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ABSTRACT: Measuring rainfall is complex, due to the high temporal and spatial variability of precipitation, especially in a

changing climate, but it is of great importance for all the scientific and operational disciplines dealing with rainfall effects on

the environment, human activities, and economy. Microwave (MW) telecommunication links carry information on rainfall rates

along their path, through signal attenuation caused by raindrops, and can become measurements of opportunity, offering inex-

pensive chances to augment information without deploying additional infrastructures, at the cost of some smart processing.

Processing satellite telecom signals brings some specific complexities related to the effects of rainfall boundaries, melting layer,

and nonweather attenuations, but with the potential to provide worldwide precipitation data with high temporal and spatial

samplings. These measurements have to be processed according to the probabilistic nature of the information they carry. An

ensemble Kalman filter (EnKF)-based method has been developed to dynamically retrieve rainfall fields in gridded domains,

whichmanages such probabilistic information and exploits the high sampling rate ofmeasurements. The paper presents theEnKF

method with some representative tests from synthetic 3D experiments. Ancillary data are assumed as from worldwide-available

operational meteorological satellites and models, for advection, initial and boundary conditions, and rain height. The method

reproduces rainfall structures and quantities in a correct way, and also manages possible link outages. Its results are also com-

putationally viable for operational implementation and applicable to different link observation geometries and characteristics.
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1. Introduction

Current methods to measure rainfall include a variety of

solutions, with the rain gauge still being considered the refer-

ence method. Retrieving the rain fallen on an area is not easy,

due to its temporal and spatial variability, but its importance is

paramount for the impact on human lives and the environment.

For instance, spatial and temporal variability of rainfall can

result in large variations in streamflow, and this is particularly

relevant in small catchments with short response times and fast

runoff processes, like those in urban areas (Ochoa-Rodriguez

et al. 2015; Cristiano et al. 2017).

The effort in the accurate measurement of rainfall is addi-

tionally motivated by the fact that nowadays we are experi-

encing and expecting changes in rainfall regimes almost

everywhere (Collins et al. 2013), sometimes with dramatic ef-

fects on humans and properties (Bevere et al. 2020), and with

an unquestionable but complex connection to climate change

that, in large part, is yet to be understood.

Among the emerging novel methods for rainfall estimation,

growing interest is in the so-called ‘‘opportunistic’’ (as opposed to

‘‘dedicated’’) measurements, because they provide a chance to aug-

ment information without adding new infrastructures and with clear

cost advantages.Thesedataareobviously lessprecise than those from

dedicated instruments andneed somesmart efforts todevise aproper

processing able to extract the relevant precipitation information.

This effort is widely justified by the fact that all the available

instruments for quantitative estimation of spatial rainfall ex-

hibit both advantages and limitations.

First, rain gauges are accurate but provide local measure-

ments unless spatially interpolated and dense network are

limited to sparse areas (Villarini et al. 2008; Kidd et al. 2017).

Disdrometers (impact, imaging, or laser) provide information

also on raindrop shape, density, and velocity (Liu et al. 2013),

but their use is still limited and, in any case, they are still de-

vices for pointwise measurements.

Weather radars instead provide spatial and temporal

resolutions adequate for several applications, but quanti-

tative estimation of rain rates is still a matter of research and

not reliable yet, even when merged with other instruments,
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e.g., rain gauges (Ochoa Rodriguez et al. 2019; Jewell and

Gaussiat 2015; Cuccoli et al. 2020). Furthermore, complex

orography can block radar measurements. Then, weather radars

are costly instruments to buy and maintain, and although many

countries have deployed a national radar network, a global

coverage with high and uniform quality is still to come.

Satellites observations provide rainfall products and other

related information, like motion vectors and cloud cover, with

global coverage and good accuracy (Kidd and Levizzani 2011;

Nguyen et al. 2018). They are an invaluable source of infor-

mation for climate studies (Sun et al. 2018) as well as for syn-

optic or regional nowcasting, but they need the integration with

other systems for applications requiring high quantitative

precisions, or spatial scales of about 1 km or less, or measure-

ment updated timely and more frequently than 5min. These

are, for instance, desirable temporal and spatial resolutions for

nowcasting purposes in hydrology (WMO 2017).

This scenario suggests that new measurement techniques

and new data merging strategies are needed to improve the

rainfall estimation at local scales.

Nonconventional techniques based on the attenuation

caused by rainfall on microwave (MW) links used for satellite

TV broadcasting or cellular networks backhauling are en-

countering increasing attention. Both of them share the com-

mon principle that electromagnetic wave is attenuated by

the presence of raindrops. Attenuation depends on frequency

that for telecommunication systems is typically in the range

10–40GHz. While the attenuation mechanism is basically

the same, the link geometries have different characteristics:

satellite links, which connect ground terminals (GT) with a

given telecommunication satellite in geostationary orbit (about

36 000 km over the equator), all point to the same direction (if

GT are not very distant from each other) and intercept the

precipitation on a slant path; terrestrial links, such as those

connecting base stations of cellular networks, have nearly

horizontal path spanning a few kilometers (usually less than

5 km), essentially at ground level (10–60m).

Also, although both systems can provide data with about

1-min update, sampling strategies and data availability can

differ considerably between broadcast satellite and cellular

network signals: in fact, attenuation data are stored for

network monitoring purposes, and requirements may differ

depending on the final utilization.

Apart from these differences, many considerations apply to

both systems. The use of opportunistic sensors is attractive due

to their (virtual) no cost and their potential widespread diffu-

sion. Furthermore, in terms of data flux and storage these

systems have a centralized nature that is very convenient for

operational usage.

On the other hand, many scientific and technical issues arise

when dealing with this peculiar type of measurement regarding

signal processing, link geometry, and spatial representative-

ness. Several algorithms for rain rate retrieval from satellite or

terrestrial links have been proposed. Results are encouraging,

but many aspects still remain critical, as discussed in this paper.

Above all, even if a robust algorithm to associate rain rate to

signal attenuation is derived, further elements must be con-

sidered to achieve a reliable quantification of precipitation. In

fact, the rain rate ‘‘measured’’ by a certain receiver is the result of

the presence of rain drops somewhere in the propagation path

between the GT and the satellite (or between two towers for cel-

lular networks): how can this information be related to precipita-

tion at surface? Also, considering that an opportunistic network

might be composed by miscellaneous systems and configura-

tions, whose functionality might be uneven and sometimes

unpredictable, a robust data assimilation strategy is needed to

obtain reliable and physically consistent estimates of rainfall fields.

