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Abstract
Over the last decades, several independent lines of research in morphology have ques-
tioned the hypothesis of a direct correspondence between sublexical units and their
mental correlates. Word and paradigm models of morphology shifted the fundamen-
tal part-whole relation in an inflection system onto the relation between individual
inflected word forms and inflectional paradigms. In turn, the use of artificial neural
networks of densely interconnected parallel processing nodes for morphology learn-
ing marked a radical departure from a morpheme-based view of the mental lexicon.
Lately, in computational models of Discriminative Learning, a network architecture
has been combined with an uncertainty reducing mechanism that dispenses with the
need for a one-to-one association between formal contrasts and meanings, leading to
the dissolution of a discrete notion of the morpheme.

The paper capitalises on these converging lines of development to offer a unifying
information-theoretical, simulation-based analysis of the costs incurred in process-
ing (ir)regularly inflected forms belonging to the verb systems of English, German,
French, Spanish and Italian. Using Temporal Self-Organising Maps as a computa-
tional model of lexical storage and access, we show that a discriminative, recur-
rent neural network, based on Rescorla-Wagner’s equations, can replicate speakers’
exquisite sensitivity to widespread effects of word frequency, paradigm entropy and
morphological (ir)regularity in lexical processing. The evidence suggests an explana-
tory hypothesis linking Word and paradigm morphology with principles of informa-
tion theory and human perception of morphological structure. According to this hy-
pothesis, the ways more or less regularly inflected words are structured in the mental
lexicon are more related to a reduction in processing uncertainty and maximisation
of predictive efficiency than to economy of storage.
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1 Introduction

In the wake of the so-called “cognitive revolution” (Miller, 2003), many influential
language models have been assuming a direct correspondence between linguistic
constructs and mental correlates (Clahsen, 2006). In morphology, the assumption was
popularised by Pinker and colleagues’ Words and Rules theory (Marcus et al., 1995;
Pinker, 1999; Pinker & Ullman, 2002; Prasada & Pinker, 1993), where the tradi-
tional distinction between regular and irregular inflection is accounted for by a dual
mechanism for lexical access. Regulars are recognised (and produced) through the
rule-based assembly/disassembly of morphemes, while irregulars are simply stored
and accessed as full forms – in line with a categorical view of the grammar vs. lexicon
dichotomy.

Pinker’s theory resonated well with the American post-Bloomfieldian concep-
tion of the mental lexicon as an enumerative, redundancy free repository of atomic
(sub)lexical units (see Blevins, 2016; Goldsmith & Laks, 2019; Matthews, 1993, for
extensive historical overviews). According to this view, lexical knowledge interacts
with processing rules in a one-way, top-down fashion, providing declarative, context-
free information that is fundamentally independent of rule-driven processing. Lexical
building blocks must be available as stored units before the processing of complex
words can set in. Likewise, rules exist independently of stored entries, in so far as
their working principles do not reflect the way lexical information is stored in the
mind. Matters of lexical representation (i.e. what information a lexical entry is ex-
pected to contain) are assumed to be independent of matters of processing (i.e. what
mechanisms are needed to store and access lexical information).

Over the last few decades, a growing body of evidence on the mechanisms gov-
erning lexical learning, access and processing has challenged models of word pro-
cessing based on such a dichotomized view of memory (the lexicon) and computa-
tion (lexical rules). A few relatively independent lines of research have called into
question the psychological and linguistic reality of morphemes (see Anderson, 1992;
Aronoff, 1994; Baayen et al., 2011; Blevins, 2003, 2006, 2016; Hay, 2001; Hay &
Baayen, 2005; Matthews, 1972, 1991; Stump, 2001, among others), suggesting a rad-
ical reconceptualisation of the regular-irregular dichotomy in morphology (Albright,
2002, 2009; Beard, 1977; Bybee, 1995; Corbett, 2011; Corbett et al., 2001; Herce,
2019). Accordingly, strictly compartmentalised lexical architectures have given way
to more integrative word learning systems (e.g. Baayen et al., 2011, 2019; Bybee
& McClelland, 2005; Daelemans & Van den Bosch, 2005; Elman, 2009; Marzi &
Pirrelli, 2015), whereby morphological knowledge is bootstrapped from full forms.

