
Textual Variability Modeling Languages
An Overview and Considerations

Maurice H. ter Beek
ISTI–CNR, Pisa, Italy

maurice.terbeek@isti.cnr.it

Klaus Schmid
University of Hildesheim, Germany
schmid@sse.uni-hildesheim.de

Holger Eichelberger
University of Hildesheim, Germany
eichelberger@sse.uni-hildesheim.de

ABSTRACT
During the three decades since the invention of the first variability
modeling approach [28], there have been multiple attempts to intro-
duce advanced variability modeling capabilities. More recently, we
have seen increased attention on textual variability modeling lan-
guages. In this paper, we summarize the main capabilities of state of
the art textual variability modeling languages, based on [23], includ-
ing updates regarding more recent work. Based on this integrated
characterization, we provide a discussion of additional concerns,
opportunities and challenges that are relevant for designing future
(textual) variabilitymodeling languages. The paper also summarizes
relevant contributions by the authors as input to further discussions
on future (textual) variability modeling languages.

CCS CONCEPTS
• Software and its engineering → Specification languages;
Software product lines.

KEYWORDS
software product lines, variability modeling, textual specification
languages
ACM Reference Format:
Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger. 2019. Textual
Variability Modeling Languages: An Overview and Considerations. In 23rd
International Systems and Software Product Line Conference - Volume B (SPLC
’19), September 9–13, 2019, Paris, France. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3307630.3342398

1 INTRODUCTION
Since the very early days, variability modeling has mostly focused
on graphical modeling [28], especially using feature diagrams in
the form of trees. This has led to different notations, which often
only varied in minor technical details [41]. Variability modeling
was handled in numerous ways in practice using textual notations.
Classical examples of these are KConfig [29] and CDL [43], textual
variability description languages that have been created in the open
source world. However, these kinds of languages typically suffer
from the problem that they are not formally defined and very hard
to analyze [25].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6668-7/19/09. . . $15.00
https://doi.org/10.1145/3307630.3342398

Textual variability modeling approaches were also invented in
academia. Most follow the notion of feature modeling [41] with
variations. Some also took the approach of decision modeling [40].

The goal of this paper is to summarize and update the catego-
rization of textual variability modeling languages provided in [23]
as a basis for discussing future options and challenges towards
the design of a simple (textual) variability modeling language that
the community can agree on. Due to space restrictions, we can, of
course, not replicate that earlier survey. Thus, we also refer the
reader to this earlier publication for further details [23].

2 A SHORT STATE OF THE ART OF TEXTUAL
VARIABILITY MODELING LANGUAGES

In this section, we provide a summary of the overview on tex-
tual variability modeling languages presented in [23], updated with
more recent approaches. This comprehensive review of existing tex-
tual variability modeling languages was based on both an analysis
of the existing literature as well as contact with the corresponding
authors to include potential feedback in order to ensure that the
categorizations of the various languages was adequate. Thus, there
may be (implemented) language capabilities that are not mentioned
in the underlying literature or indicated by the involved authors
and, therefore, not listed in this paper.

2.1 Updated Literature Analysis
The original analysis (cf. [23, Sect. 4]) considered these languages:

• Feature Description Language (FDL) [42] mainly aims at being
a textual representation of feature diagrams.
• Forfamel [5] is part of the Kumbang approach; Forfamel aims
at feature modeling, while Koalish adds structural modeling.
• Tree grammars for representing cardinality-based feature mod-
els were introduced by Batory in [6].
• Variability Specification Language (VSL) [1] integrates feature
modeling with configuration links and variable entities.
• Simple XML Feature Model (SXFM) [32] is an XML-based
representation of feature models.
• FAMILIAR [2], next to modeling variability, also includes
capabilities for combining and analyzing variability models.
• Text-based Variability Language (TVL) [17] supports textual
feature modeling, including capabilities for feature attributes,
cardinalities and modularization.
• µTVL [16] is a variation of TVL, dropping some concepts,
but also adding others like multiple trees in a single model.
• CLAss, FEature, Reference approach (Clafer) [13] combines
meta-modeling of classes with feature modeling support.
• VELVET [35] is a language, inspired by TVL, but extends it
in several directions and reimplements it from scratch.

https://doi.org/10.1145/3307630.3342398
https://doi.org/10.1145/3307630.3342398

SPLC ’19, September 9–13, 2019, Paris, France Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger

• INDENICA Variability Modeling Language (IVML) [39] fol-
lows the decision modeling paradigm with a strong focus on
ease of learnability, expressiveness, and scalability.

In the meantime, some additional approaches have been published:
• Clafer (extended with behavior) [27] extends [13] with a tem-
poral dimension, resulting in a language combining behavior,
structure, and variability.
• PyFML [3] is a textual feature modeling language based on
the Python programming language.
• Variability Modeling (VM) [4] is a language that was devel-
oped in an industrial project, with specific constraints to ease
reasoning particularly for applications in the video domain.

Although we are aware of more recent XML-based approaches than
SXFM, such as, e.g., [45], we do not include them here, in partic-
ular if they do not add further capabilities or aim at a pure XML
representation (on instance or schema level) of existing capabilities.
The main focus of [23] was on classifying and summarizing the
characteristics that are actually supported by the languages to bet-
ter understand their peculiarities. Discussions of potential future
capabilities as well as secondary characteristics like analyzability
were excluded. We will discuss these aspects in Section 3. Thus, the
subset of characteristics we consider in this section as a basis for
our discussion in this paper is based on the following dimensions:
• Configurable elements
• Constraint support
• Configuration support
• Scalability support
• Language characteristics

In Table 1, we show a selection of the extensive classification of
textual variability modeling languages from [23], updated for Clafer
(extended with behavior), PyFML, and VM. From the above dimen-
sions, we focus here on particular sub-dimensions (stated below
between parentheses): configurable elements (forms of variation,
attached information, cardinalities, references, and additional data
types — such as basic types predefined by the language, user-defined
types, or types derived from already known types), constraint sup-
port (constraint expressions), configuration support (default values,
value assignment, and partial or complete configurations), scala-
bility support (here only through composition, i.e., the capability
of integrating units of configurable elements into a single model).
Finally, we briefly discuss language characteristics, as reported in
Table 7 in [23], in Section 3. As an additional dimension, we also
report whether the language has a formal semantics.

