial model, the homogeneous vegetation state may still 178 

exist or already collapsed to bare soil.  179 

 The alternative view mentioned above stems from the fact that earlier analysis of the 180 

ecosystem models only considered the stability of uniform states. Thus, such analysis did conceal 181 

the many possible responses of spatially patterned states, overlooking the existence of Busse 182 

balloons. New studies beyond the conventional analysis (32) also considered the stability of 183 

patterned states, exposing the Busse balloons, implying qualitatively new model predictions and 184 

inspiring novel observations in real ecosystems.  185 

These model predictions, including the existence of multistability and the notion of Busse 186 

balloons, have lately been supported by observations in real ecosystems (33). Satellite 187 

observations showed regular spatial vegetation patterns, which occur in vast areas in different 188 

regions in dry savannas in Africa. Indeed, these observations showed that many spatial patterns 189 

with different wavelengths co-occur next to each other in one and the same area with similar 190 
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environmental conditions, and for different areas within the same larger region, supporting the 191 

Busse balloon theory. Moreover, the wavelengths of the patterns in specific areas within those 192 

regions remained stable in time for decades, despite changes in environmental conditions. Once 193 

again, we refer to these two phenomena combined as multistability, which is illustrated by the 194 

Busse balloon (Fig. 1) (32, 33). Also, recent model analyses revealed that at the edge of the Busse 195 

balloon, ecosystems adjust their spatial organization in such a way that they stay within the Busse 196 

balloon. In other words, the dominant variable generating the spatial pattern (ecosystem 197 

productivity in our example) does not change drastically, in the way it would with a critical or 198 

catastrophic transition, but more gradually instead (34). Moreover, in the patterned state, 199 

vegetation persists for environmental conditions beyond the tipping point (Fig. 1b). So this 200 

demonstrates a case where the system shows spatial pattern formation at the Turing bifurcation 201 

before the tipping point is reached, which then extends beyond the tipping point, thus essentially 202 

constituting a pathway evading it (Fig. 1).  203 

 204 
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 205 

 206 

Figure 1. Resilience in homogeneous and heterogeneous ecosystems. Solid lines denote 207 

stable non-patterned equilibria and dashed lines unstable equilibria. Double arrows mean 208 

ecosystem shifts and single arrows minor ecosystem adjustments. Typical trajectories for 209 

ecosystem degradation (red) and recovery (green) are given, showing the narrowed hysteresis 210 

loop for heterogeneous, spatially self-organized ecosystems. (A) Classic view homogeneous 211 

ecosystem. Classically, worsening environmental conditions correspond to a minor adjustment of 212 

the ecosystem state or ecosystem productivity, until these drive the system over a tipping point, 213 

and a critical or catastrophic transition (B-tipping) occurs. (B) Resilience heterogeneous 214 
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ecosystem. In multistable spatial ecosystems, every set of environmental conditions beyond the 215 

Turing bifurcation allows for multiple stable, spatially self-organized states, indicated by the purple 216 

area, named the Busse balloon. Here, instead of one critical transition, multiple smaller ecosystem 217 

shifts from one spatially patterned state to another occur, which have minor impact on the 218 

function or productivity of the ecosystem as a whole (32, 34). 219 

 220 

So, a phenomenon earlier considered as an illustrative early-warning signal for imminent critical 221 

transitions, now appears to be a sign of resilience instead. In this case, the patterns originate from 222 

a Turing instability, leading to multistability of patterns and subsequent gradual change of the 223 

system. Similarly, in mussel beds, multistability of patterned states has been found in models and 224 

real systems (36, 37). It is noteworthy that the predicted size and number of ecosystem shifts can 225 

vary; these depend on the magnitude and rate of environmental change (32, 34).  226 

There are now strong indications that evading tipping points through spatial self-227 

organization may be very common for ecosystems and Earth system components. This is based on 228 

earlier work on regular pattern formation in real ecosystems (31), combined with the recent new 229 

insights outlined here, and a mathematical analysis (Box 1) of a class of models. This is moreover 230 

underpinned by other observations: tipping points and alternative stable states (bistability) have 231 

been suggested based on simple, non-spatial models, for at least the following ecosystems: 232 

drylands or dry savannas (5,7), savannas (10, 11, 38), peatlands (39), mussel beds (40), 233 

intertidal mudflats (41), barrier islands (42) and sea grasses (43). Most notably, for all of these 234 

model ecosystems, spatial self-organization, or Turing patterns, have been observed in their real 235 

counterpart systems, which are always spatially extended (31, 44-47).  236 

Evasion of tipping points may not be restricted to the case of Turing patterns in Busse 237 

balloons, but may include more comprehensive spatial pattern formation, as we will outline below 238 

in the next section. Apart from spatial pattern formation, there are also other mechanisms via 239 

which tipping may be evaded. For example, sufficiently fast reset of the changing parameters as 240 

compared to the rate of the changing state variable, may repair the overshooting of a tipping point 241 

