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Abstract
The established role of ATP-responsive P2X7 receptor in inflammatory, neurodegenerative, and immune diseases is now
expanding to include several aspects of metabolic dysregulation. Indeed, P2X7 receptors are involved in β cell function, insulin
secretion, and liability to diabetes, and loss of P2X7 function may increase the risk of hepatic steatosis and disrupt adipogenesis.
Recently, body weight gain, abnormal lipid accumulation, adipocyte hyperplasia, increased fat mass, and ectopic fat distribution
have been found in P2X7 KO mice. Here, we hypothesized that such clinical picture of dysregulated lipid metabolism might be
the result of altered in vivo energy metabolism. By indirect calorimetry, we assessed 24 h of energy expenditure (EE) and
respiratory exchange ratio (RER) as quotient of carbohydrate to fat oxidation in P2X7 KO mice. Moreover, we assessed the
same parameters in aged-matched WT counterparts that underwent a 7-day treatment with the P2X7 antagonist A804598. We
found that loss of P2X7 function elicits a severe decrease of EE that was less pronounced in A804598-treated mice. In parallel,
P2X7KO mice show a drastic increase of RER, thus indicating the occurrence of a greater ratio of carbohydrate to fat oxidation.
Decreased EE and fat oxidation is predictive of body weight gain, which was here confirmed. Taken together, our data provide
evidence that P2X7 loss of function produces defective energy homeostasis that, together with disrupted adipogenesis, might help
to explain accumulation of adipose tissue and contribute to disclose the potential role of P2X7 in metabolic diseases.
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Introduction

The purinergic signaling system encompasses a complex net-
work of membrane receptors among which the P2X7 receptor
(P2X7) subtype, a member of the ionotropic family of ligand-
gated cation channels [1]. Endogenously activated by high
concentrations of extracellular ATP, the P2X7 enables the en-
try of Ca2+ and Na+, and the outward flow of K+ across the
plasma membrane [1] and, upon repeated stimulation, the
opening of a larger membrane pore that impacts on cell ho-
meostasis [1]. Since broadly distributed in immune cells, the

P2X7 has been associated with immune responses, inflamma-
tory processes, and cancer [2]. Being involved in neuroinflam-
mation [2], the blockade of P2X7 has been exploited in sev-
eral neurodegenerative and neuropsychiatric conditions, such
as Alzheimer’s [3] and Parkinson’s diseases [4]. Recently, we
highlighted the role of P2X7 in multiple sclerosis [5] and
amyotrophic lateral sclerosis [6]. Moreover, the emergent role
of P2X7 in β cell function and insulin secretion [7], as well as
in type 1 diabetes [8] and diabetes-induced co-morbidities [9],
further expands the clinical impact of P2X7-mediated signal-
ing. Indeed, impairment of glucose and lipid metabolism is of
clinical significance not only for diabetes, but also for neuro-
degenerative diseases and cognitive decline [10]. P2X7 null
mice (P2X7KO) are hyperglycemic, and show glucose intol-
erance after chronic exposure to high fat/high sucrose diet
[11]. Hyperglycemia and concomitant increase of serum insu-
lin levels supports the idea of possible insulin resistance in
P2X7KOmice, in which it was also observed hepatic steatosis
and facilitated glucose delivery into the bloodstream [12]. The
critical involvement of P2X7 in regulating energy metabolism
has been further demonstrated in P2X7KO mice showing
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higher body weight and increased epididymal fat mass with
adipocyte hyperplasia and ectopic lipid accumulation in or-
gans, such as kidney and pancreas [13]. Considering the im-
portance of adiposity, dyslipidemia, and diabetes for obesity
burden and metabolic diseases, in this work, we investigated
whether loss of P2X7 function alters whole-body energy me-
tabolism, as measured by energy expenditure (EE) and respi-
ratory exchange ratio (RER). We analyzed these parameters
in vivo in P2X7KO mice as well as in WT mice administered
with the selective P2X7 antagonist A804598.

Materials and methods

Animals

Adult C57BL/6J (WT) and B6.129P2-P2rx7tm1Gab/J mice
(P2X7KO), originally obtained from Jackson Laboratories
(Bar Harbor, ME, USA), were backcrossed for at least ten
generations and experiments were performed with F10 and
following generations. Animals were bred in the indoor ani-
mal facility in groups of 4–5 mice/cage in standard conditions
with free access to food and water, at constant temperature
(22 ± 1 °C) and relative humidity (50%), with a regular 12-h
light cycle (light 7 AM–7 PM). All animal procedures have
been performed following European Guidelines for the use of
animals in research (86/609/CEE) and requirements of Italian
laws (D.L. 26/2014). The ethical procedure has been approved
by the Animal Welfare Office, Department of Public Health
and Veterinary, Nutrition and Food Safety, General
Management of Animal Care, and Veterinary Drugs of
Italian Ministry of Health. All efforts were made to minimize
animal suffering and the number of animals necessary for
reliable results. To overcome the issue of sex-mixed results
and low reproducibility due to the limited number of animals
enrolled, in the present work, we used female mice because of
the gender differences reported in P2X7KO mice [14].

