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façade sound insulation data

Raffaele Argiento‡, Pier Giovanni Bissiri‡∗, Antonio Pievatolo‡ and Chiara Scrosati§†

‡IMATI–CNR, via Bassini 15, 20133 Milan, Italy

§ITC–CNR, S. Giuliano Milanese (MI), Italy

Abstract

This work analyses data from an experimental study on façade sound insulation,

consisting of independent repeated measurements executed by different laboratories on

the same residential building. Mathematically, data can be seen as functions describing

an acoustic parameter varying with the frequency. The aim of this study is twofold. On

one hand, considering the laboratory as the grouping variable, it is important to assess

the within and between group variability in the measurements. On the other hand, in

building acoustics it is known that sound insulation is more variable at low frequencies

(from 50 to 100 Hz), compared to higher frequencies (up to 5000 Hz), and therefore

a multilevel functional model is employed to decompose the functional variance both

at the measurement and at the group level. This decomposition also allows for the

ranking of the laboratories on the basis of measurement variability and performance

at low frequencies (relative high variability) and over the whole spectrum. The former

ranking is obtained via the principal component scores and the latter via an original

Bayesian extension of the functional depth.
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data analysis; functional depth; Bayesian functional regression.
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1 Introduction

Building acoustic tests on samples, which are presumably made of the same materials, in

identical conditions, generally do not give the same results. This condition is due to inevitable

errors (systematic and random) in test procedures, caused by the difficulties in controlling

the several factors that influence the test, such as acoustic instrumentation, acoustic method

(microphones and sources position), context (regular rooms or semi-open space, with dif-

ferent dimensions), constructive details of the building (that could have effect on acoustic

measurements) and workmanship and, concerning sound levels, influence of instrumentation

operating conditions (repeat configuration).

In general, uncertainties should preferably be determined following the ISO/IEC Guide 98-

3.3 This guide specifies a detailed procedure for the uncertainty evaluation that is based

on a complete mathematical model of the measurement procedure. According to the cur-

rent knowledge, it seems impossible to formulate these models for the different quantities in

building acoustics. Therefore, to determine the uncertainty of building acoustics measure-

ments, concepts as repeatability and reproducibility are needed. Repeatability (of results of

measurements) is the closeness of the agreement between the results of successive measure-

ments of the same measurand carried out under the same conditions of measurement. In

statistical language, repeatability is quantified by the within-laboratory standard deviation.

Reproducibility (of results of measurements) is the closeness of the agreement between the

results of measurements of the same measurand carried out under changed conditions of

measurement, quantified by the sum of the within-laboratory and of the between-laboratory

variances, under square root. The best way to study the repeatability and reproducibility

of building acoustics field measurements is to carry out a Round Robin Test (RRT), which

consists of several independent measurements performed by different laboratories.

Each single measurement is summarized by an acoustic index, which is assumed as the

response of a one-way random effects model. The general mean of all measurements provides

an estimate of a reference value for this index, whereas the repeatability and reproducibility

arrors are estimated by the usual formulae involving the within and between laboratory

sums of squares. As pointed out by Scrosati et al.,4 the uncertainty of field measurements,
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particularly in façade sound insulation, has not been investigated comprehensively in the

past. In this work, we examine the information contained in the measurement in a more

general approach, instead of analysing single-index summaries.

Each RRT measurement yields a value for each one of the 21 given frequency bands. And

provides a discrete sampling from a function defined on frequencies domain. Therefore,

because the data are functions (of the frequency), we utilize the Functional Data Analysis

(FDA), as a suitable statistical framework. The FDA, firstly introduced by Ramsay and

Silverman, defines a branch of statistics which has been receiving increasing interest in the

last years. Functional data analysis is closely related to multivariate data analysis because

it deals with highly multivariate objects. However, FDA mainly differs from multivariate

data analysis for the intrinsic order of the observations, which can be related to time, space,

as for time series or images, or frequency, which is our case. It regards data that are records

of values reflecting a smooth variation so that their sampling intervals could be as small as

desired. It is therefore natural to assume the existence of smooth functions (functional data)

giving rise to the observed data. For an overview of the topic, see the two monographs by

Ramsay and Silverman5,6 and citations provided therein.

Two general areas can be considered in the framework of FDA: functional linear models,

which include Functional ANalysis Of VAriance (FANOVA) and Functional Principal Com-

ponent Analysis (FPCA). FANOVA is useful when a natural hierarchy of units is present

in order to obtain functional decomposition. A rich collection of inferential methods for

functional linear models can be found in the statistical literature, as a result of a rele-

vant methodological research effort. For instance, Brumback and Rice7 introduce smoothing

spline models for nested and crossed curves, Guo8 discusses functional mixed effects mod-

els, Morris et al.9,10 propose Bayesian wavelets models, Bigelow and Dunson11 introduce

Bayesian adaptive regression splines, Baladandayuthapani et al.12 analyze Bayesian models

for spatially correlated functional data.

FPCA is aimed to identify the most important modes of variation in the data and it can

also be useful for dimensional reduction. In a nutshell, a suitable orthogonal basis is built

so that the coordinates of each functional datum represent the amount of variation in the

functional principal directions. For further details about FPCA, see Ramsay and Dalzell,13
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Silverman,14 James et al.,15 Yao et al.,16 and also Hall and Hosseini–Nasab,17 besides Ramsay

and Silverman.6

Both these two general areas provide appropriate tools to fit the acoustic data in this paper.

In particular, we expect higher variability on some sub–spectra of the frequency. As known

in the engineering literature, acoustic indexes usually show the higher variability at the lower

frequencies, high variability is also expected at some other specific frequency bands, due to

the framework of the experiment (i.e. some particular features of the experimental building).