(that is put the state variable back into the original basin of attraction) in simple Earth system 242 

component models (48). We expect that both spatial patterns and time delay of the state variable 243 

will not only affect B-tipping, but will have a very similar impact on noise-induced (N-) tipping and 244 

rate-induced (R-) tipping, that is evasion of (complete) tipping of the system. In this context it is 245 
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also interesting to note that thresholds related to tipping points are generally rarely detectable 246 

from empirical data (49). 247 

 248 

Box 1. Turing-before-tipping 249 

In mathematical models, (bifurcation, or B-)tipping takes place when an equilibrium state loses its 250 

attraction and disappears in response to a parameter, say A, passing through a critical value A*. At 251 

that moment, the system has to shift to an alternative equilibrium state. In the literature (e.g. 10, 252 

38, 39), the models in which tipping occurs typically are spatially homogeneous, i.e. not spatially 253 

extended. However, the associated modeled systems are almost without exception spatially 254 

extended, and it is thus natural and necessary to model the spatial effects. The main idea 255 

underlying the concept of Turing-before-tipping is as follows. For tipping, it is necessary that the 256 

(initial) equilibrium state stays stable until it tips. Therefore, it is self-evident to ask the question: 257 

Is the homogeneous equilibrium state that precedes tipping also stable against spatial effects? If 258 

not, a spatially extended version of the model will not exhibit tipping: spatial patterns emerge 259 

before parameter A has reached its critical (tipping) value A*. In that case, the modeled ecosystem 260 

will not tip; instead, it evades the critical transition by forming spatial patterns. 261 

As a general and relatively simple example of how one can determine whether Turing-262 

before-tipping occurs (or not), we consider the dynamics of a biological quantity b(t) in interaction 263 

with a (typically limited) resource r(t) and assume that this is described by the model 
𝑑𝑏

𝑑𝑡
= 𝐹(𝑏, 𝑟), 264 

and 
𝑑𝑟

𝑑𝑡
= 𝐺(𝑏, 𝑟), in which F(b,r) and G(b,r) represent various growth, decay and interaction effects 265 

that vary with parameter A. For instance, in the (non-dimensionalized) model for vegetation 266 

dynamics in drylands of Bastiaansen et al (2018), b(t) is the biomass of the vegetation, r(t) is the 267 

available water and F(b,r) = - Mb + rb2, G(b,r) = A - r - rb2, where M models the vegetation 268 

mortality rate and A the rainfall. Tipping occurs when, as function of parameter A, two equilibrium 269 

states merge into one, the threshold state (b*,r*) at A = A*, and subsequently disappear. To 270 

guarantee that one of these equilibrium states is stable, and thus observable, until it tips, it is 271 

necessary that 
𝜕𝐹

𝜕𝑏
 (b*,r*) + 

𝜕𝐺

𝜕𝑟
 (b*,r*) < 0. To consider the question whether Turing-before-tipping 272 

may occur, one thus needs to incorporate spatial effects into the homogeneous model. A simple 273 

way to do so is to extend the model for b(t) and r(t) into a system of reaction-diffusion equations 274 

for biomass B(x,t) and resource R(x,t): 
𝑑𝐵

𝑑𝑡
 =  𝑑𝐵∆𝐵 +  𝐹(𝐵, 𝑅), 

𝑑𝑅

𝑑𝑡
=  𝑑𝑅∆𝑅 +  𝐺(𝐵, 𝑅), in which ∆ 275 

models (spatial) diffusion, and dB and dR are the diffusion coefficients that govern the diffusive 276 
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spreading speeds of B(x,t) and R(x,t). It can be obtained that only if dR 
𝜕𝐹

𝜕𝑏
 (b*,r*) + dB 

𝜕𝐺

𝜕𝑟
 (b*,r*) < 277 

0 the threshold state (b*,r*) is stable against spatial perturbations. In other words, Turing-before-278 

tipping occurs if 
𝜕𝐹

𝜕𝑏
 (b*,r*) + 

𝜕𝐺

𝜕𝑟
 (b*,r*) < 0 and dR 

𝜕𝐹

𝜕𝑏
 (b*,r*) + dB 

𝜕𝐺

𝜕𝑟
 (b*,r*) > 0. This condition thus 279 

determines whether an ecosystem can evade collapse by forming patterns (or not) and can be 280 

checked explicitly in any given model. For instance, in the dryland model of Bastiaansen et al (33), 281 

these conditions are given by M < 2 and eM > 2 (at (b*,r*) = (1, M) with A* = 2M, dR = e and dB  = 282 