Western blotting

Protein lysates of mice lung and gut were obtained in homog-
enization buffer (20 mM HEPES, pH 7.4, 100 mM NaCl, 1%
Triton X-100, 10 mM EDTA) added with protease inhibitor
cocktail (Sigma-Aldrich). After centrifugation at ×14000g
(20 min at 4 °C) supernatants were collected and assayed for
protein content by a Bradford detection kit (Bio-Rad
Laboratories, Hercules, USA). Protein analysis was per-
formed by Mini-PROTEAN® TGX™ Gels (Bio-Rad, USA)
and transferred onto nitrocellulose membranes. After satura-
tion with 5% non-fat dry milk, blots were probed with rabbit
anti-P2X7 (1:500, Alomone Labs, Israel) at 4 °C, and incu-
bated with HRP-conjugated secondary antibody for 1 h.
Detections were performed on X-ray film (Aurogene, USA),

using an ECL Advance detection kit (Amersham Biosciences,
USA) and signal intensity visualized by a Kodak Image
Station analysis software. Values were normalized withmouse
anti-β-actin (1:2500, Sigma-Aldrich, Italy).

Pharmacological P2X7 receptor blockade

Adult WT female mice were randomly grouped into vehicle-
treated (10% DMSO in saline) or P2X7 antagonist A804598-
treated mice (Tocris Bioscience, Bristol, UK) [15] and daily
intraperitoneally (i.p.) administered with A804598 (90 mg/kg)
or vehicle for 7 days.

Energy metabolism

EE, oxygen consumption (VO2), and RER were measured by
an indirect calorimeter (IC) system (TSE PhenoMaster/
LabMaster System®) with a constant air flow of 0.35 L/min,
as described [16]. Twenty-month-old P2X7KO mice, age-
matched WT, and A804598-treated WT mice were adapted
for 24 h to the metabolic chamber prior recording, and VO2
and VCO2 were measured every 20 min, for total 24 h (12-h
dark-light phase comparison). Room temperature was kept
constant (22° ± 1 °C).

Statistical analysis

Data are expressed as mean ± standard error of the mean.
Depending on the data, statistical analysis was performed ei-
ther by one-way analysis of variance (ANOVA) or two-way
ANOVA for repeated measures followed by Tukey post-hoc
test. The level of significance was set as p < 0.05.

Results and discussion

The P2X7 engages different functions in distinct cell popula-
tions, or even within the same cell type, thus orchestrating
complex roles, as for instance in the immune and nervous
systems [17]. Recently, a novel role has been established for
P2X7 in adipogenesis and lipid metabolism, uncovering ab-
normal fat distribution in P2X7KOmice [13]. Our results now
show that loss of P2X7 function has a major impact on energy
metabolism homeostasis. We firstly verified in P2X7KOmice
the absence of P2X7 protein from representative peripheral
organs. As shown in Fig. 1a, the ~ 80 KDa band correspond-
ing to P2X7 protein was absent in P2X7KO mice lung and
gut, as compared to WT mice.

The in vivo IC analysis of energy expenditure (EE) and
nutrient substrate oxidation (respiratory exchange ratio,
RER) indeed showed a significant decrease of metabolic rate
(Kcal/h/kg) in P2X7KO and A804598-treated WT mice

Purinergic Signalling



(Fig. 1b), which was evident on circadian base (Fig. 1c) and
more pronounced during the nocturnal phase (Fig. 1d).
Notably, the decrease of EE was not attributable to significant
changes of food intake and, consequently, to the reduction of
food-induced thermogenesis. Moreover, the decrease of EE

induced by the subchronic blockade of P2X7 was lower than
observed in P2X7KOmice with respect to untreatedWTmice
(Fig. 1b). Because of the physiological increase of EE during
the dark cycle, the reduction of EE observed in A804598-
treated mice was more pronounced (Fig. 1d) in this phase with

Fig. 1 a Equal amounts of gut and lung total lysates from WT and
P2X7KO adult mice (n = 3) were subjected to western blotting and
immunoreactions with anti-P2X7 antibody. Anti-β-actin was used for
protein normalization. b Mean of pooled data portraying continuous
24-h recording of energy expenditure (EE) in WT (n = 6), A804598-
treated (n = 4) and P2X7KO (n = 4) mice via the IC. EE is expressed as