FPCA is suitable to capture this behaviour. On the other hand, our data are characterized

by a natural hierarchy due to RRT, which makes the FANOVA the routine choice. In fact,

FANOVA can decompose the total covariance into the within laboratory and the between

laboratory covariance. In this way, one can analyze reproducibility and repeatability as

generally done in the engineering literature, but in a functional framework. In ligth of these

considerations, a model is needed that is capable of tackling both aspects of the data. Such

model should extend the classical FDA to the multilevel functional data analysis. This need

has motivated a number of paper. See, for instance, Baladandayuthapani et al.,12 Di et al.,18

Guo,8 Morris et al.,9 Morris and Carroll,10 Crainiceanu et al,19 Staicu et al.20

Here, following Di et al.,18 a Bayesian Multilevel Functional Principal Component Analysis

(MFPCA) is implemented (see also Crainiceanu and Goldsmith21). Indeed, as argued by

Crainiceanu and Goldsmith,21 Bayesian analysis is particularly appropriate when dealing

with mixed models representations. Moreover, Bayesian simulation algorithms work very

well in the context of FDA due to the orthogonality of the principal components and the

possibility to reduce the computational effort by using a Gibbs sampler (carried out within

JAGS22) to obtain posterior statistics.

Finally, the MFPCA is also used to rank the laboratories according to their estimated per-

formances. Such performances are represented by the laboratory–specific mean functions.

In particular, the depth concept is used to order curves from the center outwards. In this

paper, the modified band depth of Lopez-Pintado and Romo23 is generalized into a proba-

bilistic setting to obtain a population version. The probabilistic modified band depth is then

used to compute the functional p–th central region introduced by Sun and Genton.24 To the

best of our knowledge, there exists only a sample version of the modified band depth; the

4



population version is needed for the posterior of the depths of the laboratory–specific means

to be well defined and computed in a Bayesian framework. Moreover, depth is also used to

define the credible posterior bounds of the functional parameters of interest.

The outline of this paper is as follows: Section 2 describes the data; Section 3 and 4 introduce

FPCA and MFPCA, respectively; Section 5 deals with functional depths; Section 6 reports

the data analysis; Section 7 presents the robustness analysis; Section 8 compares the point

and functional approaches; Section 9 draws the conclusions of the analysis.

2 Acoustic data

The RRT was carried out by nine teams on an existing experimental building located at ITC-

CNR headquarters, made of prefabricated concrete panels. The tested building element is

a prefabricated concrete façade with a 4 mm single glazing wood-aluminium frame window

with a medium density fibreboard (MDF) shutter box. The façade is situated at the first

floor and has a surface of 8.6 m2. The receiving room is a rectangular room of 54.5 m3

volume.

Each team measured the standardised level difference of façade D2m,nT, which is the level

difference in decibels corresponding to a reference value of the reverberation time in the

receiving room. The level difference is the difference (in decibels) between the outdoor

sound pressure level 2m in front of the façade and the pressure level in the receiving room,

averaged over time and space.

Each team was coordinated by ITC-CNR, but used its own procedures and equipment.

However, a laboratory that showed a significant presence of stragglers and outliers in a

previous analysis4 was excluded.

Therefore the data consist of forty measurements of D2m,nT: five measurements performed

by each one of the eight certified teams involved in the RRT. Each measurement can be

considered as the discretization of a function on the interval [50 Hz, 5000 Hz] (Fig. 1). In

particular, 21 values at the 21 one-third/octave bands are taken (i.e., 50; 63; 80; 100; 125;

160; 200; 250; 315; 400; 500; 630; 800; 1000; 1250; 1600; 2000; 2500; 3150; 4000; 5000). In

other words, these measureaments are regarded as multilevel functional data, constituting
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one of the motivations for multilevel principal component analysis already mentioned in the

introduction.

3 Introduction to functional principal component ana-

lysis

To be self–contained, we now recall the mathematical theory on which the statistical models

used in this paper are based. The mathematical basis for functional principal component

analysis consists of two important results in functional analysis: Mercer’s representation

theorem and Karhunen–Loève expansion. Let I be a closed interval in R. Recall that L2(I)

is the space of Lebesgue square–integrable functions on I, i.e. of all functions f on I such

that
∫
f(x)2dx exists and is finite. Moreover, L2(I) is a Hilbert space with inner product

〈f, g〉 =
∫
f(t)g(t)dt, and norm ‖f‖ =

∫
I
|f(t)|2 dt. Let X = {X(t) : t ∈ I} be a random

element of L2(I) such that

E{‖X‖2} = E
{∫

I

X2(t)dt

}
<∞.

Moreover let µ(t) = E{X(t)} and K(s, t) = Cov{X(s), X(t)}, t, s ∈ I, be the mean function

and the covariance function, respectively. The covariance operator C is defined as:

C(f)(t) = E{〈X − µ, f〉(X(t)− µ(t))}

=

∫
I

K(s, t)f(s)ds,

for every function f in L2(I) and t ∈ I. By Mercer’s theorem, the following spectral decom-

position of the covariance function holds true:

K(s, t) =
∑∞

k=1 λkϕk(s)ϕk(t), (1)

where ϕk are the eigenfunctions of C and λ1 ≥ λ2 ≥ . . . the corresponding eigenvalues, i.e.

the φk’s are orthonormal functions in L2 such that C(ϕk) = λkϕk, for k ≥ 1. The functions

ϕk’s are the principal components of X. Indeed, (1) is equivalent to:

C(f)(t) =

∫
(
∑∞

k=1 λkϕk(s)ϕk(t)) f(s)ds =
∞∑
k=1

λk

(∫
f(s)ϕk(s)ds

)
ϕk(t).
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The following is the Karhunen–Loève representation for the random element X:

X(t) = µ(t) +
∞∑
k=1

ξkϕk(t), (2)

where

ξk =

∫
{X(t)− µ(t)}ϕk(t)dt (3)

are zero–mean uncorrelated random variables such that Var(ξk) = λk, k ≥ 1, which are

called principal components scores. The Karhunen–Loève representation (2) entails that:∫
Var{X(t)}dt =

∑
k≥1

Var(ξk) =
∑
k≥1

λk.