1). In Bastiaansen et al (33), the following realistic choices for M and e were made: M = 0.45, e = 283 

500 (cf. 32). So, Turing-before-tipping takes place, as is also exhibited by the observations 284 

reported. Explicit conditions for Turing-before-tipping can also be deduced for multi-component 285 

models and/or for models with spatial effects beyond (linear) diffusion.   286 

 287 

Evading tipping points through coexistence states 288 

 289 

The ranges of conditions and mechanisms for which complex systems can evade tipping via spatial 290 

pattern formation are not restricted to those leading to Turing patterns in Busse balloons, but they 291 

include more comprehensive spatial pattern formation. While non-spatial complex systems can 292 

respond to disturbances or perturbations only with a system-wide response that either leads to 293 

complete tipping to an alternative stable state (N-tipping) or to full recovery, this is not the case 294 

for real systems, which are always spatially extended. In those systems, localized or random 295 

disturbances that are omnipresent can lead to spatial pattern formation, in which only part of the 296 

spatial domain transitions to the alternative state, and system-wide N-tipping is evaded. Such 297 

spatial patterns consist of the coexistence of alternative stable states in space, and are herein 298 

referred to as coexistence states. Multistability of different spatial patterns of those coexistence 299 

states can occur for given environmental conditions (50, 51). Spatial boundaries, or interfaces, 300 

necessarily arise between alternative states in space. These boundaries can range from very 301 

simple, in the form of a single front, to a rich patterned structure of alternative stable states. For 302 

example, presence and absence of ice are two alternative stable states that can occur in the 303 

spatial domain of system Earth; these states coexist on a global scale. Ice only appears at the 304 

polar latitudes and no ice occurs in between, with a simple spatial boundary between them, named 305 

the ice line or grounding line (52, 53).  At smaller scales, such spatial boundaries between ice and 306 

no-ice states can consist of much more complex structures of alternative stable states (54). 307 
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The spatial boundaries separating the coexisting states may themselves become unstable, 308 

which might lead to one alternative state invading the other, thereby providing a mechanism for 309 

evolving such rich and complex patterned structure of alternative stable states (51, 55). 310 

Furthermore, reorganization of spatial patterns may take place due to environmental change, 311 

without any abrupt change in system characteristics at global system scale. Thereby the system 312 

can evade critical transitions and instead a smoother and much more gradual response can be 313 

expected (50, 51). In this manner, the spatial patterns can also persist beyond the tipping point 314 

with worsening environmental conditions. This constitutes another essential pathway for 315 

ecosystems and Earth system components to evade tipping points through spatial pattern 316 

formation and multistability. Most amazingly, such spatial organization could even lead to non-317 

forced reversed transitions in which a state counter-invades or, in other words, the automatic and 318 

spontaneous recovery of the original state from the alternative one (55).  319 

These coexistence states may also form in ecosystems because of aggregation of 320 

organisms into self-organized patchiness (56), as was observed in the clustering of mussels in 321 

mussel beds (57). Here, an interesting parallel was found with the physical theory of phase 322 

separation. This theory describes the dynamics of spatial interfaces of phases (i.e., spatial 323 

boundaries between coexistence states in our terminology), and explains a rich variety of possibly 324 

very slow transient spatial patterns. These include maze or labyrinths patterns, spot patterns and 325 

viscous fingering, which may cause very gradual transitions when conditions are changed. Phase 326 

separation dynamics leading to coexistence states can be present in ecosystems and Earth system 327 

components as well (58). For instance, some of the spatial aggregation of organisms and 328 

resources can be interpreted as such. Comparisons to phase segregation mechanisms have been 329 

made already for other ecosystems besides mussels (57), e.g. for the aggregation of vegetation in 330 

fingering patterns (55).  331 

New theory and procedures need to be developed to distinguish spatial pattern formation 332 

from patterns originating from pre-existing heterogeneity, because real systems are generally a 333 

mixture of both (59). One example of pre-existing heterogeneity that could falsify the mechanism 334 

of spatial pattern formation in the specific context of vegetation patterns could be pre-existing 335 

drainage patterns governed by topography, explaining tree distribution patterns. 336 