Underlying the development of such an integrative view of inflection is the as-
sumption that morphological knowledge develops from stored families of lexically
and inflectionally-related full forms, akin to paradigms in classical grammatical de-
scriptions (Blevins, 2016; Finkel & Stump, 2007; Matthews, 1972). In paradigms, full
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forms are not listed enumeratively, but are partially committed to memory through the
underlying implicational structure of paradigm cells (Ackerman & Malouf, 2013;
Bonami & Beniamine, 2016; Malouf, 2017). It is this structure that allows a speaker
to fill in an empty paradigm cell by extrapolating the evidence provided by other
known forms of the same paradigm (Ackerman et al., 2009).

Information-theoretical formalisations of the implicational structure of inflec-
tion paradigms have received considerable support from psycholinguistic evidence
(Bertram et al., 2000; Kuperman et al., 2010; Kostic et al., 2003; Milin et al., 2009a,b;
Moscoso del Prado Martín et al., 2004, to mention but a few). However, compara-
tively little effort has been put into modelling the relation between the paradigmatic
organisation of inflected forms into inflectionally-related families and the way speak-
ers process the same forms online. Models of word recognition have been analysed in
information-theoretical terms of uncertainty reduction (Baayen et al., 2007; Balling
& Baayen, 2008, 2012), and principles of Bayesian learning (Norris, 2006), but they
have been investigated independently of aspects of paradigmatic self-organisation.
Even recent computational models of lexical processing (Baayen et al., 2019) have
sidestepped the interdependence between online processing and offline representa-
tions, using n-gram-based graphs as the surface building blocks of the lexicon.

In our view, such a persisting neglect in the linguistic, psycholinguistic and com-
putational literature has prevented a full appraisal of the theoretical implications
of interactive lexical models for morphology, replicating (pace Hockett, 1954) the
post-Bloomfieldian dichotomy between lexical processes and (sub)lexical representa-
tions. The present contribution tries to address and, hopefully, start filling in this gap.
Here, we spell out the probabilistic and algorithmic foundations of a temporal, self-
organising neural network (a Temporal Self-organising Map, or TSOM) that learns to
store inflected forms through context-sensitive patterns of processing connenctions
(Kohonen, 2002; Koutnik, 2007; Pirrelli et al., 2011). In learning full forms, a TSOM
develops a strong sensitivity to gradient effects of word frequency, paradigmatic reg-
ularity, and probabilistic levels of morphological structure arising from the lexicon,
thereby providing a unifying account of a wide range of word processing effects
that have traditionally been analysed and accounted for independently in the litera-
ture. Such a sweeping array of processing effects will be demonstrated through an
information-theoretical analysis of the costs incurred by five, independently trained
TSOMs that learn to process regularly and irregularly inflected forms sampled from
English, German, French, Italian and Spanish conjugations.

In what follows, we first provide typological evidence supporting a graded view
of regularity in inflection (Sect. 2), to then move on to considering the ways speak-
ers are known to process inflected verb forms (Sect. 3). Sections 4 and 5 of-
fer an information-theoretical formalisation of the processing costs of inflectional
paradigms and a description of the neural architecture used for our experiments. Sim-
ulation data are reported and modelled in Sect. 6, which paves the way to the general
discussion of Sect. 7 and our concluding remarks in Sect. 8.
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2 Inflectional regularity in a (cross)linguistic perspective

The observation that English walked is a more regular past tense form than – say –
thought may strike the reader as so trivial as to require no empirical or terminological
justification. In fact, the terms regularity and irregularity, however abundantly used
in the linguistic and psycholinguistic literature on inflection, have rarely been for-
mally defined. Herce (2019) has recently argued that the two notions are so ontolog-
ically ambiguous that any scientific endeavour should better avoid them. In addition,
it is somewhat ironic that a great deal of discussion on morphological regularity was
chiefly based on an inflectionally impoverished language such as English, whose in-
flectional regularity happens to correlate with default productivity (the -ed rule does
not select a specific subclass of verbs), combinatoriality (regular inflectional pro-
cesses are concanenative), predictability (walked can easily be inferred from its base
form walk) and phonotactic complexity (ran sounds simpler than *runned). Inflec-
tionally richer languages, such as Romance languages among others, do not exhibit
the same range of correlations as English does (see Sect. 2.2), to the extent that any
universal claim about inflectional regularity based on English evidence is simply un-
warranted.