4 Multilevel functional principal component analysis

The multilevel functional principal component analysis, firstly introduced by Di et al.,18

refers to the following functional random effects model:

Xi,j(t) = µ(t) + Zi(t) +Wi,j(t),

where Xi,j(t) is the j-th measurement of the i-th laboratory related to the t Hz frequency,

for i ∈ {1, . . . , 8}, j ∈ {1, . . . , 5}, t ranges in the interval [50 Hz, 5000 Hz], µ(t) is the overall

mean function, Zi(t) is the laboratory–specific deviation from the mean, and Wi,j(t) is the

residual laboratory– and measurement–specific deviation from the laboratory–specific mean.

The random processes (Zi(t))t, (Wl,j(t))t are mean–zero pairwise uncorrelated processes, for

i, l ∈ {1, . . . , 8}, j ∈ {1, . . . , 5}. Let KT (t, s) = Cov(Xi,j(t), Xi,j(s)) be the total covariance,

KB(t, s) = Cov(Zi(t), Zi(s)) the between covariance and KW (t, s) = Cov(Wi,j(t),Wi,j(s))

the within covariance. Of course, KT (t, s) = KB(t, s) +KW (t, s).

Level-one φ
(1)
k (t) and level–two φ

(2)
l (t) principal components are the eigenfunctions that arise

from the spectral decomposition of the between covariance function:

KB(s, t) =
∑∞

k=1 λ
(1)
k ϕ

(1)
k (s)ϕ

(1)
k (t),

and the within covariance function:

KW (s, t) =
∑∞

l=1 λ
(2)
l ϕ

(2)
l (s)ϕ

(2)
l (t),
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where λ
(1)
k and λ

(2)
l , k, l ≥ 1 are level–one and level–two eigenvalues, respectively. Note that

{ϕ(1)
k : k ≥ 1}, {ϕ(2)

l : l ≥ 1} are orthonormal bases in L2(T ), but are not required to be

mutually orthogonal.

The Karhunen-Loève expansions of the functions Zi and Wi,j are:

Zi(t) =
∞∑
k=1

ξi,kϕ
(1)
k (t), Wi,j(t) =

∞∑
l=1

ζi,j,lϕ
(2)
l (t), (4)

for i ∈ {1, . . . , 8}, j ∈ {1, . . . , 5}. The corresponding eigenvalues are denoted by λ
(1)
k and

λ
(2)
l , k, l ≥ 1. Level–one and level–two principal component scores are ξi,k =

∫
φ
(1)
k (t)Zi(t)dt

and ζi,j,l =
∫
φ
(2)
l (t)Wi,j(t)dt, respectively. Recall that Var(ξi,k) = λ

(1)
k and Var(ζi,j,l) = λ

(2)
l ,

for every i, j, k, l. Moreover,∫
Var(Xi,j(t))dt =

∑
k≥1 λ

(1)
k +

∑
l≥1 λ

(2)
l ,

for every i, j. For each k and l, the proportions of the variance explained by the k–th level–one

and the l–th level–two principal component are λ
(1)
k /

∑
k≥1 λ

(1)
k and λ

(2)
l /

∑
l≥1 λ

(2)
l , respec-

tively. A natural measure of the variance explained by the between laboratories variability

is the ratio: ∫
Var(Zi(t))dt∫

Var(Zi(t))dt+
∫

Var(Wi,j(t))dt
=

∑
k≥1 λ

(1)
k∑

k≥1 λ
(1)
k +

∑
l≥1 λ

(2)
l

, (5)

which is called functional intra–cluster correlation. Indeed, it measures how measurements

made in the same laboratory are close to each other. Such value can be easily estimated

plugging in the estimated values of the eigenvalues.

Denoting the observed data by Yi,j(t) and introducing an uncorrelated noise component, as

in Di et al.,18 we assume that

Yi,j(t) = Xi,j(t) + εi,j(t)

holds, where εi,j(t) is a white noise process with variance σ2. The covariance functions are

then defined as follows:

GT (t, s) = Cov(Yi,j(t), Yi,j(s)),

GB(t, s) = Cov(Yi,j(t), Yi,k(s)).
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Hence

GT (t, s) = KT (t, s) + σ2I{t=s}(t, s),

GB(t, s) = KB(t, s).

At this stage, without underlying the minor differences with the approach of Di et al.,18 the

details of our procedure are summarized in the following steps:

1. By penalized spline smoothing, we obtain the estimate µ̂(t) for µ(t);

2. We obtain the estimates ĜT (ts, tr), ĜB(ts, tr) by the methods of moments, for s, r =

1, . . . , 21, being t1, . . . , t21 the one-third/octave bands frequencies;

3. We obtain the estimate K̂B(t, s) by smoothing ĜB(ts, tr) (we fit semiparametric regres-

sion models using the mixed model representation of penalized splines via the SemiPar

package of the R software);

4. We obtain the estimate K̂T (t, s) by smoothing ĜT (ts, tr) (as in the previous step) for

ts 6= tr, i.e. dropping diagonal elements;

5. We obtain the estimate K̂W (t, s) = K̂T (t, s)− K̂B(t, s);

6. We use eigenanalysis on K̂B(t, s) to obtain ϕ̂
(1)
k (t), and λ̂

(1)
k (this is done by computing

eigenvectors and eigenvalues of the matrix obtained evaluating K̂B(t, s) on a fine grid);

7. Similarly, we use eigenanalysis on K̂W (t, s) to obtain ϕ̂
(2)
l (t) and λ̂

(2)
l (remark: since

K̂W is obtained by difference, it cannot be positive definite; we handle this problem

by trimming eigenvalue–eigenvector pairs with negative eigenvalue – see, for instance,

Hall25).