 337 

Toward a theory on spatial pattern formation and multistability 338 

 339 
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The previously described insights highlight how spatial pattern formation in complex systems can 340 

lead to evasion of tipping and increased resilience. We have highlighted a few illustrative examples 341 

in Box 2 and Box 3. However, some complex systems may still exhibit tipping, even though they 342 

are spatially extended. So, when does the classical non-spatial framework of tipping points break 343 

down and need to be supplemented by a new theory on spatial pattern formation? For what 344 

ecosystems and Earth system components, including complex system Earth as a whole, is this 345 

relevant? And for what conditions and at which spatial scales is this the case? Currently, these 346 

questions are not fully resolved. In the text below, we provide a synthesis of the current 347 

understanding, based on analysis of model and real patterned systems, in which we also explicitly 348 

point out missing pieces of knowledge. 349 

 350 

Box 2. Spatial pattern formation evading tipping in local-scale ecosystems. 351 

Savanna ecosystems are characterized by the coexistence of trees and grasses. Most 352 

homogeneous models indeed reproduce this coexistence. They show that, depending on rainfall, 353 

fire intensity and level of herbivory, open savannas (with dispersed trees) may generally switch 354 

between multiple alternative homogeneous states (Fig. 2) with: no trees; either barren “desert” or 355 

“grassland”, closed tree cover of mainly savanna trees; “savanna woodland”, or closed tree cover 356 

of mainly forest trees; “tropical forest” (e.g. 5, 10, 11, 38, 64, 65, 75). In other words, neglecting 357 

spatial effects, these models predict that savanna ecosystems can exhibit alternative states, and 358 

critical transitions with tipping between them.  359 

However, when spatially extended, the models show a rich variety of spatial patterns 360 

instead, through the emergence of Turing patterns (71, 104) and due to the coexistence of 361 

alternative stable states in space (51, 73) (Fig. 2). The system may, or may not, evade tipping by 362 

the appearance of spatial patterns, as analysis (Box 1) indicates that both situations may occur. 363 

Whether a tropical forest or savanna collapses or increases its resilience by the multistability 364 

associated with spatial pattern formation, depends on local, but system-wide, conditions i.e. the 365 

parameters in the model. 366 

 367 

Box 3. Multistability evading tipping in regional- and global-scale Earth systems. 368 

Tipping behavior and critical transitions are attributed to many Earth system components (3, 15). 369 

However, also for these systems, the framework of tipping points may be too limited, and 370 

multistability may play a more important role than previously thought. 371 
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As a classic example, we consider here how spatial effects lead to the introduction of 372 

coexistence states and thereby change the tipping behavior related to the ice-albedo feedback in 373 

an Earth's global climate model (52, 53, 105, 106). Changes in the Earth's temperature are 374 

directly related to changes in the energy budget, which is computed as incoming solar radiation 375 

minus reflected and outgoing ("Planck") radiation. The temperature dependency of the albedo is 376 

the ice-albedo feedback: as long as temperatures are low, Earth is covered in ice, which does 377 

reflect much of the solar radiation. However, when temperatures rise, the ice melts and 378 

consequently less radiation is reflected leading to further temperature increase. If one does not 379 

take spatial effects into account, as is commonly done, this feedback mechanism leads to two 380 

alternative Earth states in this model: An Earth fully covered in ice ("Snowball Earth"), or an Earth 381 

with no ice ("No-ice Earth"). There is a bistable region where both of these states exist, and critical 382 

transitions and tipping points between those states occur when one stable state vanishes.  383 

However, in reality, we clearly are not in any of those two Earth states, as ice is present 384 

only at the polar regions. That is because spatial effects that play an important role in the real 385 

Earth's global energy budget are ignored in such a model. For example, incoming solar radiation is 386 

latitude dependent and meridional heat flow forms an integral part of energy distribution. When 387 

adding such spatial mechanisms, the models predict also coexistence states of ice and no-ice, in 388 

addition to the alternative Snowball and No-ice Earth states. In the coexistence states, ice is 389 

present in only part of the Earth: near a pole there is ice, while simultaneously there is no ice at 390 

the equator, with a spatial boundary between these alternative states occurring at some 391 

intermediate latitude. The presence of these additional states changes the classical tipping 392 

properties of the non-spatial system: when a fully (un)covered Earth state disappears, a less 393 

critical transition to a system with coexistence states might happen and more gradual transitions 394 

are possible. 395 

In addition to this example of coexistence states, there is multistability attributed to Earth 396 

system components. In fact, the Busse balloon finds its origin in the study of thermal convection 397 

