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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The LARGO (LARGe-scale Optimization problems) project

◮ Objective of LARGO: design new numerical methods for solving
very large constrained optimization problems (104 vars, 106 constrs)

◮ Aircraft optimization: problems arising in the design phase of an
aeronautical structure.

Minimize the mass of a fuselage where the design variables are subjected
to static mechanic criteria e.g. buckling, strain (Reserve Factors).
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The main tasks of LARGO

◮ Task 1 Study of the aeronautical optimization problem addressed
by LMS Samtech and its structure;

◮ Task 2 Design of a numerical algorithm suitable for the solution of
the problem (multilevel approach);

◮ Task 3 Implementation and numerical validation of the proposed
algorithm:

◮ Tests on academic problems and real models;

◮ Comparison with existing commercial software.
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The real problem structure

The fuselage structure

◮ The elementary parts of a fuselage are called super stiffeners:
composite stiffened panels consisted of a stringer and two half
panels.
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The real problem structure

Design Variables (DVs)

◮ Local geometry parameters: e.g. panel thickness, stringer
cross-section dimensions, stringer height.

◮ Composite laminate variables: e.g. skin laminate percentages.
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The real problem structure

Hierarchical structure of the problem: regions

◮ Panels and stringers may be grouped into regions of panels
and regions of stringers.

◮ Members of the same region share the same design variables.
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The real problem structure

The optimization problem

◮ The aeronautical problem: minimize the mass of a fuselage where
the design variables are subjected to static mechanic criteria (RFs).

Minimization problem with bound constraints and general
nonlinear inequality constraints.

minx M(x)
subject to RF (x) ≥ 1

l ≤ x ≤ u,

M : IRn → IR

RF : IRn → IR
m expensive black-box
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The real problem structure

The Reserve Factor evaluations

◮ The constraint function values are the result of a simulation
process

◮ skill tools: “in house black-box” codes
◮ rapid sizing: smooth approximation (interpolation techniques)

of the skill tools (faster)

◮ The derivatives (Jacobian) are approximated by finite
differences.

◮ The RFs are locally defined on each element of the structure.

◮ No information on the regularity or convexity of the RFs.

Study the local geometry of the functions and the structure of the
Jacobian.
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The real problem structure

The Reserve Factors: results of the parametric study
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

Classical approach: decomposition methods

◮ Individual components of the problems are optimized separately without
considering the entire hierarchy, see e.g. [Sobieszczanski-Sobieski et al.,
1987].

◮ Pitfall: computation of optimal solutions with respect to individual
components but the combination of such components yields to
nonoptimal structures (convergence?).

New approach: multilevel optimization

◮ The problem is optimized at the global level exploiting at the same time

its multilevel structure.

◮ Bound constraints:
Recursive Multilevel Trust Region method (RMTR) [Gratton, Sartenaer,

Toint, 2008, Gratton, Mouffe, Toint, Weber-Mendonça, 2008, ... ]

◮ General constraints:
Augmented Lagrangian merit function + line-search [Nash, 2010]

SQP trust-region for PDE constrained optimization [Ziems, Ulbrich, 2011]

Globalization strategy for elliptic optimal control pbs [Borz̀ı, Kunish, 2005]
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The RMTR algorithm

The RMTR method for bound-constrained problems

The problem

min
x∈F

f (x)

◮ f : IRn → IR nonlinear, in C2 and bounded below

◮ No convexity assumption.

◮ Let g and H denote the gradient and the Hessian (or an
appoximation) of f .

◮ F = {x ∈ IR
n : l ≤ x ≤ u} (possible bound constraints).

Interesting case: the problem is the result of the discretization of
some infinite-dimensional problem on a fine grid (n large).
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The RMTR algorithm

Hierarchy of problem description (nr > nr−1 > . . . n1)
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The RMTR algorithm

Grid transfer operators

Restriction Prolongation
Ri : IR

ni → IR
ni−1 Pi : IR

ni−1 → IR
ni

In practice:

◮ linear interpolation

◮ cubic interpolation

Ri = σiPi
T
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The RMTR algorithm

The Recursive Multilevel Trust-Region Method (RMTR)

◮ At each iteration k , compute a trial step sk by

Smoothing −→
minimize Taylor’s model of fup around xk

within trust-region of radius ∆k

(SCM)

Coarsening −→

compute gup , Hup trial step sk
Restriction ↓ R P ↑ Prolong.

minimize a coarse model qlow around
Rxk within the trust-region of radius ∆k

◮ Apply this scheme recursively if several levels

◮ unconstrained (‖ · ‖2): [Gratton, Sartenear, Toint, 2008]