Then, we select K1 level–one principal components to keep as follows

K1 = min{k : ρk ≥ 0.99, λ̂
(1)
k < 1/21}, (6)

where

ρk =
∑k

h=1 λ̂
(1)
h /

∑
h≥1 λ̂

(1)
h .
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In the same way, we employ λ̂
(2)
l to calculate the number K2 of level–two principal compo-

nents to keep.

Recall that {ϕ(1)
k : k ≥ 1}, {ϕ(2)

l : l ≥ 1} are not required to be mutually orthogonal. This

makes the score estimation more difficult for the multilevel model than for the basic model

introduced in Section 3. The latter model allows for a straightforward estimation of scores

on the basis of (3) simply by approximating the integral:∫
{Xi(t)− µ̂(t)}ϕ̂k(t)dt

where ϕ̂k(t), k = 1, . . . , K, are the estimated principal components. In the multilevel model,

eigenvalues are functionals of the processes Zi(t) and Wi,j(t), as derived after (4), which are

not directly observed.

To estimate eigenvalues and scores we employ the following Bayesian model:

Yi,j(t) = µ(t) +

K1∑
k=1

ξi,kϕ
(1)
k (t) +

K2∑
l=1

ζi,j,lϕ
(2)
l (t) + εi,j(t),

where µ(t), ϕ
(1)
k (t) and ϕ

(2)
l (t) are substituted by the previously derived estimates µ̂(t), ϕ̂

(1)
k (t)

and ϕ̂
(2)
l (t) and t ranges in the experimental set of the one-third/octave bands frequencies,

i.e., {t1, . . . , t21}. The marginal prior of the vector of parameters is assessed according to

the following conditionally independent hierarchical model, where the symbol ⊥⊥ denotes

independence:

ξi,k | Λ(1)
k

iid∼ N(0,Λ
(1)
k ) ⊥⊥ ζi,j,l | Λ(2)

l

iid∼ N(0,Λ
(2)
l ),

i = 1, . . . , 8; k = 1, . . . , K1; j = 1, . . . , 5; l = 1, . . . , K2;

Λ
(1)
k

iid∼ inv–gamma(α1,k, β1,k) ⊥⊥ Λ
(2)
l

iid∼ inv–gamma(α2,l, β2,l),

k = 1, . . . , K1; l = 1 . . . K2.

εij(t) | σ2 iid∼ N(0, σ2), t = t1, . . . , t21; i = 1, . . . , 8; j = 1, . . . , 5;

σ2 ∼ inv–gamma(α3, β3).

(7)

The Bayesian model is fully specified by suitable choice of the hyperparametes, here we fixed:

α1,k = (λ̂
(1)
k )2/σ2

λ + 2, β1,k = λ̂
(1)
k · ((λ̂

(1)
k )2/σ2

λ + 1),

α2,l = (λ̂
(2)
l )2/σ2

λ + 2, β2,l = λ̂
(2)
l · ((λ̂

(2)
l )2/σ2

λ + 1),
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while α3 and β3 are chosen to fix a large prior variance for σ2 (non–informative prior).

Under this setting, the prior means of the hyperparameters Λ
(1)
k and Λ

(2)
l are equal to the

obtained eigenvalues of the between and within covariance functions, i.e. λ̂
(1)
k and λ̂

(2)
l ,

k = 1, . . . , K1, l = 1, . . . , K2, and their prior variance is σ2
λ. The posterior distribution

of (Λ
(1)
1 , . . . ,Λ

(1)
K1
,Λ

(2)
1 , . . . ,Λ

(2)
K2

) induces a posterior on KB(s, t) and KW (s, t) through the

truncated spectral representation (1), having fixed the eigenfunctions as ϕ̂
(1)
k , k = 1, . . . , K1,

and ϕ̂
(2)
l , l = 1, . . . , K2. In the following, when we use the Bayesian estimates (the poste-

rior means) λ̃
(1)
k and λ̃

(2)
l , these will be legitimately called the eigenvalues of the estimated

covariance operators identified by equation (10).

5 Functional depths

To rank functional data, functional depths have been introduced as measures of centrality

(see for instance Fraiman and Muniz,26 Lopez-Pintado and Romo,23 Sun and Genton24).

Among them, we refer in particular to the modified band depth, which has been introduced

by Lopez-Pintado and Romo23 and also studied by Sun and Genton.24 The basic idea is

based on a graphical approach. The band B(y1, y2) delimited in I × R by the two given

curves y1(t) and y2(t) is defined as {(t, y(t)) : min{y1(t), y2(t)} ≤ y(t) ≤ max{y1(t), y2(t)}}.

Given a random curve, i.e. a stochastic process, Y (t), the band depth for a given curve y(t)

is P ({(t, y(t)) : t ∈ I} ⊂ B(Y1, Y2)), where Y1(t) and Y2(t) are two independent copies of

the stochastic process Y (t) generating the observations y1(t), . . . , yN(t). Here, we consider

a more flexible definition based on the proportion of the domain I where a curve y(t) is in

the band. Formally, we consider the set:

A(y; y1, y2) = {t ∈ I : min{y1(t), y2(t)} ≤ y(t) ≤ max{y1(t), y2(t)}}.