We refer the interested reader to [23] for detailed pointers (in-
cluding page numbers) to the literature that confirm the level of
support offered by the surveyed textual variability languages. In
Table 1, we simplify the notation to direct (+), indirect (±), un-
clear (?) or no (−) support. In the next sections, we summarize
the classification, providing information on the type of attached
information, cardinalities, and references that is supported, as well
as details of the supported data types and to what they apply.

Compared with [23], we note the following updates. Clafer (ex-
tended with behavior) provides direct support for simple cross-tree
constraints (cf. [27, p7]) and for so-called parallel decomposition of
non-exclusive clafers, i.e., the selection of multiple features out of
several possible variations (cf. [27, p13]).

PyFML provides direct support for optional, alternative, andmul-
tiple feature selection, for attached information in the form of at-
tributes of predefined types (Boolean, Integer, Float, String), simple
cross-tree constraints, constraint expressions in propositional logic
as well as both relational and arithmetic constraint expressions,
and configuration support by allowing default values and value
assignment [3, p46].

As can be concluded from [4, Sect. 5], VM provides similar capa-
bilities as PyFML, but also supports the specification of cardinalities,
a modularizationmechanism supporting composition, direct support
for partial configurations and indirect support for complete configu-
rations. In addition (not detailed in Table 1), VM supports constraint
resolution hints such as delta values or objective functions.

From [23], we know that TVL and µTVL do not provide di-
rect support for full-fledged composition, but merely for inclusion
and conjunction. Finally, we are aware of formal semantics for
FDL [42, p4ff], Forfamel (indirectly, by translation to WCRL) [5,
p36], TVL [17, p1136ff], µTVL [16, p208ff], and Clafer [27, p2:23ff].

2.2 Configurable Elements
The basic elements of configuration in nearly all languages is a
feature, respectively a feature group, the only exceptions are IVML,
which uses decision variables, and Clafer, where it is a conceptual
mix of structural and variability modeling, called a clafer.

All languages support optional and alternative variability, most
do also support multiple selection, i.e., selecting at least two out of
a range of possible features.

Most languages also cater for attached information to the basic
variability unit. Mostly these are feature attributes. Sometimes this
can also be parameters (VSL) or other features (Clafer). IVML also
supports meta-attributes, which can, for example, express binding
times, implementation advices, etc.

Most languages also support cardinalities. Typically, these are
feature and group cardinalities. However, Tree grammars only sup-
port feature cardinalities, while SXFM and µTVL only support group
cardinalities. Depending on the language design, cardinalities are
typically realized as a special capability. In some cases, however,
the language supports generic multiplicity and the details of cardi-
nalities are expressed as constraints.

Many languages do also support the notion of (configuration)
references, which simply alias other configurable elements. As most
languages are very restricted with respect to what a configurable
element can be, typically references are only possible to a single type.
However, IVML differs insofar as it supports references to arbitrary
data types. This enables much richer static (type) checking. As a
consequence, IVML, as shown in [22], can also be used to model
topological variability. Topological variability targets variations
of connecting components with respect to a certain order, in spe-
cific interconnected hierarchies, in different quantities [11], or, in
general, in terms of graph-like structures.

Related to the question of the basic elements for expressing
variability is the question to what extent data types are supported.
In most cases, there is a basic feature (or clafer) data type. The
only exception is IVML, which can combine the basic element of
variation with all available data types.

Textual Variability Modeling Languages SPLC ’19, September 9–13, 2019, Paris, France

Table 1: Language support for configurable elements, type systems, constraints, configurations, scalability, and semantics

forms of variation

at
ta
ch
ed

in
fo

data types constraint expressions configurations

fo
rm

al
se
m
an
tic

s

Language op
tio

na
l

al
te
rn
at
iv
e

m
ul
tip

le

ex
te
ns
io
n

ca
rd
in
al
iti
es

re
fe
re
nc
es

pr
ed
efi

ne
d

de
riv

ed

us
er
-d
efi

ne
d

sim
pl
e

pr
op

os
iti
on

al

fir
st
-o
rd
er

re
la
tio

na
l

ar
ith

m
et
ic

de
fa
ul
tv

al
ue
s

as
sig

n
va
lu
es

pa
rti
al

co
m
pl
et
e

co
m
po

sit
io
n

FDL + + + − − ± − − − − + − − − − + − − − − +
Forfamel + + + + + + + − − + − + + + + − + − + − ±

Tree grammars + + + − − + − − − − − + − − − − − − − − −

VSL + + + + + + + + − + + ? ? − ? + + + + + −

SXFM + + + − − + − − − − − ? − − − − − − − − −

FAMILIAR + + + − − − ? + + − − + − − − − + + + + −

TVL + + + ? + + + + − + − + − + + − + − − − +
µTVL + + ± + + + − + − − + + − + + − ? + + − +
Clafer + + + + + + + + + + + + + + + − + + + + +
VELVET ± + + + + ± + + − − − + − + − + + + ± + −

IVML + + + + + ± + + + + − + + + + + + + ± + −

PyFML + + + − + − − + − − + + − + + + + − − − −

VM + + + − + + − + − − + + − + + + + + ± + −

Some languages allow the derivation of new types, e.g., through
a form of inheritance like in object-oriented languages, type compo-
sition, container types, or even composing types with constraints,
leading to type restrictions. However, in most languages these fur-
ther data types are restricted to feature attributes.