This paper presents a method to reconstruct rainfall fields at

very high spatial and temporal resolution from rain rates esti-

mated from broadcast signal attenuation. The method uses the

ensemble Kalman filter (EnKF) and is formulated in order to

be operationally implemented in real time, taking advantage of

products available from meteorological satellites as ancillary

data. The use of EnKF is particularly suitable for this purpose

with respect to other assimilation techniques more commonly

used in operational models for weather predictions, because

our problem consists essentially in following the ‘‘trajectory’’

of an evolving precipitation system through a continuous and

high-rate cycling data assimilation, rather than in assessing the

best state vector at a given time, to have optimal initial con-

ditions for a forecasting model (Caya et al. 2005).

The paper is organized as follows: in section 2 the basic

physical principles of rainfall estimation from attenuation of

broadcast signals are recalled; in section 3 various approaches to

obtain rainfall fields from this type of measurement are illus-

trated. Section 4 describes the data assimilation framework based

on the EnKF formulation. Sections 5 and 6 report the results

obtained with two types of synthetic experiment. Finally, dis-

cussion ofmain results and conclusions are presented in section 7.

2. Rainfall estimation from broadcast satellite signal

The phenomenon of signal absorption at microwave fre-

quencies by precipitation, in telecommunication design com-

monly referred to as ‘‘rain fade,’’ is especially relevant at

frequencies above 10GHz. In satellite microwave communi-

cation, rain fade is a problem to cope with, but at the same time

it carries meteorological information which can be suitably

exploited (Barthès and Mallet 2013; Giannetti et al. 2017;

Gharanjik et al. 2018; Arslan et al. 2018). Rain fade is an along-

path phenomenon and as such it depends on the segment(s) of

the signal path eventually crossing the atmospheric volume(s)

where precipitation is occurring. As a consequence, rain fade

can occur even if no rain is falling at the GT location, because

the signal may pass through precipitation a few kilometers

away, especially if the satellite dish has a low look angle. The

rain fade depends on the specific attenuation, i.e., the rain at-

tenuation per unit distance (dB km21), which increases with

rainfall intensity and the signal frequency.

The InternationalTelecommunicationsUnionRecommendation

P.618-10 (ITU 2009) provides empirical formulas for the rain

attenuation statistics as a function of the frequency in the

range 7–55GHz. The relationship between rain and signal

attenuation can be also calculated theoretically using scat-

tering theory of hydrometeors to calculate specific rain at-

tenuation (Crane 1996).
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Since rain is a nonhomogeneous process in both time and

space, specific attenuation varies with location, time, and rainfall

phenomena. Total rain attenuation is also dependent upon the

spatial structure of rain fields (horizontal and vertical extensions

of the precipitating systems) that can vary considerably for dif-

ferent precipitation phenomena. The maximum possible path is

limited by the tropopause height, given the look angle (Fig. 1);

however, if we can estimate the vertical and/or horizontal

boundaries of the rain system, the rain fade can be associated to a

shorter path, improving the retrieved information. In fact, wet or

melting particles mostly contribute to the path attenuation.

Without information on the horizontal boundaries, we can

only assume the same probability along the path: in this case,

the rainfall integral is correct, but some spatial information is

missed and intensity peaks are smoothed. In some cases, this

information loss is negligible, namely, when the ground projec-

tion of the wet path is much shorter than the horizontal scale of

the rainfall system: this usually happens for very high look angles

(708 or more) and also for lower angles during synoptic-scale

phenomena, causing stratiform precipitation with moderate

height and homogeneous rain over long horizontal scales (tens

of kilometers). Where advantageous, horizontal boundaries

could be estimated, for instance from satellite observations.

Managing the lack of vertical information, i.e., top bound-

ary, is more critical: when the path crosses the rain top before

the tropopause (as normally happens), if rain fade is associated

with the maximum path, we underestimate the actual integral

rainfall over the horizontal projection of such a long path.

Estimating the height of the rain layer and its uncertainty is

thus necessary; it can be assumed to coincide with the 08C
isotherm, taken from climatological data or, better, from op-

erational weather simulations or ideally from local soundings,

if available. Alternatively, it can be associated to the melting

layer estimated from the bright band of weather radars.

Local intense convective precipitation events are expected

to be the most problematic case, as they exhibit rapidly

changing structures, with a small horizontal development, but a

high vertical one, nomore simply relatable to the 08C isotherm.

Another issue is that melting drops have a different (typi-

cally augmented) effect on signal attenuation with respect to

liquid drops with the same water mass, so that specific rela-

tionships for the attenuation should be assumed for the part of

the wet path crossing the melting layer. Signal attenuation may

be partially caused also by water on antenna reflector, radome,

or feed horn, contributing up to several percentages to the

measured attenuation (Blevis 1965).

All these aspects should be considered when addressing the

rainfall retrieval problem, or at least errors associated with

these approximations should be evaluated and included in the

measurement process.

Other sources of errors in the rainfall retrieval process are

related to nonweather processes (Giannetti et al. 2018).

Instabilities on the emitting or receiving devices can cause such

variations, and also the continuous slow drift of a geostationary

satellite from its assigned position and its periodic (faster) re-

positioning. When attenuation is measured using some quan-

tities related to S/N (signal to noise ratio), even an increase of

noise due to artificial or natural causes (e.g., sun blinding of

receiving antennas close to equinoxes) can be misinterpreted

as rain fade. To cope with these issues, satellite-dependent

variations can be recognized and properly accounted, simul-

taneously processing data from a number of receivers far

enough to be weather uncorrelated; some local nonweather

increase of noise can be fixed thanks to ancillary information

and measures can be rejected, if necessary. Some nonweather

variations have different signatures than rain-fade ones, and

this enables the implementation of algorithms to filter them out

to reduce the error. The contribution of these phenomena to

FIG. 1. Schematics of the link geometry and segments contributing to the path attenuation.
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the retrieval performance is still matter of research, and it in-

volves field experiments that are not in the scope of this work.

A thorough analysis of the impact on single receiver rain re-

trieval of different error sources, such as characteristics and

variability of melting layer, and drop size distribution, has been

conducted using coincident rain gauge, weather radar, and

disdrometer measurements (Adirosi et al. 2021).

So far, we have referred to satellite links, but rain fade also

affects terrestrial point-to-point microwave backhaul links and

can be therefore used to measure rainfall along their paths

(Overeem et al. 2016a; Messer 2018), on the basis of the same

concepts and with similar problems, except for satellite-specific

issues and the rain height estimation, not affecting the wet path

in terrestrial links.

In any case they all are instruments not conceived to mea-

sure rainfall, and the only reason why the attenuation is

monitored is because telecommunication companies have to

guarantee a fully functional operational service even during

precipitation, avoiding that rain showers attenuate the signals

down to a S/N value so low to cause the outage of the radio link

between transmitter and receiver. No obvious solutions exist to

cope with this problem, because lowering the transmission fre-

quency, besides ending up into a dramatically crowded radio-

frequency spectrum,means also reducing the bandwidth and thus

the information that can be carried, while increasing the emission

power means rising the overall system costs. Cost–benefit ana-

lyses drive the technical requirements to achieve the optimal

compromise for telecom companies, and they do not always

match meteorologists’ needs: in a given percentage of rainy

events, telecom companies accept that rainfall intensity and ex-

tension cause the outage of the connection, but it also means that

we cannot rely on such infrastructure tomonitor very heavy rains.