Hence, the modified band depth for a given curve y(t) can now be defined as:

MBD(y) = E
(
λ(A(y;Y1, Y2))

λ(I)

)
, (8)

where λ is the Lebesgue measure. Letting T be an uniform random variable on I independent

of Y (t), (8) becomes:

MBD(y) = P (min{Y1(T ), Y2(T )} ≤ y(T ) ≤ max{Y1(T ), Y2(T )}).
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The depth defined by (8) is the probabilistic generalization of the sample modified band

depth introduced by Lopez–Pintado and Romo,23 which is:

MBDN(y) =
2

N(N − 1)

∑
1≤i1<i2≤N

λ(A(y; yi1 , yi2))

λ(I)
.

Through functional depths, Sun and Genton24 generalize the concepts of quantiles, interquan-

tile range to the functional data setting. Moreover, they introduce the functional boxplot

through the concept of central region introduced by Liu et al.27 The idea of Liu et al.27

about Euclidean spaces can be easily generalized to the functional setting as follows. Let us

define the p–th central region, for 0 < p < 1, as:

Cp = ∩t{R(t) : P (R(t)) ≥ p},

where R(t) = {y ∈ L2(I) : MBD(y) > t} is the region enclosed by the contour of depth t.

In other words, Cp is the smallest region enclosed by depth contours to amass probability p.

Sun and Genton24 use then the idea of Liu et al.27 to define the sample 50% central region

and to built functional boxplots. Given the observed curves, y1, . . . , yN , we can order them

on the basis of their depths y(1), . . . , y(N). So, y(1) is the deepest (most central) curve, which

is referred to as the median curve in the literature and y(N) is the most outlying curve. In

general, y(i) denotes the sample curve associated with the the i–th largest band depth value.

Hence, the sample p–th central region can be defined as as the band delimited by the most

central fraction p of the observed curves, that is:

CN,p =

{
(t, y(t)) : min

r=1,...,bNpc
y(r)(t) ≤ y(t) ≤ max

r=1,...,bNpc
y(r)(t)

}
, (9)

where bxc denotes the floor of x, i.e., the greatest integer smaller than or equal to x, for any

real x. If p = 1/2, one obtains the 50% central region, which is the band delimited by the

most deepest half of the observed curves. Such region is the analog to the “InterQuantile

Range” (IQR) and gives a useful indication of the spread of the central 50% region of the

curve.24 Moreover, as one could expect, it will be crucial to construct functional boxplots.

We point out that in order to define the 50% central region, the more intuitive choice of

simply calculating the quantiles pointwise should be avoided. In this way, the information

about the shape of the curves would be lost. The median curve, which can be obtained
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by joining the pointwise medians would be much more regular than and different from any

observed curve. Moreover, the central curves obtained from pointwise boxplots would be

narrower than those given by functional boxplots and fewer curves would be contained in

the central region. Functional depths treat each curve as one observation. Therefore, it can

be regarded as the most suitable approach in a functional data framework.

In our analysis, depths will be calculated to rank the estimated between effect functions and

the estimated within effect functions. Moreover, we shall build functional boxplots associated

with the posterior distribution of Zi(t), for each laboratory i = 1, . . . , 8.

6 Data analysis

In this section, we describe the results obtained by fitting the Bayesian model in (7) to the

acoustic data of Section 2.

We have estimated principal components and scores by the procedure described in Section 4,

by setting σ2
λ = 103 and the hyperparameters of the inverse–gamma distribution of σ2 to 2

and 10−3, respectively. In this way, we have obtained our smoothed data by means of the

Karhunen–Loève expansion. Figure 1 displays raw and smooth data (on the log scale as well

as all the other graphs in this paper). As expected, high variability is quite apparent at low

frequencies.

We have determined the number of level–one and level–two principal components to be

retained, as the minimum number of components which leaves a percentage of unexplained

variance smaller than 1/T , with T = 21. In other words, the number of grid points for each

curve achieves a cumulative percentage of explained variance greater than 99%, according

to (6). A further constraint on these numbers is that for each level, they must be greater

than or equal to four. We then obtained K1 = 6, K2 = 5, i.e., we have kept six components

for level–one and five for level–two. The scores have been estimated using the Bayesian

procedure described in Section 4.

The Bayesian estimate (posterior mean) of the intra-cluster correlation index (5) is 0.884.

In other words, 88.4% of variability is attributable to the laboratory level variability. This is

quite clear if we examine the Bayesian estimates of between, within and total variances (see
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Figure 1: Raw and smoothed data.

Fig. 2), obtained as the diagonals of the corresponding estimates of the covariance operators

G̃B(s, t) =

K1∑
k=1

λ̃
(1)
k ϕ̂

(1)
k (s)ϕ̂

(1)
k (t),

G̃W (s, t) =

K2∑
l=1

λ̃
(2)
l ϕ̂

(2)
l (s)ϕ̂

(2)
l (t) + σ̃2I{t=s},

G̃T (s, t) = G̃B(s, t) + G̃W (s, t),

(10)

where σ̃2 is the estimated nugget effect. The between variance is always equal or greater

than the within variance. Moreover, the between variance and the total variance have both

a local maximum at 1163.6 Hz. In the first analysis of this dataset (Scrosati et al.4), a

high between-laboratories variability was observed at the 1250 Hz one-third/octave band,

corresponding to the critical frequency of the shutter box. To the best of our knowlege, there

is only another work dealing with an RRT on façade sound insulation (Lang28). Scrosati et

al.4 compared their data with the one of this RRT and found a particular behavior of the

14



50 100 200 500 1000 2000 5000

0
5

10
15

Hz

G
~

T(t, t)
G
~

B(t, t)
G
~

W(t, t)

Figure 2: Between (red dashed line), within (blue dotted line) and total variance (black solid

line).

façade sound insulation RRTs that show higher variation in correspondence of the critical

and resonance frequencies of their components.