(35), which is closely related to turbulence in fluid mechanics, and thus relevant also for the global 398 

atmosphere and the ocean circulation of the Earth. However, in the example of the Atlantic 399 

meridional overturning circulation mentioned above, when using box models with relatively few 400 

boxes, tipping is observed (107), while multistability of coexistence states is not detected. We 401 

suggest that, despite taking into account spatial processes between the boxes, homogenizing 402 

within only a restricted number of boxes severely limits the many emergent spatial responses that 403 
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the system may unfold. Indeed, increasing the spatial resolution, by adding more boxes, increases 404 

the number and nature of stable states (108, 109), and gradually brings back the multistability. In 405 

this context, an interesting line of research is to investigate whether such tipping of Earth system 406 

components in general (15) persists in higher resolution models, such as in the state-of-the-art 407 

global climate models (16), or is replaced by multistability of coexistence states including more 408 

gradual transitions. If the latter is the case, this may be a possible explanation why the full-409 

complexity global climate models seem more stable than the simple or intermediate-complexity 410 

ones (110). 411 

 412 

An archetypical system: Evading savanna tipping 413 

 414 

Savannas are defined by the coexistence of grasses and trees, spread over one eighth of the land 415 

surface worldwide, and are an important source of livelihood for many (60). The expected changes 416 

in climate and land use can lead to significant alteration of vegetation characteristics and global 417 

savanna distributions (61, 62). Tree cover is highly variable and notoriously difficult to predict; it 418 

has been suggested that space could be a main element elucidating this, which is missing in many 419 

studies of savannas (63). Savannas can be considered as a model ecosystem to derive and 420 

validate conditions for evading tipping points because of the following two main reasons. First, 421 

observations in models and real ecosystems show multiple alternative states and tipping 422 

phenomena. The ecosystem may change amongst a system with no trees (barren desert or 423 

grassland), open savanna with grasses and scattered trees, closed savanna woodland covered with 424 

savanna trees and shrubs, and closed tropical forest with forest trees (5, 8-12, 38, 64-68) (Fig. 2). 425 

Savanna trees are more fire tolerant and less shade tolerant than forest trees (69). This, together 426 

with the flammability and fire resistance of grasses that can easily regrow after fires, is the key of 427 

the positive feedback mentioned earlier, generating alternative stable states between open 428 

savanna and tropical forests. Second, both types of spatial pattern formation as we outlined, 429 

namely Turing patterns and coexistence states, have been observed in real and model systems 430 

(12, 25, 68, 70-76) (Fig. 2). Therefore, studying savanna ecosystems is an excellent opportunity 431 

to obtain results that are of general interest and applicability.  432 

 433 

Towards a unified spatial savanna model 434 
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To the best of our knowledge, no unified savanna model exists that explains all of the possible 435 

ecosystem states including spatial Turing patterns and coexistence states. To develop a unified 436 

spatially explicit savanna model, existing savanna models (e.g. 71, 76, 77) could be combined in 437 

such a way that the new model consists of (at least) the state variables water, grass biomass, 438 

savanna tree biomass, and forest tree biomass. Savanna and forest trees should be distinguished 439 

by their different fire responses and shade tolerance (78, 79). Non-spatial models that consider 440 

rain, fire and herbivory may aid in the development of such unified framework (64, 80) and 441 

studies of savanna-forest transitions may also prove useful (10, 81). The new model could include 442 

positive feedbacks between water infiltration into the soil and biomass, and between fire and grass 443 

biomass (11). Herbivory (grazing and browsing) could be added as an extra negative term (82) or, 444 

possibly as an extra dynamic equation (83). It could then be analyzed to address the following 445 

questions along a rainfall gradient (Fig. 2): Under which conditions do sharp or gradual spatial 446 

boundaries exist between open savanna on the one hand, and tropical forest, savanna woodland, 447 

or desert on the other? How are those boundaries evolving or bifurcating, or moving with respect 448 

to (changes in) climate, herbivory and fire? Under which conditions do spatial patterns occur, 449 

either Turing patterns or coexistence states? Answers to these questions can be obtained by a 450 

combination of simulations, mathematical bifurcation analyses and numerical continuation (84, 451 

85). 452 

 453 
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 454 

 455 

Figure 2. Savannas along a rainfall gradient. Open savannas with dispersed trees can be 456 

classified into three broad ranges according to annual rainfall (67): humid, mesic and dry (blue bar 457 

indicating rainfall decreasing from humid to dry, from right to left). The humid range potentially 458 

demonstrates bistability with tropical forest. The mesic range shows possible bistability with 459 

savanna woodland, and the dry end with barren desert (or grassland, not shown). Fire and 460 

herbivory play an important role in savanna dynamics determining varying tree cover given a 461 

certain amount of rainfall. The importance of fire (illustrated by the red shade in the fire bar) 462 

decreases from humid toward dry ranges, where water availability is the main limiting factor and 463 

driving force. We compare the expected spatial structures with symbolic Google Earth image 464 

examples, from right to left with decreasing rainfall, namely: coexistence states between forests 465 

and humid savannas (Gabon 10 16’ 1.06’’ S - 130 56’ 18.63’’ E, 2000 x 2000 m.), coexistence 466 

states as well as Turing patterns between savanna woodland and mesic open savanna (Kenya 10 467 