2.3 Constraint Support
The various languages differ considerably in terms of their capabil-
ities for constraint expressions. Overall, several layers of expressive-
ness can be distinguished. As a general rule, these are ordered in
increasing levels of expressiveness. However, this correlates also to
a decreasing level of analyzability (cf. Section 3).

Especially in diagrammatic presentations often basic requires
and excludes relationships are present (simple dependencies). How-
ever, in textual languages these are rarely to be found. Rather all
languages, except for FDL, at least support full propositional logic.

As simple dependencies can be seen as special cases of proposi-
tional logic, there is no need to have both. However, four languages
combine simple dependencies and propositional logic, probably us-
ing simple dependencies as shortcuts for otherwise more complex
propositional logic or just to be close to classical feature modeling
publications. Propositional logic can be extended, e.g., by supporting
relational expressions or arithmetic expressions.

Some languages also support quantification over formulas, which
enables for example to give constraints over all subtrees. In [23],
this is (not fully correctly) called first-order logic.1 While this is
a very powerful construct, it is only available in four languages
considered in this survey: Forfamel, VSL, Clafer, and IVML.

1Most languages support the quantifiers, but not necessarily the predicates, functions
and constants typical of first-order logic.

A mechanism, which is only available in IVML, is the use of
default constraints. These are constraints that can be altered as part
of the constraint-resolution process. In particular, together with
scoped imports (cf. Section 2.5) this leads to (restricted) support for
non-monotonic reasoning.

2.4 Configuration Support
While graphical variability modeling notations are typically focused
only on the modeling, it is actually rather common for textual
variability modeling languages to support the configuration as well.
The most elementary category is the value assignment, which is
supported by all languages but FDL, Tree grammars, and SXFM.

Some languages (e.g., FDL, VSL, VELVET, IVML, PyFML, and
VM) also support default values, i.e., values that can be overridden
at a later stage. In particular, VM differentiates between static and
runtime configurations, using runtime tags as annotation to indicate
the binding time of features and attributes, allowing the code to
increase or decrease values at runtime.

Besides these basic capabilities of setting values, many languages
also support the notion of a configuration as a first-class concept. In
particular all languages except FDL, Forfamel, SXFM, and PyFML.
These languages allow to designate a range of value assignments as
a configuration and manage it separately. In most cases this can also
be a partial configuration. However, not all approaches do support
full separation in the sense that arbitrary many configurations can
be separately managed from the basic model description.

2.5 Scalability Support
The earliest languages, namely FDL, Forfamel, Tree grammars,
and SXFM, do not provide mechanisms for large-scale variability

SPLC ’19, September 9–13, 2019, Paris, France Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger

modeling through composition, and neither does one of the most
recent ones, PyFML. TVL and µTVL only allow the inclusion and
conjunction, respectively, of models.

The remaining languages all support some form of scalabil-
ity through composition. Clafer and VELVET do so by inheritence,
whereas FAMILIAR provides two explicit composition operators,
the ‘merge’ operator for overlapping and the ‘aggregate’ operator
for disjoint models. VM supports the import of so-called (model)
packages. IVML supports the scoped import of models, which be-
sides the provisioning of namespaces also provides scopes for the
reasoning process. It also provides an interface concept.

2.6 Language Characteristics
While fundamentally all languages described here are textual, they
conceptually differ significantly. This is related to where they origi-
nate from and to the major sources of inspiration they rely on.

Some, especially the early languages, followed the idea of a tree-
like feature diagram rather faithfully and focused on providing
a corresponding syntax. Other languages used programming lan-
guages like C and Java (VSL, TVL, and IVML) or Python (PyFML)
as an inspiration for their approach to syntax. There have also been
proposals that rely on XML (e.g., SXFM) and languages like OCL
(for IVML) and Alloy have been sources of inspirations, too. Finally,
VELVET and µTVL are special cases as they themselves rely on
another variability language TVL (which is inspired by C). One of
the rationales for using programming languages as a basis is to
make it easier and more natural for users to apply these languages.

As predominant structures of the languages we basically find
only three alternatives. Some are tree-based, i.e., a tree structure is
replicated textually, while others are graph-based ones, i.e., focusing
on representing textually a graph structure. Finally, some languages
are driven by (potentially nested) declarations of variables, which
can then be used along with value assignments to represent, for
example, tree as well as graph structures.

3 OTHER CONCERNS IN LANGUAGE DESIGN
In this section, we discuss further aspects that we believe to be
relevant for making good choices in language design for future
(textual) variability modeling languages. We focus here on seven
topics, namely first citizen concepts, quantitative variability mod-
eling, ecosystem support, ‘exotic’ modeling capabilities, binding
time, analyzability, and modular language design.

3.1 First Citizen Concept
Almost all the approaches discussed in this paper use some form
of feature as their main language concept. Notable exceptions are
Clafer, which is based on an amalgamation of classes and features,
and IVML, which represents variability decisions in terms of typed
variables, i.e., follows the decision modeling paradigm [40]. How-
ever, one should also take into account that there strong relation-
ships among the different paradigms, not only on a conceptual
level [18], but in some cases even a formal correspondence has
been shown [24].