However, even a link outage condition does still provide some

information: actually, it says that rainfall is heavier than a given

threshold. Depending on the type of measured signal and of re-

ceive equipment, such a threshold ranges from 20 to 100mmh21

approximately (Giannetti et al. 2017; Giro et al. 2020).

In the following we approach rain fademeasurements from a

network perspective to exploit the information contained in

wet path attenuations and signal outages.

3. Rainfall fields reconstruction

The availability of measurements from different sources is a

great perspective to retrieve rainfall fields. While radar and

satellites give a spatial estimation of rainfall, in situ measure-

ments need to be interpolated. For rain gauges, this task is

accomplished via different techniques, from the simplest

Thiessen polygons to sophisticated geostatistical techniques

such as kriging with its variants (Webster and Oliver 2007).

Several complex aspects need to be considered in order to

correctly estimate the relationship between areal and point

rainfall, which depends on time scales and precipitation char-

acteristics (Breinl et al. 2020). If applied to measurements from

satellite or terrestrial microwave links, these techniques re-

quire certain adaptation. In fact, signal attenuation is associ-

ated with the presence of rainfall in a link path rather than in a

specific point. So, the measurement is (i) indirect, (ii)

anisotropic, and (iii) integrated over a path. The spatial dis-

tribution of links also follows patterns that are driven by

commercial rather than geophysical reasons (they are for ex-

ample denser in urban areas), leading to an uneven distribution

of data-void regions. On the other hand, the spatial density of

instruments in certain areas can be very high compared to the

one usually adopted for gauges.

These considerations in broad terms apply both to satellite

links and to cellular networks. Various studies have addressed

the task of the reconstruction of spatial fields from sparse MW

links attenuation measurements. Overeem et al. (2016b) have

done a thorough work producing maps for the territory of the

Netherlands for two and a half years from an operational cel-

lular network (;2400 links), as a first attempt toward an op-

erational application at large scale. They apply ordinary

kriging interpolation with a climatological spherical vario-

gram, associating the path averaged measurements to the

center of the link segment. Several time scales have been in-

vestigated (from 15min to 1 month), as well as different spatial

scales. The obtained maps show a good agreement with the

gauge-adjusted radar data albeit problems may arise in the

estimation of the variogram for different time scales.

Attempts to merge rainfall estimations from multiple in-

struments are presented in Haese et al. (2017). They use a

stochastic approach called random mixing to generate precip-

itation fields from a set of rain gauge observations and path-

averaged rain rates estimated using commercial microwave

links. They apply their method to both synthetic (generated via

the COSMOmodel) and real data in a study area in Germany,

adopting an hourly time step.

Bianchi et al. (2013) also present a technique to combine

measurements from rain gauges, weather radars, and tele-

communication links. They apply a variational assimilation

method with 5-min resolution, using rain rate from C-band

radar as background state estimate and updating the estima-

tion with 13 rain gauge measurements and attenuation from 14

cellular microwave links.

The abovementioned methods are strictly dependent on the

availability of observations; when no measurement is available

(or when the number of observations is not adequate) rainfall

maps cannot be updated. This is especially relevant if a very

fine time step (e.g., less than 5min) of analysis is required.

Also, the accuracy in data-void regions can be poor.

A possible approach to overcome these limits is to use a spa-

tiotemporal modeling framework combining the information

from the link measurements with a dynamic rainfall advection

model (assuming that during very short time intervals this can be

representative of the storm evolution). Data assimilation tech-

niques can then be used to optimally merge the information

contained in the observationswith those from the dynamicmodel.

Zinevich et al. (2009) follow this type of approach using an

extended Kalman filter for the reconstruction of rainfall

spatial–temporal dynamics from a standard wireless micro-

wave network for cellular communications (23 links). They

obtain near-surface rainfall maps at the temporal resolution of

1min. The results are validated using five rain gauge mea-

surements and compared with other spatial interpolation

techniques.
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Mercier et al. (2015) propose a similar framework but their

study differs from the one by Zinevich et al. (2009) for two

major aspects of the data retrieval and processing: they use a

4D variational data assimilation scheme instead of EnKF and

apply their procedure to broadcast TV satellite links instead of

cellular communication networks.

In Zinevich et al. (2009) the direction of motion of the

rainfall field is recovered from the simultaneous observation

of a multitude of microwave links. For cellular networks this is

possible thanks to the high number of links in different direc-

tions. The application to satellite links is more complicated

since all links in a given system share the same viewing direc-

tion (they point to the same satellite, or at least to a limited

number of satellites simultaneously).Mercier et al. (2015) use a

Ku receiver capable of pointing to four different satellites, and

need to rely on advection velocity retrieved from consecutive

radar images. This might limit the applicability of the method

in certain areas.

The data assimilation framework introduced in this paper is

specifically conceived for an operational implementation; for

this reason, several aspects have driven its definition. First of

all, the formulation has to be computationally efficient and

suitable for real time applications. The EnKF is particularly

appropriate for this scope. Furthermore, the physical model is

formulated in a way that it can ingest forcing data from avail-

able products of geostationary satellites. Finally, the peculiar

errors discussed in section 2 are taken into account.

The formulation is three-dimensional so that it can take into

account the vertical extent of the link path in case of broadcast

satellite measurements. Figure 2 shows the flow path of the sys-

tem. Starting from a first-guess state that can be obtained from

real-time satellite rainfall products, the desired state (rain rate) is

obtained through an EnKF data assimilation system where the

rainfall field is predicted by an advection model and ‘‘corrected’’

on the basis of the available signal attenuation measurements.

Ancillary data are used for forcing [atmospheric motion

vectors (AMV)] and for boundary conditions (rain rate esti-

mates at larger scale from meteorological satellites).

4. Ensemble Kalman filter formulation

Among data assimilation techniques, Kalman filter (KF) has

gained relevance for operational applications in different fields

(from oceanography and meteorology to system control and

signal processing) due to its suitability for real-time usage and

its relative simplicity of implementation.

The general form of the KF includes a ‘‘forecast step’’ (also

called prediction step or prior estimate) where the state of

the system at time t is estimated from the state at previous

time step t 2 1 by means of a dynamical model, and an

‘‘analysis’’ (or update) step where such state estimate is

corrected comparing it with observations that can be either

the same type as the state (e.g., rainfall rate), or a quantity

that indirectly brings information related to the state (e.g.,

radiances). The observations and the state are connected

through a measurement operator. Both model and mea-

surement processes are uncertain, and the error information

is propagated by means of the state error covariance matrix.