◮ bound-constrained (‖ · ‖∞): [Gratton, Mouffe, Toint, Mendonça, 2008]
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The RMTR algorithm

Models Definition

Taylor model: m(s) = fup + 〈s, gup〉+
1
2 〈s,Hups〉

Coarse model:

◮ Impose first-order coherence via a correction term:

glow = Rgup

◮ Impose second-order coherence via two correction terms:

glow = Rgup and Hlow = RHupP

◮ Galerkin approximation: flow = 0

fup ≈ qlow(s) = flow + 〈s,Rgup〉+
1
2 〈s,RHupPs〉

fup ≈ qlow(s) = 〈s,Rgup〉+
1
2 〈s,RHupPs〉
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The RMTR algorithm

Multilevel on Finest scheme

Annihilate oscillatory error level by level (V-cycle):

pre smooth
−→

Smooth
fine e

Smaller
fine e

post smooth
−→

↓ R ↑ P
Oscil.

coarse e

pre smooth
−→ (recur)

post smooth
−→ Smooth

coarse e

Figure: Multilevel on Finest (MF) scheme

⋆
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The RMTR algorithm

Full Multilevel (FM) scheme

◮ FM performs a V-cycle scheme to compute the problem
solution at each of the increasingly finer grids used in the
mesh refinement, i.e. the solution at coarser level is used as a
good starting point for the next level.

⋆
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The Augmented Lagrangian RMTR approach

The aeronautical problem

minx M(x)
subject to RF (x) ≥ 1

l ≤ x ≤ u,

where M(x) is the overall mass and RF (x) are the RFs.

Minimization problems with simple bounds and nonlinear equality
constraints

minx f (x)
subject to h(x) = 0

l ≤ x ≤ u,

where f : IRn → IR and h : IRn → IRm.
Two reformulation to define equalities h:

◮ R-slack by adding slack variables s ∈ IRm:
hs(x , s) = 1− RF (x) + s, s ≥ 0;

◮ R-max
2: hm(x) = max(1− RF (x), 0)2.
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The Augmented Lagrangian RMTR approach

The bound-constrained Augmented Lagrangian approach

Problem with simple bounds and nonlinear equality constraints

minx f (x)
subject to h(x) = 0

l ≤ x ≤ u,

with f : IRn → IR and h : IRn → IRm [LANCELOT, 1992].

We use the Augmented Lagrangian function

LA(x , λ;µ) = f (x)− λT
h(x) +

µ

2
h(x)Th(x)

where µ > 0 is the “penalty parameter” and λ ∈ IRm is an explicit estimate of
the Lagrange multipliers λ ∈ IRm.
We solve a sequence of bound-constrained problems:

Given xk , λk and µk , find xk+1 s.t.

xk+1 = argmin
x

LA(x , λk ;µk ) s.t. l ≤ x ≤ u.

Update λk and µk based on xk+1.
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The Augmented Lagrangian RMTR approach

The Augmented Lagrangian RMTR (ALRMTR) method

Use RMTR to solve the subproblem

minx LA(x , λk ;µk)
subject to l ≤ x ≤ u.

⇒ definition of a multilevel structure for the dual variables λ ∈ IR
m

Different implementations depending on the multilevel scheme (FM or
MF) and the use of R-max2 or R-slack

1. ALRMTR-FM (Full Multilevel)

2. ALRMTR-MF (Multilevel on Finest):

◮ Galerkin approximation:
compute values of LA only at the finest level;

◮ No multilevel structure for dual variables is employed if
R-max2 is used.
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The Augmented Lagrangian RMTR approach

Prolongation/Restriction operators for dual variables

◮ Use the same operators of the primal variables.

◮ Note that the dual variables associated with continuous
constraints are not necessarily continuous (δ-function-like
behaviour).

◮ Approximate the dual variables by a piece-wise linear function
may not fully capture the behaviour of λ.

◮ Idea: smooth the multipliers before applying the
Prolongation/Restriction operator.

◮ The inverse of the Laplacian operator ∆−1 may be used as a
smoother:

λup
smooth
−→ ∆−1λup

restriction
−→ R(∆−1λup) −→ λlow = ∆R∆−1λup

⋆ [Bank, Gill, Marcia, 2003]
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Numerical experiments

Compared procedures

ALRMTR-AM: All on Finest
Standard Newton trust-region algorithm
(PTCG)

ALRMTR-MF: Multilevel on Finest
Algorithm RMTR applied at the finest level

ALRMTR-FM: Full Multilevel
Algorithm RMTR applied successively from
coarsest to finest level.