Figure 3 shows the estimates of the corresponding between and within correlation functions

G̃B(s, t) and G̃W (s, t). We observe that the within correlation is generally low while the

between correlation reaches higher values (> 0.8). These peaks, represented by the darkest

areas in the figure, are obtained around the diagonals and in the upper left and bottom right

corners. This shows that those laboratories that overestimate (underestimate) the D2m,nT

index at low frequencies behave similarly at high frequencies, as confirmed by the analysis

of the first level-one principal component.

Fig. 4 is a typical graph in functional data analysis: the first row displays the estimates of

the level-one principal components; the second row displays the population mean function

(solid line) and the functions obtained by adding (resp., subtracting) a suitable multiple of

the eigenfunctions from the mean, represented by the lines with the plus (resp., the minus)

symbol markers. More precisely, we have plotted the function µ̂(t) together with µ̂(t) +√
λ̃
(1)
k ϕ̂

(1)
k (t), µ̂(t)−

√
λ̃
(1)
k ϕ̂

(1)
k (t), for k = 1, . . . , K1. More than half (53,15 %) of the between
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Figure 3: Estimated between and within correlation functions (axis values are log–

frequencies).

laboratories variability is explained by the first principal component. This component is

negative over the whole frequency range, which indicates a shift of the laboratory–specific

mean, with respect to the general mean, in the same direction throughout. It reaches a

(negative) peak on the lowest frequencies whose magnitude is four times higher than any

other peak. This means that the greatest variability between laboratories will be found

by heavily weighting the lowest frequencies, with only a light contribution from the other

frequencies. In short, the quantity D2m,nT is more variable across laboratories on the lowest

frequencies.

From the acoustic point of view, a possible explanation for the high values at the lowest

frequencies (i.e. the 50, 63 and 80 Hz one-third/octave bands) could be found in the presence

of the normal vibration modes, which are orthogonal to the propagation direction of the

wave. For a room of the size of the receiving room, the analysis of these modes of vibration4

confirms that, at the first three one-third octave bands, the measured levels can be strongly

influenced by the microphone position.

The second level–one principal component has a negative peak at 69.13 Hz and two positive

ones at 159.03 Hz and 1110.97 Hz. The former is quite sharp. Therefore, laboratories
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Figure 4: Level-one principal components: estimated components (top row); effects of the

components on the overall mean (bottom row).

with an high score ξi,2 produce measures that are lower than the average at 69.13 Hz and

higher at 159.03 Hz and 1110.97 Hz. This type of variability explains the 16.23% of the

between laboratories variability mainly in the central part of the frequency spectrum as seen

in Figure 4.

The other level-one principal components have an oscillatory behaviour, which is difficult to

interpret. This is a problem that often arises in functional principal components analysis,

but has small relevance here, as the remaining components leave out a small percentage of

the variance.

For the level–two principal components, Fig. 5 shows little difference about the portion of

within-laboratory variability between the first (48.54%) and the second (37.56%) component.

The first one has effect only at low frequencies. In fact, it is close to zero for frequencies

greater than 155 Hz. Instead, the main effect of the second one regards frequencies from
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Figure 5: Level-two principal components: estimated components (top row); effects of the

components on the overall mean (bottom row).

about 85.14 Hz to 1247.25 Hz and from about 1848.46 Hz to 3876.3 Hz, accounting for a

deviation of the single measurement from the laboratory–specific mean in the same direction.

The remaining components (the third one displayed in the figure, but also the fourth and the

fifth) again exhibit an oscillatory behaviour that is difficult to interpret, but, on the other

hand, account for a small proportion of the within–laboratory variability, and therefore their

interpretation is not a concern.

Let us now look at the posterior distributions of level-one principal component scores, which

have been estimated by our Bayesian model. Fig. 6 displays the boxplots of the posterior

distribution of the scores. Let us recall that these scores express the weight given by the

level-one principal components to each laboratory, with the first component staying away

from zero especially at low frequencies. The first principal component score provides a way

to rank laboratory performances at low frequencies, by highligthing what laboratories result
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less accurate in their measurements because they show a larger discrepancy from the general

mean. We can see that lab 3 has a negative first principal component score, which is the

highest in absolute value. Therefore, we expect that for this laboratory measured values

are much higher than the general mean at the lowest frequencies. In other words, lab 3

seems to be responsible of the worst systematical error, with a tendency to overestimate

D2m,nT . For the same reason laboratories lab 4 and lab 7 overestimate the quantity on the

low frequencies. On the contrary, lab 5, lab 6 and lab 8 generally underestimate the quantity

on such frequencies. Laboratories with smallest scores in absolute values, such as lab 1 and

lab 2 are able to provide more accurate measureaments for the low frequencies than the other

laboratories. These conclusions are confirmed by the plot of the posterior pointwise means

of the functions Zi that are the Bayesian estimates denoted by Z̃i, i = 1, . . . , 8 (Fig. 7).

Compare for instance lab 1 and lab 3 to other ones at the lowest frequencies.
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Figure 6: Posterior boxplot of the level-one scores: ξi,1 (left), ξi,2 (middle), ξi,3 (right),

i = 1, . . . , 8.