The standard KF can be applied only when both the state

evolution model and the observation operator are linear and

errors are Gaussian. In such a (ideal) case, the KF represents

the optimal state estimator (Gelb 1974).

The EnKF (Evensen 2003) is a Monte Carlo approach that

can be used to overcome the strong operational limitations of

the standard KF, namely, (i) the nonlinearity of many dy-

namical systems and (ii) the high computational effort required

for the storage and forward integration of the forecast error

covariance in large systems. In the EnKF, the covariance is

estimated from the generation of an ensemble (statistical

sample) of state replications. The EnKF has proved to be a

FIG. 2. Flowchart of the proposed EnKF data assimilation scheme for the retrieval of rainfall fields at high temporal and spatial

resolution from telecommunication satellite links. The box of the cloud boundaries, input for horizontal boundaries, is in faint colors with

its link in a dashed line because it is included in the concept but is still not implemented in the algorithm.
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robust estimator even in presence of deviation fromGaussianity

assumption (Katzfuss et al. 2016). Many successful applications

of EnKF have been used to assimilate various types of obser-

vations into atmospheric and land surface models (Reichle et al.

2002; De Lannoy and Reichle 2016).

Different variants of the EnKF have been proposed

(Houtekamer and Zhang 2016). One of the main splits is be-

tween the so-called ‘‘stochastic’’ and the ‘‘deterministic’’

EnKF. In the former the observations, as well as the states, are

treated as random variables and an ensemble of observations is

generated around the actual measured values (Burgers et al.

1998; Houtekamer and Mitchell 1998). Instead, the methods

that fall into the ‘‘deterministic EnKF’’ category avoid the

randomization of observations and propagate an ensemble of

deviations from the ensemble mean (Sakov and Oke 2008;

Roth et al. 2017).

In the present study, the stochastic EnKF approach is chosen

because it allows us to formulate a particular structure of the

observation error.

The specific forms of the different components of the data

assimilation framework are described below.

a. State-space formulation

The spatial domain is depicted by a computational Cartesian

3D grid with Dy rows, Dx columns, and Dz vertical levels,

then a total number of elements n5 Dx 3Dy 3 Dz. Grid step

Dg is set equal in all three dimensions.

Indicating with rijk, the rain rates in millimeters per hour

(mmh21) in the cell (i, j, k) of the domain, we define the

transformed variable x at time t as

x
t
5 [log(r

111
1 «), . . . , log(r

ijk
1 «), . . . , log(r

DyDxDz
1 «)]

t
,

(1)

where « is a small positive number (set to 1026) that ensures a

finite value when r 5 0. It is merely a numerical artifact and is

omitted for simplicity in the continuing of this paper.

The use of a logarithmic variable is established in order to

preserve nonnegativity. Janjić et al. (2014) have analyzed

several precautions and drawbacks that need to be considered

when using this approach in an EnKF formulation. For ex-

ample, particular attention must be put in the choice of an

appropriate error covariance.

b. Forward (advection) model

At each time step the rain rate in the cells of the domain is

propagated forward step by means of a dynamic state transi-

tion model F.

Since themodel is not perfect, it has an associated errorvt so

that the state at time t is predicted from the state at previous

time step as

x
t
5F

t
(x

t21
)1v

t
. (2)

The simplest form of F is considering a very basic ad-

vection model where the precipitation field moves hori-

zontally by means of the east–west (u) and north–south (y)

wind components.

In this case F can be easily built in the spatial domain (mesh

of the Dx 3 Dy 3 Dz cells): in the nontransformed space

[considering the rain rate r instead of x 5 log(r)], F can take a

linear form represented by a sparse state transition matrix Ft

where the nonzero elements are conveniently placed so that

the rain rate which at time t is in cell i, j, k, will shift at time t1 1

in the x and y direction, respectively, with (Dx)ijk,t5 (uijk,tDt)/Dg
and (Dy)ijk,t 5 (yijk,tDt)/Dg, with uijk and yijk being the east–west

and north–south wind components in the i, j, k element at time t.

Time step and grid size need to be accordingly chosen for nu-

merical stability.

Rain rates at time t are then advanced as rt 5 Ftrt21. When

applying the logarithmic transformation, the system is no

longer linear since, after some straightforward arrangements,

we write

x
t
5 log[F

t
exp(x

t21
)]1v

t
. (3)

In an operational context, wind velocities can be ob-

tained from AMV satellite products that are routinely

produced and disseminated by several agencies worldwide

(Santek et al. 2019). AMV are retrieved from the apparent

motion of coherent features tracked in consecutive images

from geostationary satellites, assuming that this is repre-

sentative of the wind at a certain height in the atmosphere

(Lean et al. 2015).

Boundary conditions are also derived from satellite prod-

ucts. In this case the instantaneous rain rate provided from

infrared or blended infrared/MW satellites can be used.

The model error term vt ; N(0, Qt) is a white, Gaussian

sequence with Qt a (n 3 n) symmetric positive definite co-

variance matrix. The model error term vt incorporates all the

errors related to the formulation of the advection model and

also the uncertainties in the forcing data. In case of spatially

uncorrelated error, Qt is diagonal; in the present case it is as-

sumed instead that spatial correlation exists within a certain

distance. This reflects the fact that neighboring cells are likely

prone to the same error sources in terms of forcing data and

also considers the autocorrelation of rainfall fields, that at very

short time scales can be assumed at most a few kilometers

(Villarini et al. 2008). So, Qt is expressed as Qt 5 qL, where q

is a constant value (representative of model error variance)

and L is a correlation matrix built from Euclidean distances

between cells. Several distance functions can be used: their

general requirements are to be positive-definite and to guar-

antee an adequate smoothness. A commonly used function is

the fifth-order compactly supported function (Gaspari and

Cohn 1999), which is similar to a Gaussian in shape but with

correlations decreased to zero at a finite radius.

It is instead assumed that v is uncorrelated in time.

c. Ensemble

Following aMonte Carlo approach as expected in the EnKF,

N statistical samples of the initial state are generated: this can

be accomplished, for instance, perturbing an initial guess x0
with the model error v so that the ith ensemble is

x
(i)
0 5 x

0
1v

(i)
0 i5 1, . . . ,N . (4)
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The advection model is applied for each ensemble member:

x
(i),f
t 5F

t
[x

(i)
t21]1v

(i)
t . (5)

The superscript f stands for ‘‘forecast’’ (as opposed to ‘‘analysis’’).