Kcal emitted per hour (h)/Kg. Black line below the recording time (X-
axis) denotes the nocturnal phase of the light/dark cycle. cMean of 24-h
whole-body EE (Kcal/k/kg), and d mean of 12-h whole-body EE during
the dark cycle (**P < 0.001 and ***P < 0.0001 vs.WT; °°°P < 0.0001 vs.
A804598)
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respect to the entire circadian phase (Fig. 1c). The RER was
significantly elevated by the loss of P2X7 function (Fig. 2a, b)
and resulted enhanced, although to a lesser degree, also in
A804598-treated mice during the entire circadian period
(Fig. 2b, c). The increase of RER denoted a significant shift

towards a prevalent increase of carbohydrate oxidation and
relative sparing of fatty acids storage in P2X7KO animals.
Simultaneous decrease of EE (Fig. 1b–d) and fat oxidation
(Fig. 2a–c) produced a significant body weight gain in
P2X7KO and, to a lesser extent, in A804598-treated mice

Fig. 2 a Mean of pooled data portraying continuous 24-h recording of
respiratory exchange ratio (RER) expressed as VCO2/VO2 ratio. bMean
of 24-h whole-body RER (VCO2/VO2). c Mean of 12-h whole-body
RER (VCO2/VO2) during the dark cycle. d Mean body weight (BW)

collected before and immediately after the end of 24 h IC analysis
(*P < 0.01, **P < 0.001, and ***P < 0.0001 vs. WT; °°°P < 0.0001 vs.
A804598)
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(Fig. 2d). These findings support the recent evidence that loss
of P2X7 function generates lipid accumulation, adipocyte hy-
perplasia, increased fat mass, and ectopic fat distribution and,
ultimately, weight gain [13]. We believe that the lack of P2X7
yielding a dramatic decline of EE, and a lower ratio of fat to
carbohydrate oxidation, can thus account for both adiposity
and lipid accumulation, as previously demonstrated [19].
Thus, our data prove that loss of P2X7 function leads to ex-
cessive increase of EE and corroborate what posited by
Beaucage and co-workers that establish abnormal fat distribu-
tion in P2X7KO mice [13]. Interestingly, the stimulation of
P2X7 inhibits adipocytes differentiation [18], thus supporting
the dramatic remodeling of fat cells towards the accretion and
expansion of white adipose tissue (WAT) depots in mice lack-
ing P2X7 [13]. Cellular and whole-body energy metabolism
contribute to several developmental processes, such as osteo-
genesis and bone remodeling [19]. In keeping with the role of
P2X7 in bone formation [14], the activation of P2X7 was
shown to produce a sustained increase of cell metabolism
(i.e., proton efflux and metabolic acid production) in osteo-
blasts [20]. In recent years, a variety of adipose tissue factors,
such as low-density lipoprotein receptor relative, hypoxia-
inducible factor-1α, and inhibitor of differentiation 1 (Id1)
have been shown to interfere with brown adipose tissue-
mediated non-shivering thermogenesis, suppressing energy
expenditure and eliciting obesity [21–23]. It is therefore con-
ceivable that loss of P2X7 may have disinhibit adipocytes
differentiation promoting WAT enlargement and ectopic dis-
tribution of white cells at the expenses of brown (or beige)
adipocytes and thermogenic capacity. The peroxisome
proliferator-activated receptor γ (PPARγ) is a well-known
master regulator of white and brown adipocytes differentia-
tion, and PPARγ agonists are insulin-sensitizers drugs that
can also elicit adipocytes remodeling in WAT, increase
mitochondria density, and browning of white adipocytes
[24, 25]. Of note, there is evidence that part of the chan-
nel opening activity of the P2X7 is regulated by PPARγ
[26], for instance in astrocytes. Therefore, the possibility
that loss of P2X7 may have a drastic impact on PPARγ-
mediated functional activity also in WAT to control adi-
pocyte remodeling should also be considered.

It is known that human adipocytes express functionally
active P2X7, whose activation triggers multiple inflammatory
responses and increased release of cytokines such as interleu-
kin (IL)-6 [27]. Despite being associated with chronic inflam-
matory conditions [28], the pathogenetic role of IL-6 is highly
controversial [29]. Indeed, several lines of evidence demon-
strate that IL-6 deficiency may elicit late-onset obesity [30],
hepatic inflammation, and insulin resistance [31], whereas IL-
6 signaling facilitates insulin sensitivity, glucose homeostasis,
suppression of hepatic inflammation, uncoupling protein 1
expression, and fat oxidation [32–35]. Skeletal muscle is a
key organ to account for whole-body EE and fuel utilization

[36], and the decrease of muscle pyruvate dehydrogenase ac-
tivity induced by IL-6 treatment [37] demonstrate that IL-6
signaling can also be responsible for decreased carbohydrate
metabolism. Notably, the metabolic phenotype of IL-6 KO
mice showing decreased EE and increased RER [38] largely
overlaps with our results of P2X7KO mice. The positive cor-
relation between P2X7 expression and IL-6 raises the possi-
bility that reduced IL-6 signaling in P2X7KO mice may con-
tribute to explain reduced EE, increased carbohydrate oxida-
tion, and body weight gain. This will be the object of future
investigation.
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