In Fig. 7, we have also obtained functional boxplots related to the posterior distributions of

the deviation of the laboratory specific–means from the general mean. For each laboratory

i = 1, . . . , 8, our aim is to estimate the p–th central region Cp as defined in Section 5, where

Y (t) is replaced by Zi(t) with its posterior distribution. To this aim, we compute CN,0.5 by

(9), where the observations y1, . . . , yN are the MCMC sample from the posterior distribution

of Zi(t). In this way, we obtain, for each laboratory i = 1, . . . , 8, the measure of the area

between the dashed lines, which is the 50% credible band of Zi(t). The border of the 50%

central region is defined as the envelope representing the box in the classical boxplot. The
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most external dotted lines are equivalent to the “whiskers” in the classical boxplot, obtained

by inflating the envelope of the 50% central region 1.5 times its range. The points in Fig. 7

are the observed deviations of the laboratory–specific means from the general mean.

Functional boxplots confirm what we have already observed, looking at level–one scores,

about the variability at the low frequencies. For instance, lab 3 and 5 deviate from the

general mean noticeably. In particular, lab 3 upwards, lab 5 downwards, whereas lab 1 and

2 are the closest ones to the mean. Looking at Fig. 7, one can assess that performance of

Z6(t) does not deviate significantly from zero. Nevertheless, Z6(t) does not fit quite well the

points representing the observed deviations from the mean due to a high internal variability.
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Figure 7: Functional boxplot summarizing the posterior distributions of the laboratory de-

viations from the overall mean.

One of the main goals of this paper is to rank the global performances of the laboratories.

To this aim, the smaller the laboratory–specific mean deviation Zi(t), the better the perfor-
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mance. Since these quantities are functions, we rank laboratories by the estimated depths

of the Zi’s, as described in Section 5. The greater the depth the more central the curve.

Fig. 8 summarizes the posterior distribution of depth for each laboratory. The specific mean
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Figure 8: Boxplot summarizing the posterior distribution of depth for each laboratory–

specific mean.

deviation of lab 1 is the most central. This optimality comes out considering not only the

posterior median of the depths but also the whole posterior distribution summarized through

the boxplot. It is interesting to note that lab 1 is the laboratory who used the rotating mi-

crophone boom for the measurament of the space and time averaged pressure level in the

receiving room, while all the other laboratories used fixed microphones positions.

We can also use depths to compare measurements on the basis of their within laboratory

variability. Hence, we have computed the depths of W̃i,j(Table 1). All measurements of lab 6

have the lowest depth. Hence, lab 6 has the highest within variability. This confirms our

comment about the fitting of Z̃6(t) while discussing Fig. 7.
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Lab 6 6 6 6 6 3 2 5 8 2

0.0989 0.1307 0.1441 0.1548 0.2078 0.2488 0.2656 0.2963 0.3149 0.3224

Lab 8 7 3 1 5 4 5 3 5 8

0.3281 0.3395 0.3402 0.3436 0.3450 0.3499 0.3508 0.3526 0.3527 0.3579

Lab 2 7 2 1 3 8 3 4 1 5

0.3639 0.3751 0.3880 0.3902 0.3997 0.4125 0.4174 0.4298 0.4386 0.4656

Lab 7 2 4 7 4 4 1 7 8 1

0.4659 0.4723 0.4768 0.4790 0.4876 0.4914 0.5110 0.5148 0.5177 0.5246

Table 1: Depths of each W̃i,j, i.e., each estimated deviation from the laboratory–specific

mean.

7 Robustness analysis

When we set up the Bayesian regression model introduced at the end of Section 4, one

critical choice is the prior distribution for the mixed effect variances λ̃
(1)
k and λ̃

(2)
l . The

natural choice for the prior means are the eigenvalues of the covariance functions computed

as reported in Section 4 (points 6 and 7) while no prior information is available on the

variance σ2
λ. To deal with this lack of information, we have conducted a robustness analysis,

comparing the different estimates for level–one and level–two eigenvalues obtained as σ2
λ

varies in {10j, j = 1, . . . , 4}. Table 2 reports the eigenvalues of the between covariance

matrix together with the mean and the median of the posterior distributions of λ
(1)
k , for

k = 1, . . . , K1, for each one of the four different values of σ2
λ. Our estimates for the λ

(1)
k ’s

are quite robust. Nevertheless, as the hyperparameter σ2
λ increases, for each k, the posterior

mean and the posterior median slightly increases and so does the difference between the

two, with a tendency to a positive skew (i.e. to a longer tail on the right) for the posterior

distribution of λ
(1)
k .

The estimates obtained for level–two eigenvalues can be found in Table 3. Here, we have

disagreement between our Bayesian estimates and the empirical estimates based on the

within covariance matrix. Indeed, according to the Bayesian model, the biggest eigenvalue

is the one associated with ϕ̂
(2)
2 (t), regardless of the choice of the hyperparameters.
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1 2 3 4 5 6

λ̂
(1)
k 298.973 81.562 50.765 45.135 20.438 5.842

σ2
λ = 101

mean 299.035 81.662 50.911 45.622 21.727 6.278

median 299.111 81.617 50.771 45.458 21.431 5.724

σ2
λ = 102

mean 299.035 81.662 50.911 45.622 21.727 6.278

median 299.111 81.617 50.771 45.458 21.431 5.724

σ2
λ = 103

mean 300.158 88.190 56.114 60.513 32.012 6.526

median 297.947 83.983 52.455 54.858 28.949 5.714

σ2
λ = 104

mean 309.208 92.583 58.752 66.386 32.054 6.590

median 294.639 82.934 51.987 59.180 28.396 5.567

Table 2: Estimated level–one eigenvalues varying the hyperparameter σ2
λ.

As a final comment on this robustness analysis, we believe that the posterior estimates are

quite stable and the prior setting does not substantially affect the statistical findings. We

have reported in Section 6 the results obtained by σ2
λ = 103, being this value an usual choice

for vague priors.