28’ 8.83’’ S - 340 53’ 55.60’’ E, 1200 x 1200 m.; Mali 130 03’ 15.09’’ N - 60 40’ 50.86’’ W, 800 x 468 

800 m.), and Turing patterns between dry savannas and desert (Sudan 110 26’ 47.53’’ N - 270 53’ 469 

30.07’’ E, 1500 x 1500 m.). There is no unifying model explaining all savanna states and spatial 470 

patterns observed. We suggest that developing and analyzing such a unifying savanna model is 471 

needed, by incorporating relevant state variables and parameters, by making the model spatially 472 
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explicit, and by a combination of mathematical bifurcation analyses, simulations and numerical 473 

continuation methods (84, 85).  474 

 475 

General new predictions based on the theory that could be tested with such unified model are as 476 

follows (Fig. 2):  477 

- At the humid end of the rainfall gradient, at the tropical forest-savanna boundaries, where 478 

fire is generally assumed to drive alternative stable states between tropical forests and 479 

open savannas, we expect to discover coexistence states (cf. 68, 86), evading tipping.  480 

- In the mesic range, where a combination of fire and herbivory drives alternative states 481 

between closed savanna woodland and open savanna, we expect to find both coexistence 482 

states and Turing patterns (70, 73, 74), evading tipping.  483 

- At the dry end of the gradient, where dryness drives alternative stable states between 484 

open savanna on the one hand, and desert on the other, we suppose that the occurrence 485 

of Turing patterns associated with Busse balloons (33, 34) leads to the evasion of tipping 486 

points.  487 

- Increased fire intensity will lead to movement of the tropical forest-savanna boundary 488 

towards tropical forest (humid savannas replacing forest) (81). A decrease in fire or 489 

herbivory will lead to savanna woodland invading mesic open savanna, and decreased 490 

rainfall will lead to desert replacing dry savanna.   491 

 492 

Observations of spatial patterns evading tipping points 493 

Towards the wet end of the rainfall gradient, sharp tropical forest-savanna fronts (87) without 494 

spatial pattern formation could be interpreted as spatial substitutions of critical transitions (88). 495 

However, it is not clear for which conditions tropical forest-savanna boundaries are sharp or 496 

gradual, whether they are moving and whether patterned structures of alternative stable states 497 

(coexistence states) occur. So, the same questions as for the model analyses described above can 498 

be addressed through observations. After being tested by model analyses, the predictions 499 

mentioned above can be validated, focusing on fire and dryness as main drivers. Spatial signatures 500 

of sharp vegetation boundaries (88) between tropical forests and open savannas can be explored 501 

worldwide from satellite data (cf. 87, 89). This can be done at multiple spatial resolutions to create 502 

time series for multiple years or decades (90), to detect vegetation boundaries at both coarser and 503 

finer resolutions, necessary to screen boundaries of spatial patterned structures of coexistence 504 
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states (cf. 68, 86) and Turing patterns, which could both be easily overlooked by only using 505 

coarser spatial resolutions. The same approach can be followed for open savanna-savanna 506 

woodland boundaries for the mesic ranges of the rainfall gradient and for dry savanna-desert 507 

boundaries at the dry end along the gradient.  508 

Such findings can be related to the main drivers such as dryness and fire as mentioned 509 

above through change indicators (91, 92). Metrics of spatial boundaries can also be correlated to 510 

annual burned area maps (93). This would allow tests of the predictions of how these drivers 511 

determine the sharpness of vegetation boundaries, whether patterned structures of coexistence 512 

states and Turing patterns occur, and how moving of the boundaries are associated with a change 513 

of the main drivers. This is important in the light of expected changes in climate and land use, and 514 

it will provide insight in the conditions for which tipping points may be evaded or not.  515 

 516 

Universal conditions for spatial pattern formation and multistability 517 

 518 

A major part of the mathematical literature on spatial pattern formation focuses on the onset of 519 

Turing patterns close to homogeneous equilibria (94). However, real ecosystems and Earth system 520 

components in their natural state typically are not close to such onset at which the patterns first 521 

emerge, but “far from equilibrium” instead, at which the spatial patterns are fully developed. There 522 

is only limited mathematical insight in many of the spatial patterns in real systems, unless the 523 

governing system shows a sufficient large scale separation, which is the condition that spatial 524 

transport of the components of the system plays out on vastly different spatial and temporal 525 

scales. A system for which this occurs is called “singularly perturbed” in the mathematical 526 

literature. Notably, the spatially extended models and real systems considered here, typically are 527 

singularly perturbed, where the singularly perturbed nature stems from observations that pattern 528 

formation in ecosystems is indeed driven by counteracting feedback mechanisms on widely 529 

different spatial scales (31). Therefore, the realistic, far from equilibrium patterns considered here 530 

can be studied in mathematical detail by the methods of singular perturbation theory (95). 531 