BOSS quattro optimization solvers:
GCM, CONLIN, SQP
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The academic problems

The problems

◮ Well-known unconstrained problems: the minimum surface
problem and the BRATU problem.

◮ Ad-hoc inequality constraints to mimic RFs: upper bound on
the local curvature.

Comments

◮ All the multilevel implementations converge to the solution
(MF and FM more efficient than AF);

◮ ALRMTR is more robust and more accurate than BOSS
quattro.

◮ ALRMTR -R - max2 is more efficient than ALRMTR-R -

slack (slack structure not fully exploited).

◮ ALRMTR-R - slack is more accurate (inequality satisfaction)
than ALRMTR-R - max2.
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The industrial problem: RFUSE

Small test problem: rectangular piece of an aircraft
fuselage (RFUSE) (6× 8 panels and 7× 8 stringers)

◮ 2 DVs per element: the panel thickness t and the stringer
section area s.

Test case provided by LMS Samtech
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The industrial problem: RFUSE

◮ DVs: the panel thickness ti and the stringer section area si .

◮ Data: the panel area ai and the stringer length di .

◮ RFs: 3 RFs per calculation points (internal stringer).
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The industrial problem: RFUSE

Multilevel structure

level Nl Nc # t # s # DVs # CPs # RFs

3 8 6 48 56 104 40 120
2 4 3 12 16 28 6 24
1 2 2 4 6 10 2 6

Table: Multilevel dimensions for RFUSE.
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The LARGO project Task 1: The aeronautical problem Task 2: multilevel optimization Task 3: Experiments

The industrial problem: RFUSE

Transfer operator: panel thickness t

t∗ =
abRt

b
R + atRt

t
R + abLt

b
L + atLt

t
L

abR + atR + abL + atL

a∗ = aRb + aRt + aLb + aLt
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The industrial problem: RFUSE

Transfer operator: stringer section area s

s
b =

dbL s
b
L/2+dbC sbC+dbR s

b
R/2

db
L
/2+db

C
+db

R
/2

, d
b =

d
b
L/2 + d

b
C + d

b
R/2

2
,

s
t =

dtLs
t
L/2+dtC stC+dtR stR/2

dt
L
/2+dt

C
+dt

R
/2

, d
t =

d
t
L/2 + d

t
C + d

t
R/2

2
,

s
∗ =

d
b
s
b + d

t
s
t

db + d t
, d

∗ =

(

d
b
L/2 + d

b
C + d

b
R/2

)

+
(

d
t
L/2 + d

t
C + d

t
R/2

)

4
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The industrial problem: RFUSE

Transfer operator: RF constraints
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The industrial problem: RFUSE

Implementation issues for RFUSE

◮ R - max2: ∇LA(x , λ;µ) = ∇f (x)− JTRFλ+ µJTRFh(x)
R - slack:

∇LA((x , s), λ;µ) =

(

∇f (x)
0

)

−

(

JTRF
I

)

λ+ µ

(

JTRF
I

)

h(x , s)

∇f and JRF are provided by BOSS
∇2LA approximated by a diagonal matrix.

◮ MF scheme and Galerkin model (functions only at finest level).

◮ Ad hoc linear interpolation operators for DVs and dual variables.

◮ Problem dimensions (3 levels):
R - max2: n3 = 104, n2 = 28, n1 = 10,
R - slack: n3 = 224, n2 = 52, n1 = 16,
m3 = 120,m2 = 54,m1 = 6.

◮ Initial point:

◮ R - max2: x0 = 0
◮ R - slack: x0 = 0, s0 = 0 and x0 = 0, s0 = sf = RF (x0)− 1.
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The industrial problem: RFUSE

Results

f ∗ ‖h∗‖∞ #v∗ max v∗
τ
∗ #a∗

BOSS-GCM 27.55 18 2.3E-05 64

MF-R - max2 25.25 6.5E-02 49 3.6E-01 0.0E+00 104
x∗ = l

MF-R - slack 39.41 3.4E-01 26 3.3E-01 8.7E-02 48
s0 = sf
MF-R - slack 26.32 3.3E-01 40 3.3E-01 8.5E-02 64
x0 = x∗gcm, s0 = sf

#v∗ = #RF ∗ < 1, max v∗ = max(1− RF ∗), #a∗ = #x∗ = {l , u}

⋆
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The industrial problem: RFUSE

Conclusion

Fuselage problem

◮ BOSS quattro is better than ALRMTR-MF (constraint
violations count, number of iterations)

◮ ALRMTR-R - slack is slightly better than ALRMTR-R -

max2 in terms of number of constraint violation max v∗.

the practical use of multilevel techniques in aircraft optimization
deserves further research...
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Thanks for your attention
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