8 Comparison between the pointwise and the func-

tional approaches

The study of the observation variability is the main goal of this analysis by taking into

account the hierarchical structure of the data. The pratical properties of interest for engineers

are usually the repeatability and reproducibility errors. The main aspect of the analysis

conducted here is to consider the data as functional while the random effect regression model

is usually fitted pointwise (i.e. at each frequency band, see for instance Scamoni et al.2).

Clearly, the pointwise analysis is quite simple, but some information is lost. In fact, in the

pointwise case, the frequency dependency of the response variable D2m,nT (t) is overlooked.

To demonstrate this, we have estimated a Bayesian random effect model for each frequency,

assuming independence between observations at different frequencies. In particular, for each
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1 2 3 4 5

λ̃
(2)
k 20.251 18.425 1.481 1.147 0.267

σ2
λ = 101

mean 21.832 22.654 7.368 2.014 0.179

median 21.520 22.380 7.015 1.535 0.139

σ2
λ = 102

mean 21.832 22.654 7.368 2.014 0.179

median 21.520 22.380 7.015 1.535 0.139

σ2
λ = 103

mean 26.571 34.341 7.606 2.052 0.174

median 25.487 32.713 7.233 1.572 0.135

σ2
λ = 104

mean 26.853 34.935 7.625 1.966 0.176

median 25.838 33.602 7.263 1.485 0.136

Table 3: Estimated level–two eigenvalues varying the hyperparameter σ2
λ

frequency t in {50, 63, . . . , 5000}, we have fitted the following model:

Yij(t) = µ0(t) + γi(t) + εij(t), i = 1, . . . , 8, j = 1, . . . , 5

γ1(t) . . . γ8(t) | σ2
γ(t)

iid∼ N(0, σ2
γ(t))

εij(t) | σ2
ε(t)

iid∼ N(0, σ2
ε(t))

µ0(t) ∼ N(0, 1000)

σ2
γ(t) ∼ inv–gamma(2, 0.1), σ2

ε(t) ∼ inv–gamma(2, 0.001).

The choice of priors is standard and represents vague prior information (see Gelman29).

The posterior pointwise estimations of the random effects γi are reported in Table 4. The

posterior credible bands under the functional analysis are smaller than the pointwise ones.

Indeed, by taking into account the frequency dependence, we obtain a more precise posterior

estimation.

Moreover, we can compare estimates of σ2
γ(t) with G̃B(t, t) and σ2

γ(t) + σ2
ε(t) with G̃T (t, t).

We do not report any pointwise estimate for brevity, while the functional counterparts are

depicted in Fig. 2. We mention that estimates are similar almost on the whole frequency

spectrum, apart from the 50 Hz frequency, where the pointwise estimates are much smaller

than the functional ones. Consequently, in the pointwise analysis we observe a sharp increase

of the estimated variances from 50 Hz to 63 Hz. This behaviour, which is difficult to interpret
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from an engineering point of view,4 is mitigated by the smoothing effect of the functional

framework.

9 Conclusions

In this paper, we have analyzed data coming from a RRT experiment conducted at ITC–

CNR. Firstly we aimed at the identification of those frequencies at which measurements are

more variable and at a decomposition of the total variance reflecting the hierarchical nature

of the data. An important achievement is the capability of the proposed model of ranking the

measurement perfomances of the laboratories, by taking into account the behaviour at low

frequencies (high varibility) and the global perfomance. To rank laboratories according to

the accuracy of their measurement at low frequencies we have considered the posterior of the

scores of the first principal component at level–one (i.e. laboratory level), while the global

performance has been evaluated according to the centrality of the estimated laboratory–

specific deviation from the general mean, Z̃i(t). A natural tool to measure the centrality of

the curves is the band depth. We have briefly discussed the probabilistic setting of the MBD

depth and used this tool to achieve our ranking goal.

In the recent literature, there are several papers dealing with multilevel regression functional

models. Among the others, we have seen the model proposed by Di et al.18 fit to our aims.

To make our exposition self–contained, we have briefly reviewed the model and we have

explained in details our estimation procedure. All the analysis has been conducted using the

R30 software and JAGS22 when needed. Our model fits the data very well and it has proven

an appropriate tool for our goals.

We have found several benefits using a functional approach: the estimated functional correla-

tions among measuraments at different frequencies has provided additional insights into the

data; the principal functional decomposition of the variance at both levels of the hierarchy

matches the assumptions of the engineers on the functional directions of higher variability;

the functional estimation of the random effects are more precise. In addition, the model is

quite robust with respect to the hyperparameters of the scores priors.

From an acoustic point of view, the analyses illustrated in the paper has led to the following
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findings. The first principal component, both for the first and the second level, reflects

the low frequencies variability (from 50 to 100 Hz). Indeed, they both take high values (in

absolute value) between 50 and 100 Hz, while they take values not far from zero at frequencies

greater than 100 Hz. For each level, the first component explains a high percentage of the

variability (55.23% for level–one and 48.54% for level–two). We have also been able to

evaluate the proportion of the total variability due to the frequencies between 50 Hz and

100 Hz, by using the estimated intra–cluster correlation (88.4%). This can be determined

at about 54%, derived as 55.23% · 0.884 + 48.54% · (1− 0.884) = 54.45%.

It has also been shown that the best laboratory (i.e. the laboratory with the most cen-

tral mean on the basis of the MBD depth) is laboratory 1, that is the laboratory where

the rotating microphone boom was used for the measurement of the space and time aver-

aged pressure level in the receiving room, while all the other laboratories used the fixed

microphones positions.

Finally, it has been found that a laboratory which tends to overestimate D2m,nT at low

frequencies will overestimate this index also at high frequencies and vice versa.
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