The main limitation of ensemble size is the computational

burden. For operational application at basin or regional scale,

it is expected that the size of the state vector (number of cells in

the spatial domain) is likely to reach O(106). Although in-

creasingly powerful resources are available, and appropriate

methodologies can be used to optimize the computation (i.e.,

sequential processing of batches of observations), for a real-

case application the allowed ensemble size will hardly ex-

ceed O(103).

d. Observations

At time step t a certain number of rain rate estimations mt

from broadcast signals is available, so that a vector of obser-

vations zt can be constructed.

The number of available observations can be different at

each time step (due to instruments that are out of service or

provide data at different time steps). If no data are available,

the analysis step is omitted and the state estimate is set equal to

the ensemble mean of the forecast. The observations are re-

lated to the state variable xt so that

z
t
5H

t
(x

t
)1 v

t
, (6)

where Ht is a measurement operator that projects the state

space onto the measurement space and vt is the measurement

error that reflects the uncertainties in themeasurement process

(later discussed). If the observed variable is the rain rate cal-

culated from signal attenuation, Ht serves to geometrically

identify the grid elements that lay within the wet path at time

step t. Given the position and viewing direction of the ground

terminals and the estimated precipitation height, for each GT

observation the indices of the cells in the 3D matrix that are

crossed by the wet path are identified (a cell is tagged as be-

longing to the wet path regardless of portion of cell crossed).

We can therefore build a sparse (mt 3 n) matrix Ht with non-

zero elements along the path, which multiplied by the n-

dimensional state vector with the rain rates at time t (to be

precise by the exponential of the state vector containing the

logarithmic rain-rate values), entails to sum up the contribu-

tions of the cells in the wet path. We assume that each portion

of the path contributes equally to the attenuation, so Ht pro-

duces the average rain rates equally weighting the contribution

of each cell crossed by the path, i.e., the value assigned to the

nonzeromatrix cells is 1/(number of cells in the specific wet path).

Although the link trajectory is fixed,Ht can vary at each time step

depending on precipitation height, as discussed in section 2.

If other approaches are followed (i.e., assimilating the raw

attenuation data), H takes a more complicated form because

themeasurement operator needs to incorporate the algorithms

for attenuation–rain rate inversion. This is possible in EnKF

because it does to require linearity. It is also possible to do the

full analysis in attenuation space, and convert to rain rates in

postprocessing phase.

Following a stochastic formulation of the EnKF, observa-

tions are also treated as random values and perturbed obser-

vations are generated at each time step, peculiar to each

ensemble member, adding a random realization of the mea-

surement error, so that

z
(i)
t 5 zot 1 v

(i)
t i5 1, . . . , N , (7)

with zot is the set of actual observations at time t and yt is the

measurement error. The structure of vt is particularly chal-

lenging in the present formulation. In fact, under general

conditions vt can be assumed normally distributed ;N (0, Rt),

where Rt is the measurement covariance (related to the in-

strument error). Here, Rt is set diagonal, meaning that we as-

sume that the measurement error is not spatially correlated.

In the case of rainfall estimation from signal attenuation, we

have already pointed out (section 2) that links outages occur

for heavy rains above a threshold value that depends on the

characteristics of the signal and the GT. For this reason, when

the estimated rain rate is at threshold value, vt is drawn from a

skewed normal distribution (Azzalini and Capitanio 1999),

with parameters that can be tuned depending on the rain event.

e. Analysis step

In the update step of the Kalman filter, each ensemble

member state is ‘‘corrected’’ on the basis of the misfit between

the predicted value and the observations.

The update is performed multiplying the innovation vector

(actual observation minus predicted value) by a gain term. The

update state in EnKF is applied to each ensemble member

obtaining the analysis states:

x
(i),a
t 5 x

(i),f
t 1K

t
z
(i)
t 2H

t
x
(i),f
t

h in o
. (8)

The Kalman gain matrix Kt in EnKF formulations can be

estimated in slightly different ways. A discussion on various

approaches for calculating and interpreting optimal Kalman

gain, especially in the case of nonlinear measurement opera-

tors can be found in Tang et al. (2014). Following Houtekamer

and Mitchell (2001) we calculate K at time t as

K
t
5P

xy,t
(P

yy,t
1R

t
)21, (9)

where Pyy,t is the error covariance of the measurement pre-

dictions and Pxy,t is the cross covariance between the state and

the measurement predictions.

Once all the ensemble members are updated, we calculate

the ensemble mean and assume such value as the actual state

estimate at time t, bxt (and consequently rain rate brt 5 exp(bxt)):
bx
t
5

1

N
�
N

i51

x
(i),a
t . (10)

5. Synthetic experiments

a. Experiment setup

The data assimilation system has been applied to a small

spatial domain as a testbed where a set of synthetic experiments
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has been performed. The aim of the synthetic experiments

is to evaluate the feasibility of the method and tune up its

different components. They also serve to estimate the

computational burden of the procedure and define opera-

tional strategies.

The domain is a gridded area with 30 rows, 30 columns, and

10 vertical levels. Cell size is 500m in each direction. It rep-

resents therefore a spatial domain of 153 15 km2 that extends

in the vertical up to 5 km, and the state vector is composed by

30 3 30 3 10 5 9000 rain rate values. Time step of analysis is

1min. This is both the step of the forecast advection model and

the update of the observations.

A set of simulated 3D rainfall fields has been generated: the

‘‘true’’ rainfall field has a simplified cylindrical shape with

higher intensity in the center (max rain rate 5 60mmh21)

and decreasing intensities up to a radius of 6 km (rain rates

higher than 20mmh21 are concentrated in a radius of about

2 km). Rain rate is constant in the vertical from the ground

to a rain height of 4 km. This spatial structure is assumed to

move horizontally with a certain advection velocity. The use

of geometrically shaped rainfall systems must not mislead:

neither the sampling nor the EnKF procedures exhibit any

particular symmetry that could facilitate the reconstruction

of geometric shapes. They are of course unrealistic, but by

no means easier to retrieve; conversely, they facilitate the

detection and interpretation of the differences with the re-

constructed precipitation shapes.

Realistic forcing and auxiliary data are also simulated. Initial

conditions and lateral flux entering the domain are derived

mimicking the observations from a geostationary satellite such

as MSG or GOES. These data are built degrading the ‘‘real’’

synthetic initial state to a spatial resolution of 3 3 3 km2 and

adding inaccuracy by means of (i) misplacement error (shifted

position with respect to the ‘‘real’’ conditions) and (ii) random

additive error. A first-guess rain height is also set. Boundary

conditions are assumed to be available every 5min (like, for

example, MSG rapid scan products), and they are kept static in

the period between updates: this is another source of error.

AMV are assumed constant over the spatial domain and their

value is guessed with multiplicative and/or additive errors to

the u and y components of the ‘‘real’’ storm. Again, in order to

mimic the availability of data in an operational context, we

assume that new AMV are available every 20min.