In fact, features in their different notions are still considered
as the predominant variability modeling approach in both indus-
try [12] and academia [34]. However, according to [34], several

aspects largely remain unexplored, e.g., non-functional (quantita-
tive) properties, or merely exist as research topics that are currently
not sufficiently taken up by industry, e.g., software ecosystems,
multi-product lines, or dynamic software product lines.

This is in particular an issue, as without industrial cases, more
recent topics remain academic ideas not really contributing to the
evolution of variability modeling approaches. Moreover, approach
and tool qualities like usability or scalability are typically only illus-
trated in terms of examples or not studied at all [34]. The authors
believe that it is time to consider, explore, evaluate, and experi-
ment with alternative first-level modeling concepts that integrate
beneficial aspects of feature-based approaches, e.g., hierarchy and
decomposition, with perceived advantages of textual variability
modeling, e.g., scalability, as well as currently less explored needs
of actual and future real-world variability modeling.

3.2 Quantitative Variability Modeling
Recently, there is growing interest in variability modeling (and
analysis) techniques that explicitly consider quantitative aspects,
which are particularly relevant to non-functional requirements,
such as dependability, energy consumption, security, and cost. Since
today’s software is often embedded in smart and critical systems
that run in environments where events affecting the system occur
randomly, quantitative variability modeling is currently a hot topic.

This is reflected by the recent panel at VaMoS’19, which ad-
dressed questions like “How to incorporate quantities in (textual)
languages for variability modeling?” [7], and the forthcoming spe-
cial issue on quantitative variability modeling and analysis [8].
In [9], a rich, high-level textual DSL for configurable software-
intensive systems was defined, with variability defined in terms of
features and offering advanced quantitative constraint modeling
options. The approach comes with tool support [10] and it can
cope with the complexity of (re)configurable systems stemming
from variability, behavior, and randomness. A related approach is
provided by IVML [23].

3.3 Ecosystem Support
Some languages claim explicit modeling support for variations in
software ecosystems. Bosch postulates that ecosystems are a nat-
ural extension of classical product lines [14] insofar as extending
the notion of variability to open systems. Indeed, analysis of exist-
ing software ecosystems like Eclipse or the Linux package system
show that open forms of variability description have evolved inde-
pendently to support both open, distributed development as well
as variability management [36]. In contrast to traditional (closed)
variability modeling, open variability allows for the extension of
the configuration space by variabilities that are not part of the
core product line. In particular, an extension needs to be possible
to 3rd parties who are not able to change the initial model. Thus,
open variability also requires distributed modeling. Further, this
requires particular capabilities of variability languages, as discussed
in [37], like modularization and hiding of variabilities. While most
other variability modeling approaches restrict themselves to ‘closed’
variability, IVML aims to support also open ecosystems.

Besides the aforementioned requirements, IVML supports de-
faults and non-monotonic reasoning capabilities, which have been

Textual Variability Modeling Languages SPLC ’19, September 9–13, 2019, Paris, France

derived as being necessary from industrial cases in [15]. EASy-
Producer, of which IVML is one component, also aims to support
concepts like the feature pack approach, which aims to modular-
ize feature groups along with their implementation in software
ecosystems [30].

3.4 ‘Exotic’ Modeling Capabilities
Exploring actual and future needs, besides those already discussed
above, may require capabilities, which are currently not (well) sup-
ported by (textual) variability management approaches. Some ex-
amples are topological configurations with related constraints [11],
behavioral aspects [31], or the specification of configuration op-
timization goals [4, 13]. Some proposals were made, e.g., how to
model topological variability including constraints and reasoning
in an integrated manner [22], or how to specify behavioral aspects
through temporal constraints [27]. However, we perceive a certain
reservation of the community against such ‘exotic’ capabilities,
which is in contrast to indications of respective practical and indus-
trial needs, such as in [11].

3.5 Binding Time
An important concern in software product line engineering is not
only the specific configuration that is defined, but also when the
configuration is determined, respectively applied to the system.
One should note that these are ultimately two different notions. For
example, if a configuration tool is needed for determining the con-
figuration, then this is typically happening during the development
process. On the other hand, the value may only have an effect very
late in the process, e.g., a configuration may be instantiated when
the system starts, a configuration file is read, and programmatic
binding (e.g., through class-loading) happens.

Often both notions are referred to by the term binding time,
although they are notably different. We propose the terms definition
time and binding time in order to differentiate between them. Thus,
the term definition time could be used to refer to something like the
stages introduced by Czarnecki et al. [19]. Regarding binding time,
Dolstra et al. [20] point out that this is not necessarily well-defined
as there may be multiple points in time when an instantiation
may happen, even for the same variability. They call this timeline
variability. We can regard both definition time and binding time as
descriptive information about a variability, which can be variable
itself. Beyond those two, other aspects like different implementation
technologies and so forth may be relevant, too. Hence, these may
need to be represented as well. In [38], the term meta-variability
was proposed for this more generic concept. Along with this, the
authors proposed a very generic implementation approach using
aspect-oriented programming for timeline variability.

Existing textual variability languages typically do not address
the notion of binding time — and even those which do would hardly
be able to represent the richness of concepts outlined above, be-
cause they restrict themselves to a single category with predefined
unique values. They are thus not able to represent both definition
time and binding time and are also not able to capture multiple
alternatives which are needed for representing timeline variability.
Notable exceptions are VM, as anticipated in Section 2.4, and in

particular IVML. IVML directly implements the notion of meta-
variability by allowing to attach arbitrarily many meta-decisions
to any variability, which can also be set-typed to support timeline
variability. As both values and meta-variabilities are user-definable,
a context-specific binding time granularity as well as issues like
technology variabilities can be supported on a per-need basis.