Moreover, the most relevant patterns commonly exhibited by ecosystems and Earth system 532 

components (including the examples of Box 2 and 3) have the nature of interacting localized 533 

structures, such as areas with vegetation bands surrounded by areas with bare soil (33), the 534 

boundaries mentioned above between open savanna and savanna woodlands (73) and the 535 

grounding line of glaciers (54). Resilience by multistability (33, 34) is directly coupled to the very 536 
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rich variety of patterns associated to interacting localized structures like localized stripes and 537 

spatial boundaries. 538 

Therefore, the formation of these fundamental spatial patterns and multistability provide 539 

mechanisms by which spatial ecosystems (Box 2) or Earth system components (Box 3), including 540 

the complex Earth system as a whole, may evade tipping in general. Whether this occurs or not, 541 

will depend on local (but system-wide) conditions in real systems, or parameter combinations in 542 

models. For various classes of systems, there will be universal conditions that lead to evasion of 543 

tipping points through spatial pattern formation and multistability, such as for savanna 544 

ecosystems. These are classes of ecosystems and Earth system components for which currently 545 

tipping points are predicted.  546 

 547 

Turing-before-tipping. 548 

Preliminary analyses of spatially extended ecosystems, such as dry savannas, modeled by 549 

activator-inhibitor type reaction-diffusion equations (27, 75, 76), show that tipping may, or may 550 

not, be preceded by a pattern forming Turing bifurcation (Box 1, Fig. 1). The conditions for which 551 

this may, or may not, happen can be explicitly expressed in terms of model parameters (Box 1). 552 

However, the Turing bifurcation only gives insight into the onset of spatial patterns, but not into 553 

their behavior beyond onset (far from equilibrium) where the patterns become more developed 554 

and observable. Moreover, it is the dynamics beyond onset that determine if, and how, these 555 

Turing patterns lead to evasion of tipping. An explicit scenario has been unraveled within the 556 

literature on dry savannas (32, 34) where Turing patterns evolved beyond the onset in such a way 557 

that indeed tipping is evaded in the system. The crucial question now is whether this scenario may 558 

also play a role in other types of systems and whether there are alternative scenarios through 559 

which small amplitude Turing patterns may evolve into large scale interacting localized structures 560 

that enable the system to evade tipping. Due to the singularly perturbed nature of the models, it is 561 

possible to study the basic localized structures and their interactions mathematically (96-98). To 562 

make the crucial connection between these localized patterns and those that appear from the 563 

Turing bifurcation, a further analysis of the Busse balloon, and especially the nature of its 564 

boundary, by a combination of bifurcation analyses, simulations and numerical continuation (32, 565 

84, 85) is necessary.  566 

 Such analyses will also reveal the dynamics of systems preceding bifurcation points and 567 

hence lead to better early-warning signs. The classical theory of tipping, predominantly based on 568 
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non-spatial models, led to the creation of generic early-warning signs before such tipping occurs 569 

(2, 99), mainly associated with critical slowing-down of recovery after perturbation. In spatial 570 

systems, this idea becomes more complicated, because this may now crucially depend on the 571 

nature of the different spatial perturbations; critical slowing-down will only show for perturbations 572 

that have a specific spatial structure (74), which may be hard or even impossible to detect in 573 

spatially averaged data. Simultaneously, the form of the perturbation that does show critical 574 

slowing-down can help to determine the type of bifurcation before onset; in other words, whether 575 

a system will tip or evade tipping by forming spatial patterns. After the system is exposed to some 576 

generic perturbation (that might be e.g. random or localized) before a bifurcation is reached, the 577 

system will restore during a transient restoration period, and temporarily either a patterned or a 578 

non-patterned state may emerge. The form of this emerging transient state could now be 579 

distinctive and the type of bifurcation it precedes could be identified. Leading up to Turing 580 

bifurcation, such emerging transient state may be some spatially periodic pattern. In contrast, 581 

tipping bifurcation could be preceded by emerging transient states that are either spatially 582 

homogeneous or extremely localized. This would make it possible to distinguish between both 583 

types of bifurcations from spatial time series before they occur. Of course, one main challenge is 584 

the extraction of these spatial perturbations from data, but existing so-called mode decomposition 585 

algorithms (e.g. 100) may be a viable option. 586 

 587 

Destabilizations of interfaces between coexistence states. 588 

Isolated interfaces between coexistence states, such as the open savanna-savanna woodland 589 

boundary, the tropical forest-savanna boundary (Box 2 and Fig. 2), and the interfaces between 590 