Finally, 80 GTs for broadcast satellite signal reception

are placed in randomly selected locations in the study area.

Although not relevant since we are dealing with synthetic

rainfall fields, geographic coordinates have been assigned

in order to simulate a real setting, localizing the study

area over the city of Florence, Italy, and the terminals are

directed toward two geostationary telecommunication

FIG. 3. Rainfall fields at ground level in the study domain (153 15 km2) at different time steps (minutes). Images are shown every 3min,

but time step of themodel is 1 min. Dots indicate the locations of the ground terminals. (first row) True (synthetic) rain rate (mmh21). The

storm moves in the southeast direction with wind speed components utrue 5 5m s21 and ytrue 5 25m s21. (second row) Rainfall fields

obtained from the openloop model which has advection velocities of umodel 5 3m s21 and ymodel 5 26m s21 and initial condition from

simulated satellite rainfall products. (third row) Rainfall fields obtained interpolating the (synthetic) rain rate estimations from broadcast

satellite links (with nearest neighbor interpolation). (fourth row) Rainfall fields obtained with the EnKF with N 5 100 ensembles. The

cyan circle in rows 2–4 outlines the boundary of the true rainfall in order to show the correct placement of the precipitation field.
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satellites corresponding to EUTELSAT10 (placed at 108E)

and Astra 2F (placed at 28.28E).

GT locations are drawn randomly without specifying any

constraint (e.g., minimum distance between devices); this is

done in order to represent a realistic situation where the ob-

servation network is not specifically designed for rainfall esti-

mation. For this reason, links may nearly overlap in certain

areas and be sparse in others.

Link paths are geometrically reconstructed from the sat-

ellite positions and elements of the 3D grid mesh have been

tagged. Here we use links directed toward two specific sat-

ellites, but the methodology can be applied to every combi-

nation of link path, including terrestrial cellular paths

(horizontal links). The interplay between the space–time

variability of rainfall and the spatial geometry of the sensor

network is expected to impact to some extent on the quality of

the retrieved rainfall fields. Several experiments were per-

formed from the beginning of this work to investigate this

potential issue, playing with different angles between the

observing devices and the synthetic rainfall paths, but we

found no critical dependencies, apart from some expected

differences on the domain boundaries and minor effects on

the timeliness in reconstructing the shape of the precipitation

system in the retrieval process. Part of such investigation is,

however, shown through the experiments presented in the paper

differentiated by different origins and track directions of the

precipitation fields (see section 5b), so that the observations

taken at theGThave the aforementionedminor variations in the

timeliness and capabilities of detection.

To generate the synthetic observations, at each time step the

signal attenuation is calculated from the rain in the cells be-

longing to the wet path. A power law relation between specific

attenuation (dB km21) and rain rate (mm21) is assumed, with

parameters derived for Ku frequencies by Giannetti et al.

(2017) from 6 years of disdrometers data taken in Rome, Italy.

Measurement errors are introduced assuming a wrong esti-

mation of precipitation height (in the range 6500m of error

for the freezing level height): this implies that the attenuation

sensed at a GT is assigned to a wet path a little different from

the real one, thus affecting rain rate estimation associated to

such sensor. Additional errors are generated addingGaussian

noise to the measurements (with 2mmh21 standard devia-

tion). Furthermore, when the estimated rain rate exceeds

40mmh21, the value is cutoff in order to simulate the signal

saturation effect (i.e., link outage). These assumptions al-

lowed to reconstruct plausible synthetic observations, but of

course various complex mechanisms may actually contribute

to measurement errors (see section 2) and, since rainfall es-

timation from telecommunication links is not a standard

procedure, different devices and algorithms will lead to esti-

mates with partially different error structures. The synthetic

observations produced for this study are clearly a simplified

approach, and careful considerations need to be taken when

dealing with real data.

b. Results

The experiments have been performed for a wide range of

conditions, changing storm velocities as well as boundary and

initial conditions.

Figure 3 shows the results for a storm moving in the south-

east direction with constant velocity with utrue 5 5m s21

FIG. 4. Trajectories of centroids of the rainfall field at ground

level. Lines: black 5 true; blue 5 openloop; red 5 from observa-

tions only (rain rate from signal attenuation, spatially interpo-

lated with nearest neighbor); green5EnKF. Markers are placed

every 5 min (but model time step is 1 min). Also shown is the

position of ground terminals (gray ‘‘hat’’ symbol )̂ and satellite

links (gray dotted lines) pointing to two broadcast satellites (the

link path projection is shown up to the precipitation height of the

experiment 5 4 km).

FIG. 5. NRMSEof rain rate estimation at ground level calculated

for each time step as RMSE divided by spatial mean of cell values.

Blue 5 Openloop model; red 5 observations only (spatially in-

terpolated with nearest neighbor); green 5 EnKF (solid line 5
EnKF with 100 ensemble members, dash–dot 5 EnKF with 50

ensemble members, dotted5 EnKF with 500 ensemble members).
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(positive east) and ytrue 5 25m s21 (positive north). In the

first row, the maps of rain rate at ground level at selected time

steps for a 20-min simulation are shown (for figure clearness

results are shown every 3min but time step of analysis is

1min). The second row shows the ‘‘openloop’’ (forward

model without observations), derived assuming imperfect

forcing data with AMV velocities of umodel 5 3m s21 (i.e.,

0.6�utrue) and ymodel 5 26m s21 (i.e., 1.2�ytrue) and a flawed

simulated initial condition (coarser resolution with misplace-

ment and random error): due to the inaccurate advection ve-

locities the openloop rainfall fields deviate from the true

(synthetic) ones and show a different trajectory. The third row

shows the map obtained using only rain rate estimations from

signal attenuation and treating them as point observations

(spatially interpolated with nearest neighbor). Here, the obser-

vation is assigned to the GT position, without any consideration

on viewing angle and spatial representativeness. This is clearly a

source of error; furthermore, underestimation occurs when the

rain rate exceeds the threshold value of 40mmh21. Note that the

‘‘Obs.only’’ values (in this figure and the following) are not, to be

exact, the assimilated observations, since in the assimilation

scheme the measurements are connected to the cells in the 3D

link path (through the measurement operatorHt) and not solely

to the point position of the GT. The Obs.only rainfall fields are

therefore a baseline for comparison; smarter spatial interpola-

tion techniques could lead to improved estimations.

Finally, in the fourth row the maps obtained with EnKF are

shown: it can be seen that the reconstructed fields are more

FIG. 6. Summary of results for other synthetic storms in cardinal directions: (a) trajectories of centroids of rainfall

at ground level (as in Fig. 4); (b) NRMSE (as in Fig. 5, but only with EnKFwith 100 ensemblemembers) for a storm

moving eastward. (c),(d) As in (a) and (b), but for a storm moving westward.
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consistent with the true (synthetic) ones in terms of shape,

intensity and position.