3.6 Analyzability
This is often a major concern as static analysis of variability models
and product lines as a whole can provide very valuable assistance
both during modeling and in derivation of product lines [44]. Un-
fortunately, there is an important trade-off between analyzability
and expressiveness, as the more expressive a variability language
is, the harder it is to analyze it. While propositional language is
decidable and very efficient provers exist to handle it, analysis of
higher levels of logic is not only significantly less efficient, it may
often even be undecidable. On the other hand, the expressiveness of
a higher-level logic may make certain things much easier to express,
if not be a precondition for being able to represent the situation
adequately in the first place.

Based on this observation some of the authors categorized dif-
ferent levels of expressiveness vs. analyzability trade-offs in earlier
work in order to create a map of the situation [21], where four main
classes could be identified: basic variability modeling, basically cor-
responding to classic feature models and mappable to propositional
logic. Cardinality-based variability modeling gets particularly com-
plex if potentially unbounded cardinalities are allowed. This leaves
then the realm of decidability. Then non-Boolean variability model-
ing brings its own problems in terms of analyzability, e.g., the need
for supporting arithmetic theories. Finally, configuration references
can lead to significant challenges as they allow for arbitrary aliasing.
However, this can also be used to great benefit, e.g., in the context
of topological modeling [22].

Due to the inherent trade-off involved, any decision regarding
the expressiveness of a language should be made carefully. The iden-
tification of different classes of expresssiveness also encourages the
definition of different language levels within a modular language
design as we will discuss below. Each of these could then have
different reasoning support. However, the situation is not as simple
as it may seem. As has been discussed by Eichelberger et al. [21,
Table 1], many other aspects, like whether quantifiers are supported
in constraints, also have a significant impact on analyzability and
expressiveness. Making all of these aspects simultaneously cus-
tomizable may create significant complexity.

3.7 Extensible Language Design
Most languages discussed here focus on a complete solution for vari-
ability modeling, while the contribution sometimes concentrates on
differences, improvements, or additions over an existing language.
For example, µTVL and VELVET extend TVL, Clafer was extended
by temporal constraints, and VM provides domain-specific improve-
ments over FAMILIAR. Such extensions do not always require a
completely new language. One alternative could be an extensible
language design, e.g., capabilities of extending a given language or
embedding concepts into a host language.

SPLC ’19, September 9–13, 2019, Paris, France Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger

Similar concepts are known from domain-specific languages
(DSLs) [26], where external DSLs are complete languages for a cer-
tain purpose, while internal or embedded DSLs utilize and extend
the concepts of a host language. As many textual variability lan-
guages are realized in terms of DSLs using related tooling, designing
a variability modeling language for extensibility may support the
experimentation and development of new approaches based on
existing concepts and implementations.

3.8 Modular Language Design
In addition to the idea of extending a variability modeling language,
conceptual differences may also be realized in terms of different
language levels. In addition to pure language management (and
product lines of variability modeling languages), this would allow
to explicitly face trade-offs in the language design rather than
aiming for a single general-purpose variability modeling approach.

Similar situations exist if languages explicitly combine basic and
advanced modeling concepts (e.g., IVML and VM) or provide in-
creasing capabilities of the same language concept, e.g., constraint
capabilities (cf. Forfamel, Clafer, or IVML, as indicated in Table 1). In
particular, for constraints and some specific modeling concepts, var-
ious trade-offs between expressiveness and analyzability do exist,
as discussed in [21]. While simple forms of constraints such as pure
Boolean expressions can be efficiently analyzed and solved [33],
more complex constraints such as quantorized or temporal con-
straints are not decidable anymore.

In such settings, we can imagine that a modular language design
could enable the product line engineer to focus on the most appro-
priate language level(s) for the situation at hand. Moreover, using
just the needed language modules may allow for an automated se-
lection of the most appropriate reasoning or analysis mechanisms,
in turn leading to better performance or supporting analysis ca-
pabilities that are not available for the full language. Ultimately, a
modular language design can foster the reuse of language levels
(including the underlying language infrastructure), support the de-
velopment of domain specific modeling capabilities (as suggested
in [4]), and ease experiments as well as prototyping and the devel-
opment of new variability modeling concepts.

4 CONCLUSION
We have presented an overview of the main characteristics of thir-
teen textual variability modeling languages, based on a systematic
literature analysis reported in [23]. Beyond the coverage of this
survey, we have incorporated two recently introduced languages
(PyFML and VM) and updated the knowledge about an extended
language (Clafer with behavior). Further, we have focused on the
following five dimensions: support for configurable elements, in-
cluding type systems, constraints, configuration, scalability, and
formal semantics. Table 1 summarizes these results.

Together with [23], our overview provides an important resource
for researchers as well as practitioners in the field of systems and
software product line engineering on currently available textual
variability modeling languages.

Given the large number of existing textual variability modeling
languages, an obvious question is whether we need more languages.
Our answer to this is as follows:

We do not just need further (textual) languages for existing con-
cepts, leading to an even greater plethora of variability modeling
languages, rather we need more innovative (textual) variability
modeling approaches. As an indication for future directions, we dis-
cussed additional concerns in language design, including the choice
of the first citizen concept, quantitative variability modeling, bind-
ing times, ecosystem support, exotic capabilities, and analyzability.
In particular, we believe that future languages should have an ex-
tensible and modular language design with sub-languages catering
for different needs, but holistically integrated into an over-arching
concept.

ACKNOWLEDGEMENTS
This work is partially supported by the ITEA3 project REVaMP2,
funded by the BMBF (German Ministry of Research and Education)
under grant 01IS16042H. Any opinions expressed herein are solely
by the authors and not by the BMBF.