ocean and ice (Box 3), are necessary for the multistability by which tipping of the whole spatial 591 

system through perturbation of the stable state may be evaded. However, for the spatial 592 

coexistence patterns to persist beyond the tipping point with worsening external conditions, an 593 

additional mechanism is required and likely. Similarly to homogeneous states that may be 594 

destabilized by Turing bifurcations, spatial fronts between coexistence states may typically also 595 

bifurcate and may thus be the origin of a multitude of evolving localized spatial patterns. These 596 

patterns subsequently may provide the ecosystem or Earth system component with further 597 

multistability and with various gradual routes it may follow beyond the tipping point; in other 598 

words, with evasion of the tipping point when environmental conditions worsen. These bifurcations 599 

can be traced numerically (51, 55). But more importantly, once again, the singular perturbed 600 
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nature of the models allows for developing a fundamental understanding of the underlying 601 

destabilizing mechanisms (98, 101). For instance, conditions can be derived for which an invading 602 

front that leaves a homogeneous stable state behind triggers a counter-invasion of an alternative 603 

patterned state, which comprises multistability and thus a gradual route, thereby circumventing 604 

tipping points.  605 

  606 

The impact of domain, localized and non-local homogenizing effects.  607 

Most mathematical studies of spatial pattern formation in spatially extended complex systems take 608 

place assuming a highly idealized domain: a sufficiently large open space or volume in which 609 

environmental conditions do not change throughout the domain. In real systems, however, such 610 

idealized domains do not exist and it is not evident if, and how, results carry over from idealized 611 

domains to more realistic ones. For instance, if the spatial domain in which a system can evolve is 612 

too small for spatial pattern formation, evasion of tipping cannot work anymore. A prominent 613 

example could be alternative stable states and tipping of the spatially confined and shallow lakes 614 

(6). This implies there is a minimum domain size for complex systems to form spatial patterns and 615 

enhance resilience; this minimum size would depend on the spatial scale of the dominant 616 

mechanisms and resulting spatial patterns of the specific system under consideration.  617 

Moreover, localized effects, e.g. by human interventions, can have a strong impact on the 618 

formation, stability and dynamics of patterns (102). Examples are logging in tropical forests and 619 

imposed fixing of sand dunes or building dikes in coastal dune systems. The point here is that, 620 

albeit localized, such human perturbation may significantly reduce the flexibility and thus resilience 621 

of the patterned system as a whole. Similarly, and probably even more importantly, the same can 622 

happen if humans homogenize spatial patterns characteristic of pristine systems non-locally, 623 

because the mechanisms outlined here enhancing resilience will not function anymore. Examples 624 

are large-scale agriculture in terrestrial ecosystems, spatially homogeneous restoration efforts 625 

combating desertification, and destructive bottom trawling in marine ecosystems. Therefore, the 626 

study of resilience through spatial pattern formation in complex systems should be embedded in a 627 

thorough analysis of the impact of spatial restrictions of the domain and the effects of localized 628 

and non-local homogenizing, human induced effects. A relevant approach would be a combination 629 

of computational and analytical studies to determine the effects of such spatial (in)homogeneities 630 

on pattern dynamics and resilience (103). This is important for ecosystem restoration and 631 

mitigating the effects of land use and climate change. 632 
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 633 

Conclusions 634 

 635 

Here we have shown how spatial self-organization and multistability resulting from Turing patterns 636 

may help complex systems evade tipping points and enhance resilience. Additionally, we have 637 

outlined that the ranges of conditions and mechanisms for which tipping is evaded are supposed to 638 

be much broader than those leading to Turing patterns, owing to more comprehensive spatial 639 

pattern formation and multistability, including the occurrence of coexistence states. We highlighted 640 

that both types of spatial pattern formation originate before and can persist beyond tipping points, 641 

demonstrating various pathways evading tipping, while strongly enhancing the resilience. We 642 

emphasized that such spatial pattern formation and multistability have also been observed 643 

recently for real ecosystems, and we argued this may be relevant for many ecosystems and Earth 644 

system components, including for complex system Earth as a whole. Savannas can be considered 645 

an archetypal ecosystem to further investigate this, because of observations of tipping phenomena 646 

together with spatial pattern formation. Better understanding of the dynamics of spatial pattern 647 

formation in general is needed to determine how these respond to external changes of various 648 

magnitudes and rates, and to localized and non-local homogenizing perturbations. Such 649 

understanding will help determine which conditions and spatial patterns lead to the evasion of 650 

tipping and which do not. We expect that identifying these in the many ecosystems and Earth 651 

system components that are supposedly tipping-prone will reveal that some are much more 652 

resilient than currently thought.  653 

 654 
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