This is also evident when considering the trajectories of the

precipitation field centroids (Fig. 4). Black line is the trajectory of

the true storm. Blue line is the openloop and reflects the errors

assigned to the forward model (misplaced initial condition, errors

in advection velocity). Red line is the trajectory of rainfall fields

obtained from the Obs.only spatial interpolation. In this case, the

misfit is mainly due to the viewing geometry of the devices with

respect to the direction of the storm. Finally, green line is the

trajectory of the rainfall field obtained with the EnKF simulation:

the trajectory is closest to the true one and the assimilation system

is able to redirect the storm in the correct direction.

The good estimation performed by the EnKF is assess-

able also evaluating error with a pixel-by-pixel comparison.

Figure 5 shows at each time step the normalized root mean

squared error (NRMSE) of rain rate estimation at ground

level, calculated as RMSE of all the ng pixels divided by their

spatial mean:

(NRMSE)
t
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
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vuut
1

n
g

 
�
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j51
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! . (11)

The NRMSE for EnKF (solid green line) is lower than both

the openloop and the Obs.only estimation, and decreases with

the progressing of the assimilation.

FIG. 7. As in Fig. 6, but (a),(b) for a storm moving northward, and (c),(d) for a storm moving southward.
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The same figure also shows the error obtained with the same

experimental setup but with a different number of ensemble

members (green dashed and dash–dot lines). The issue of en-

semble size is of prime importance for filter’s efficiency; in

fact, a small ensemble can lead to wrong estimation but a high

number of members requires high computational costs. The

choice of optimal ensemble size is a balance between these two

requirements and is related to the specific application (de-

pending on state, number of assimilated observations, char-

acteristics and uncertainties of the forward model). For the

present experiments the results suggest that N 5 100 is satis-

factory, since a higher number (N5 500) leads to similar errors

(on the contrary, N 5 50 gives poorer estimations). This is

encouraging for the feasibility of the method, but further

evaluation is needed when applied to larger domains with

different configurations and real data.

Other synthetic experiments have been performed, with the

same cylindrical storm but changing true and modeled advec-

tion velocities, obtaining similar outcomes. Detailed outputs

are not presented in this paper but Figs. 6 and 7 summarize

some of them. The figures show (left panels) the trajectories of

the centroids of precipitation fields at ground level for rainy

systems moving in cardinal directions (east, west in Fig. 6 and

north, south in Fig. 7) assuming various model errors. We can

see that in any case the EnKF is able to correct for the wrong

first-guess advection velocity. NRMSE error also decreases

(right panels) for the EnKF with respect to the openloop and

TABLE 1. Skill scores of the EnKF method (ability to detect

rainfall above various thresholds). Statistics are calculated cu-

mulatively for eight synthetic experiments (cylindrical storms

moving in north, west, south, east, northwest, northeast, south-

west, southeast) with 20-min duration each, 1-min time step, over

a domain with 303 30 ground cells. POD (probability of detection)5
hits/(hits1misses); FAR (false alarm ratio)5 false alarms/(hits1
false alarms); TS (threat score) 5 hits/(hits 1 misses 1 false

alarms); FBIAS (frequency bias index)5 (hits1 false alarms)/

(hits 1 misses).

Rainfall threshold POD FAR TS FBIAS

.0.5mmh21 0.92 0.34 0.62 1.40

.2.5mmh21 0.91 0.31 0.65 1.33

.5mmh21 0.92 0.25 0.71 1.22

.10mmh21 0.91 0.19 0.75 1.12

.20mmh21 0.85 0.18 0.71 1.04

.30mmh21 0.76 0.25 0.61 1.02

FIG. 8. Rainfall fields at ground level in the study domain (153 15 km2) at different time steps for a synthetic experiment based on real

data. Images are shown every 2min, but time step of the model is 1min. Dots indicate the locations of the ground terminals. (first row)

True rain rate (mmh21), derived applying theMarshall–Palmer formula to VMI values of anX-band radar from 0510 to 0520UTC 29Oct

2018. (second row) Rainfall fields obtained from the openloopmodel, which has advection velocities (AMV) and first guess rain rate from

EUMETSAT MSG satellite products. (third row) Rainfall fields obtained interpolating the (synthetic) rain rate estimations from

broadcast satellite links (with nearest neighbor interpolation). (fourth row) Rainfall fields obtained with the EnKF with N 5 100 en-

sembles. The cyan outline in rows 2–4 marks the boundary of the true rainfall in order to show the correct placement of the precipita-

tion field.
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the Obs.only, taking advantage of both the model and the

observations. The fact that the reconstruction of rainfall fields

is satisfactory for all track directions, suggests that the meth-

odology can deal with different reciprocal interactions be-

tween sensor network and precipitation patterns, with no

criticalities. Further and more comprehensive investigations

will be performed in future work with data from real networks,

possibly of various type (broadcast satellites, cellular, or

combination of both).

NRMSE alone may not provide sufficient information on

the model performance; for example, it does not discern the

ability to reproduce high precipitation values or to detect

rain/no rain areas. For a basic verification of the perfor-

mance for various precipitation thresholds, several com-

monly used skill scores are reported in Table 1. For the

calculation of scores, a hit is defined when a grid point

exceeds a certain rainfall threshold both in the real (syn-

thetic) rainfall field and in the EnKF, a false alarm is when a

grid point exceeds the threshold in the EnKF rainfall field

but not in the real one, and a miss occurs when a grid point

exceeds the threshold value in the true field but not in

the EnKF.

Six rainfall thresholds are set, from 0.5 to 30mmh21. Scores

are overall satisfactory for all thresholds, confirming the

method goodness.

6. Experiment with real rainfall and forcing data

a. Experiment setup

To advance the evaluation of the model toward a more re-

alistic scenario, we have set up a further experiment where the

storm is derived from the reflectivity data from an X-band

radar placed in Florence area. The vertical maximum intensity

(VMI) images taken from 0510 to 0520 UTC 29 October 2018

over the study area (same domain as the previous experiments)

have been converted into rainfall rate using the standard

FIG. 9. The 5-min cumulated rainfall (from 0515 to 0520 UTC 29 Oct 2018) in the study area (153 15 km2): (left) true, (center) OBS.only,

and (right) EnKF.

FIG. 10. Scatterplots with comparison on a pixel-by-pixel basis of true rain rates at ground level (from X-band radar) vs those estimated

with EnKF procedure. Correlation coefficients and NRMSE are also shown.
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Marshall–Palmer relationship (Marshall and Palmer 1948),

and resampled at 500-m spatial resolution. Rain height is 3 km.