We thank the anonymous reviewers for their comments and
suggestions that helped us improve the paper.

REFERENCES
[1] Andreas Abele, Yiannis Papadopoulos, David Servat, Martin Törngren, and

Matthias Weber. 2010. The CVM Framework – A Prototype Tool for Composi-
tional Variability Management. In Proceedings of the 4th International Workshop
on Variability Modelling of Software-Intensive Systems (VaMoS’10) (ICB Research
Report), David Benavides, Don S. Batory, and Paul Grünbacher (Eds.), Vol. 37.
Universität Duisburg-Essen, 101–105.

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013.
FAMILIAR: A domain-specific language for large scale management of feature
models. Science of Computer Programming 78, 6 (2013), 657–681. https://doi.org/
10.1016/j.scico.2012.12.004

[3] Ali Fouad Al-Azzawi. 2018. PyFML – A Textual Language For Feature Modeling.
International Journal of Software Engineering & Applications 9, 1 (2018), 41–53.
https://doi.org/10.5121/ijsea.2018.9104

[4] Mauricio Alférez, Mathieu Acher, José A. Galindo, Benoit Baudry, and David
Benavides. 2019. Modeling variability in the video domain: language and
experience report. Software Quality Journal 27, 1 (2019), 307–347. https:
//doi.org/10.1007/s11219-017-9400-8

[5] Timo Asikainen, Tomi Männistö, and Timo Soininen. 2006. A Unified Conceptual
Foundation for FeatureModelling. In Proceedings of the 10th International Software
Product Line Conference (SPLC’06). IEEE, 31–40. https://doi.org/10.1109/SPLINE.
2006.1691575

[6] Don S. Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
Proceedings of the 9th International Software Product Lines Conference (SPLC’05)
(LNCS), Henk Obbink and Klaus Pohl (Eds.), Vol. 3714. Springer, 7–20. https:
//doi.org/10.1007/11554844_3

[7] Maurice H. ter Beek and Axel Legay. 2019. Quantitative Variability Modeling
and Analysis. In Proceedings of the 13th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’19). ACM, 13:1–13:2. https:
//doi.org/10.1145/3302333.3302349

[8] Maurice H. ter Beek and Axel Legay. 2019. Quantitative Variability Modeling and
Analysis. International Journal on Software Tools for Technology Transfer (2019).

[9] Maurice H. ter Beek, Axel Legay, Alberto Lluch Lafuente, and Andrea
Vandin. 2018. A framework for quantitative modeling and analysis of highly
(re)configurable systems. IEEE Transactions in Software Engineering (2018).
https://doi.org/10.1109/TSE.2018.2853726

[10] Maurice H. ter Beek, Axel Legay, Alberto Lluch Lafuente, and Andrea Vandin.
2018. QFLan: A Tool for the Quantitative Analysis of Highly Reconfigurable
Systems. In Proceedings of the 22nd International Symposium on Formal Methods
(FM’18) (LNCS), Klaus Havelund, Jan Peleska, Bill Roscoe, and Erik de Vink (Eds.),
Vol. 10951. Springer, 329–337. https://doi.org/10.1007/978-3-319-95582-7_19

[11] Thorsten Berger, Ştefan Stănciulescu, Ommund Øgård, Øystein Haugen, Bo
Larsen, and Andrzej Wąsowski. 2014. To Connect or Not to Connect: Experiences
from Modeling Topological Variability. In Proceedings of the 18th International
Software Product Line Conference (SPLC’14). ACM, 330–339. https://doi.org/10.
1145/2648511.2648549

[12] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611–
1640. https://doi.org/10.1109/TSE.2013.34

https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.5121/ijsea.2018.9104
https://doi.org/10.1007/s11219-017-9400-8
https://doi.org/10.1007/s11219-017-9400-8
https://doi.org/10.1109/SPLINE.2006.1691575
https://doi.org/10.1109/SPLINE.2006.1691575
https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/11554844_3
https://doi.org/10.1145/3302333.3302349
https://doi.org/10.1145/3302333.3302349
https://doi.org/10.1109/TSE.2018.2853726
https://doi.org/10.1007/978-3-319-95582-7_19
https://doi.org/10.1145/2648511.2648549
https://doi.org/10.1145/2648511.2648549
https://doi.org/10.1109/TSE.2013.34

Textual Variability Modeling Languages SPLC ’19, September 9–13, 2019, Paris, France

[13] Kacper Bąk, Krzysztof Czarnecki, and Andrzej Wąsowski. 2010. Feature and
Meta-Models in Clafer: Mixed, Specialized, and Coupled. In Proceedings of the
3rd International Conference on Software Language Engineering (SLE’10) (LNCS),
Brian A. Malloy, Steffen Staab, and Mark van den Brand (Eds.), Vol. 6563. Springer,
102–122. https://doi.org/10.1007/978-3-642-19440-5_7

[14] Jan Bosch. 2009. From Software Product Lines to Software Ecosystems. In Pro-
ceedings of the 13th International Software Product Line Conference (SPLC’09).
Carnegie Mellon University, 111–119.

[15] Hendrik Brummermann, Markus Keunecke, and Klaus Schmid. 2012. Formaliz-
ing Distributed Evolution of Variability in Information System Ecosystems. In
Proceedings of the 6th International Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS’12). ACM, 11–19. https://doi.org/10.1145/2110147.
2110149

[16] Dave Clarke, Radu Muschevici, José Proença, Ina Schaefer, and Rudolf Schlatte.
2012. Variability Modelling in the ABS Language. In Proceedings of the 9th Inter-
national Symposium on Formal Methods for Components and Objects (FMCO’10)
(LNCS), Bernhard Aichernig, Frank de Boer, and Marcello Bonsangue (Eds.),
Vol. 6957. Springer, 204–224. https://doi.org/10.1007/978-3-642-25271-6_11

[17] Andreas Classen, Quentin Boucher, and Patrick Heymans. 2011. A text-based
approach to feature modelling: Syntax and semantics of TVL. Science of Computer
Programming 11, 12 (2011), 1130–1143. https://doi.org/10.1016/j.scico.2010.10.005

[18] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variabil-
ity Modeling Approaches. In Proceedings of the 6th International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS’12). ACM, 173–182.
https://doi.org/10.1145/2110147.2110167

[19] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Staged Con-
figuration through Specialization and Multi-Level Configuration of Feature
Models. Software Process Improvement and Practice 10, 2 (2005), 143–169.
https://doi.org/10.1002/spip.225

[20] Eelco Dolstra, Gert Florijn, Merijn de Jonge, and Eelco Visser. 2003. Capturing
Timeline Variability with Transparent Configuration Environments. In ICSE
Workshop on Software Variability Management (SVM’03), Peter Knauber and Jan
Bosch (Eds.). IEEE. https://doi.org/10.1109/ICSE.2003.1201282

[21] Holger Eichelberger, Christian Kröher, and Klaus Schmid. 2013. An Analysis of
Variability Modeling Concepts: Expressiveness vs. Analyzability. In Proceedings
of the 13th International Conference on Software Reuse (ICSR’13) (LNCS), John
Favaro and Maurizio Morisio (Eds.), Vol. 7925. Springer, 32–48. https://doi.org/
10.1007/978-3-642-38977-1_3

[22] Holger Eichelberger, Cui Qin, Roman Sizonenko, and Klaus Schmid. 2016. Using
IVML to Model the Topology of Big Data Processing Pipelines. In Proceedings of
the 20th International Systems and Software Product Line Conference (SPLC’16).
ACM, 204–208. https://doi.org/10.1145/2934466.2934476

[23] Holger Eichelberger and Klaus Schmid. 2015. Mapping the design-space of
textual variability modeling languages: a refined analysis. International Journal
on Software Tools for Technology Transfer 17, 5 (2015), 559–584. https://doi.org/
10.1007/s10009-014-0362-x

[24] Sascha El-Sharkawy, Stephan Dederichs, and Klaus Schmid. 2012. From Fea-
ture Models to Decision Models and Back Again: An Analysis Based on Formal
Transformations. In Proceedings of the 16th International Software Product Line
Conference (SPLC’12). ACM, 126–135. https://doi.org/10.1145/2362536.2362555

[25] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2015. Analysing the
Kconfig Semantics and Its Analysis Tools. In Proceedings of the 14th International
Conference on Generative Programming (GPCE’15). ACM, 45–54. https://doi.org/
10.1145/2814204.2814222

[26] Martin Fowler. 2010. Domain Specific Languages. Addison-Wesley Professional.
[27] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michał Antkiewicz,

Krzysztof Czarnecki, and Andrzej Wąsowski. 2019. Clafer: Lightweight Model-
ing of Structure, Behaviour, and Variability. The Art, Science, and Engineering
of Programming 3, 1 (2019), 2:1–2:62. https://doi.org/10.22152/programming-
journal.org/2019/3/2

[28] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Carnegie Mellon University.

[29] KConfig Language [n.d.]. http://kernel.org/doc/Documentation/kbuild/kconfig-
language.txt.

[30] Markus Keunecke, Hendrik Brummermann, and Klaus Schmid. 2013. The
Feature Pack Approach: Systematically Managing Implementations in Soft-
ware Ecosystems. In Proceedings of the 8th International Workshop on Vari-
ability Modelling of Software-Intensive Systems (VaMoS’14). ACM, 20:1–20:7.
https://doi.org/10.1145/2556624.2556639

[31] Anna-Lena Lamprecht, Stefan Naujokat, and Ina Schaefer. 2013. Variability
Management beyond Feature Models. IEEE Computer 46, 11 (2013), 48–54. https:
//doi.org/10.1109/MC.2013.299

[32] Marcilio Mendonça, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T. – Soft-
ware Product Lines Online Tools. In Companion Proceedings of the 24th Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’09). ACM, 761–762. https://doi.org/10.1145/1639950.1640002

[33] Marcilio Mendonça, Andrzej Wąsowski, and Krzysztof Czarnecki. 2009. SAT-
based Analysis of Feature Models is Easy. In Proceedings of the 13th International
Software Product Line Conference (SPLC’09). Carnegie Mellon University, 231–240.

[34] Rick Rabiser, Klaus Schmid, Martin Becker, Goetz Botterweck, Matthias Galster,
Iris Groher, and Danny Weyns. 2018. A Study and Comparison of Industrial vs.
Academic Software Product Line Research Published at SPLC. In Proceedings of
the 22nd International Systems and Software Product Line Conference (SPLC’18).
ACM, 14–24. https://doi.org/10.1145/3233027.3233028

[35] Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake. 2011.
Multi-Dimensional Variability Modeling. In Proceedings of the 5th Workshop
on Variability Modeling of Software-Intensive Systems (VaMoS’11). ACM, 11–20.
https://doi.org/10.1145/1944892.1944894

[36] Klaus Schmid. 2010. Variability Modeling for Distributed Development – A
Comparison with established practice. In Proceedings of the 14th International
Conference on Software Product Line Engineering (SPLC’10) (LNCS), Jan Bosch and
Jaejoon Lee (Eds.), Vol. 6287. Springer, 155–165. https://doi.org/10.1007/978-3-
642-15579-6_11

[37] Klaus Schmid. 2013. Variability Support for Variability-Rich Software Ecosystems.
In Proceedings of the 4th International Workshop on Product LinE Approaches in
Software Engineering (PLEASE’13). IEEE, 5–8. https://doi.org/10.1109/PLEASE.
2013.6608654

[38] Klaus Schmid and Holger Eichelberger. 2008. Model-Based Implementation of
Meta-Variability Constructs: A Case Study using Aspects. In Proceedings of the
2nd International Workshop on Variability Modeling of Software-intensive Systems
(VAMOS’08) (ICB Research Report), Patrick Heymans, Kyo C. Kang, Andreas
Metzger, and Klaus Pohl (Eds.), Vol. 22. Universität Duisburg-Essen, 63–71.