AMV, first-guess rainfall fields, and boundary conditions are

taken via the EUMETSAT Data Centre (AMV product and

MPE product).

Attenuation measurements were instead retrieved again as

synthetic observations, with same placement of links as in the

previous experiments, since data from a homogeneous and

sufficiently dense experimental network is not available yet.

This experiment is therefore still a synthetic one; however, it

is useful because it allows to test the methodology with com-

plex storm structures instead of idealized cylindrical storms

and also to deal with uncertain forcing data whose error is

not known.

b. Results

The simulation was performed again at 1-min time step.

Figure 8 (analogous to Fig. 3) shows the maps of rain rate at

ground level at selected time steps for the 10-min simulation.

For figure clearness results are shown every 2min. The initial

rainfall field and the openloop model do not show the correct

spatial patterns and dynamics, probably due to coarser

resolution and temporal sampling of 5 min of MSG data,

while the Obs.only maps exhibit the same inaccuracies of the

previous experiment in terms of spatial representativeness and

maximum retrieved rain rate. Instead the EnKF (last row),

which sequentially assimilates the (synthetic) rain rate obser-

vations from satellite links, after a few time steps produces

rainfall fields that are consistent with the true ones. In partic-

ular, areas with higher rain intensities are located with suffi-

cient precision, as shown also in Fig. 9 with the 5-min

cumulated rainfall fields from 0515 to 0520 UTC.

The good model performance that can be visually appreci-

ated in Figs. 8 and 9 is confirmed by the scatterplots of true rain

rate at ground level in each pixel versus the values obtained

from the EnKF procedure (Fig. 10). Correlation coefficients

and NRMSE are also shown.

Finally, for a point-specific evaluation, we have extracted the

time series of precipitation in selected pixels of the domain at

ground level (Fig. 11). Both for point A (interested by the

transition of rainfall with high intensities) and for point B (with

lower rain rates), the estimation obtained with the EnKF is

more accurate with respect to the openloop based on MSG

data only (that gives a near constant value in the study interval)

and also with respect to the Obs.only approach. In point A the

Obs.only rain rate is underestimated, due to link outage (rain

rates higher than 40mmh21 are not detected) and to the dis-

tribution of rainfall in the path, while in point B rain rate is

overestimated, probably due to the interception of rainfall that

is on the link path but not on the GT position.

FIG. 11. True (from X-band radar) and estimated hyetographs at two sample points A and B.
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As a further demonstration of themethodology, comparable

results have been obtained for another rainfall period occurred

later on the same day, from 1500 to 1510 UTC. Figure 12,

analogous to Fig. 8, shows the true rainfall fields (from radar) at

different time steps, those obtained from the openloop model

(that in this case underestimates the rain rates), the Obs.only

and the EnKF, which again produces rainfall fields with pat-

terns and values consistent with the true ones.

As for the synthetic experiments described in section 5, the

skill scores have been calculated for six rain rate thresholds

(Table 2). The results are good apart from a slight tendency to

overestimate the high precipitation values (increasing false

alarm ratio and bias score for moderate and heavy rain). We

remind that rainfall rate from MW links are upper limited and

probably this small overestimation is due to something im-

provable in the statistical model assumed for rainfalls greater

than such limit.

Since the synthetic events reconstructed from radar are not

simplistic as the cylindrical shapes, it is also interesting to

evaluate if the statistical distributions of the true and simulated

rainfall fields exhibit the expected analogies. In the boxplot of

Fig. 13, the two distributions appear very consistent, apart from

the slight tendency to overestimate the high precipitation

values discussed above.

7. Summary and conclusions

In this paper several aspects related to rainfall measure-

ments from telecommunication MW links, especially in the

case of satellite links, have been analyzed.

These data require a number of uncertain assumptions and

ancillary information, because of observation geometry and

specific technique, and the information they carry have a

probabilistic nature due to errors associated with nonweather

phenomena, link outage during heavy rains, and the intrinsic

path-averaged nature of the measurements. Direct compari-

sons with rain gauges can be useful for an initial understanding

of relationships and uncertainties, but looking at these mea-

surements as rain gauge surrogates, and then spatialize them

in some way, is not the right way to proceed. Therefore, we

have designed a framework to dynamically generate homo-

geneously gridded rainfall fields, assimilating precipitation

FIG. 12. As in Fig. 8, but for the period from 1500 to 1510 UTC 29 Oct 2018.

TABLE 2. Skill scores of the EnKF method (ability to detect

rainfall above various thresholds) for the experiments described in

section 6 (precipitation fields from radar). Statistics are calculated

cumulatively for two events with 10-min duration each, 1-min time

step, over a domain with 303 30 ground cells. POD (probability of

detection) 5 hits/(hits 1 misses); FAR (false alarm ratio) 5 false

alarms/(hits1 false alarms); TS (threat score)5 hits/(hits1misses1
false alarms); FBIAS (frequency bias index) 5 (hits 1 false alarms)/

(hits1 misses).

Rainfall threshold POD FAR TS FBIAS

.0.5mmh21 0.95 0.32 0.66 1.40

.2.5mmh21 0.91 0.46 0.51 1.68

.5mmh21 0.78 0.50 0.44 1.55

.10mmh21 0.70 0.55 0.37 1.56

.20mmh21 0.61 0.65 0.28 1.76

.30mmh21 0.53 0.72 0.22 1.89
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from MW links through an EnKF approach. Tests are made

through synthetic 3D experiments, with increasing proximity

to realistic cases, i.e., from purely geometric storms to phe-

nomena built from weather radar and satellite observations.

Ancillary data, available from meteorological operational

satellites, are used for advection information and initial and

boundary conditions. Rain height is assumed as estimated

from high-resolution operational meteorological models. The

method is flexible, applicable to different observation ge-

ometries and characteristics. A small set of experiments is

reported among the several ones performed with different

errors, link outage thresholds, geometries, number of sensors,

rainfall structures, and ensemble members to demonstrate its

feasibility. The method correctly reproduces rainfall struc-

ture and quantities and is practicable also in operational

contexts from the point of view of the computational burden.

On the basis of the simulations performed on a small domain

and some scale up tests, we estimate that a regional domain

approximately of 100 3 100 km2 could be run operationally,

with the same characteristics of our experiments, using a

server and an optimized code (i.e., 1-min analysis steps would

need less than 1min of computing time).

The next step is to move to the use of only real measure-

ments. This implies to deepen the error analysis, including the

specific ones from meteorological satellite products used as

forcing. The team is involved in initiatives experimenting op-

erational setup for rainfall retrieval from satellite links, and

this will give the opportunity to improve the measurement

performances and the error characterization. We believe that

these studies will be worthwhile, given the wide demand of

accurate rainfall information at very high spatial and temporal

scales, and that MW links, if properly managed, could have a

relevant role in this challenge.
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