[39] Klaus Schmid, Christian Kröher, and Sascha El-Sharkawy. 2018. Variability
Modeling with the Integrated Variability Modeling Language (IVML) and EASy-
producer. In Proceedings of the 22nd International Systems and Software Prod-
uct Line Conference (SPLC’18). ACM, 306–306. https://doi.org/10.1145/3233027.
3233057

[40] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. 2011. AComparison of Decision
Modeling Approaches in Product Lines. In Proceedings of the 5th International
Workshop on Variability Modeling of Software-intensive Systems (VaMoS’11). ACM,
119–126. https://doi.org/10.1145/1944892.1944907

[41] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. 2006.
Feature Diagrams: A Survey and a Formal Semantics. In Proceedings of the 14th
International Requirements Engineering Conference (RE’06). IEEE, 139–148. https:
//doi.org/10.1109/RE.2006.23

[42] Arie van Deursen and Paul Klint. 2002. Domain-Specific Language Design
Requires Feature Descriptions. Journal of computing and information technology
10, 1 (2002), 1–17. https://doi.org/10.2498/cit.2002.01.01

[43] Bart Veer and John Dallaway. [n.d.]. The eCos Component Writer’s Guide.
http://ecos.sourceware.org/docs-latest/cdl-guide/cdl-guide.html.

[44] Alexander von Rhein, Sven Apel, Christian Kästner, Thomas Thüm, and Ina
Schaefer. 2013. The PLAModel: On the Combination of Product-Line Analyses. In
Proceedings of the 7th International Workshop on Variability Modelling of Software-
intensive Systems (VaMoS’13). ACM, 14:1–14:8. https://doi.org/10.1145/2430502.
2430522

[45] Jingang Zhou, Dazhe Zhao, Li Xu, and Jiren Liu. 2012. Do We Need Another
Textual Language for Feature Modeling? A Preliminary Evaluation on the XML
Based Approach. In Software Engineering Research, Management and Applications
2012, Roger Lee (Ed.). Studies in Computational Intelligence, Vol. 430. Springer,
97–111. https://doi.org/10.1007/978-3-642-30460-6_7

https://doi.org/10.1007/978-3-642-19440-5_7
https://doi.org/10.1145/2110147.2110149
https://doi.org/10.1145/2110147.2110149
https://doi.org/10.1007/978-3-642-25271-6_11
https://doi.org/10.1016/j.scico.2010.10.005
https://doi.org/10.1145/2110147.2110167
https://doi.org/10.1002/spip.225
https://doi.org/10.1109/ICSE.2003.1201282
https://doi.org/10.1007/978-3-642-38977-1_3
https://doi.org/10.1007/978-3-642-38977-1_3
https://doi.org/10.1145/2934466.2934476
https://doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1145/2362536.2362555
https://doi.org/10.1145/2814204.2814222
https://doi.org/10.1145/2814204.2814222
https://doi.org/10.22152/programming-journal.org/2019/3/2
https://doi.org/10.22152/programming-journal.org/2019/3/2
http://kernel.org/doc/Documentation/kbuild/kconfig-language.txt
http://kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://doi.org/10.1145/2556624.2556639
https://doi.org/10.1109/MC.2013.299
https://doi.org/10.1109/MC.2013.299
https://doi.org/10.1145/1639950.1640002
https://doi.org/10.1145/3233027.3233028
https://doi.org/10.1145/1944892.1944894
https://doi.org/10.1007/978-3-642-15579-6_11
https://doi.org/10.1007/978-3-642-15579-6_11
https://doi.org/10.1109/PLEASE.2013.6608654
https://doi.org/10.1109/PLEASE.2013.6608654
https://doi.org/10.1145/3233027.3233057
https://doi.org/10.1145/3233027.3233057
https://doi.org/10.1145/1944892.1944907
https://doi.org/10.1109/RE.2006.23
https://doi.org/10.1109/RE.2006.23
https://doi.org/10.2498/cit.2002.01.01
http://ecos.sourceware.org/docs-latest/cdl-guide/cdl-guide.html
https://doi.org/10.1145/2430502.2430522
https://doi.org/10.1145/2430502.2430522
https://doi.org/10.1007/978-3-642-30460-6_7

	Abstract
	1 Introduction
	2 A short state of the art of textual variability modeling languages
	2.1 Updated Literature Analysis
	2.2 Configurable Elements
	2.3 Constraint Support
	2.4 Configuration Support
	2.5 Scalability Support
	2.6 Language Characteristics

	3 Other concerns in language design
	3.1 First Citizen Concept
	3.2 Quantitative Variability Modeling
	3.3 Ecosystem Support
	3.4 `Exotic' Modeling Capabilities
	3.5 Binding Time
	3.6 Analyzability
	3.7 Extensible Language Design
	3.8 Modular Language Design

	4 Conclusion
	References