We agree that the term regularity should be used with care. Like its close ter-
minological companion complexity, regularity has been shown to index a multidi-
mensional cluster of linguistic properties. Some of them (e.g. concatenativity) are
contingent on the specific typological properties of a language’s morphology, while
some others (e.g. productivity) are inherently graded. Nonetheless, this by no means
imply that the term is useless or unworthy of scientific inquiry. In our view, most of
the confusion surrounding the notion of morphological (ir)regularity arises from the
etymological (and categorical) characterisation of being regular as being generated
by a grammatical rule (Latin rēgula), defined as a “mental operation” (Marcus et al.,
1995). In fact, in a non-probabilistic rule-based account, a rule either applies (when
invoked) or not. We surmise that the elusive nature of regularity does not lie in the
vagueness of its definition as an object of scientific inquiry, but rather in the formal
inadequacy of the symbolic rule-based framework that has been used in the past to
investigate it.

2.1 Following a procedural rule

Drawing on Ullman’s neurocognitive Declarative/Procedural model (Ullman, 2001,
2004), Pinker’s Words and Rules theory claims that speakers’ knowledge of word
inflection is subserved by two distinct, functionally segregated brain systems (Pinker
& Ullman, 2002). Regularly inflected forms are covered by the procedural system
of the human brain, neuro-anatomically located in the basal ganglia and the frontal
cortex areas to which the basal ganglia project. Irregulars, in contrast, are stored and
accessed by the declarative memory system, which includes more posterior temporal
and temporo-parietal regions, together with medial-temporal lobe structures such as
the hippocampus.

Accordingly, the procedural system is based on combinatorial rule-driven pro-
cesses, requiring concatenation of morphological material to a base verb form (a free
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stem or a bound stem). Rules are assumed to apply in a context-free way, i.e. in-
dependently of semantic or phonological properties of the base; hence, they are fully
productive. Thirdly, they cover a large set of verb types. Finally, they are insensitive to
token frequency effects. Conversely, the declarative system is covered by superposi-
tional memory patterns that obtain only for a restricted number of verbs. The patterns
are sensitive to the phonological features of verb bases, they are not combinatorial
and they take significantly less time to be produced if they occur frequently.

In spite of their neuroanatomical segregation, the procedural and declarative sys-
tems are assumed to interact competitively through lexical blocking. Accordingly, a
productive inflection rule is inhibited when the input of the rule is found to fully
match an existing entry in the declarative lexicon (e.g. went bleeds the rule-based
production of *goed). Nonetheless, since regularly and irregularly inflected forms are
assumed to be covered by distinct brain regions, Pinker’s theory makes the prediction
that it should not be possible to find “hybrid” inflection systems, whose processes
mix the diagnostic properties of regular inflection with those of irregular inflection
(Pinker & Prince, 1991).

2.2 Beyond English

From a typological perspective, the conjugation systems of many language families
provide abundant evidence that such “hybrid” inflection systems indeed exist. If be-
ing morphologically productive implies and is implied by being combinatorial, it is
not clear how the Words and Rules theory can deal with introflexive (i.e. root and
pattern) inflectional processes, or apophony-based and tonal morphologies (Palancar
& Léonard, 2016). Even if we limit ourselves to less exotic verb systems, many ir-
regular inflection processes are, in fact, combinatorial. An irregular French verb like
BOIRE ‘drink’ presents the allomorphic stem buv- in the imperfective je buv-ais ‘I
drank’, but this form enters into the normal concatenative imperfective subparadigm
as the regular j’am-ais ‘I loved’ (Meunier & Marslen-Wilson, 2004). Likewise, Mod-
ern Greek provides evidence of a gradient range of aorist formation processes, going
from a fully transparent class (mil-o ‘I speak’, mili-s-a ‘I speak’), to a non-systematic
stem-allomorphy class (pern-o ‘I take’, pir-a ‘I took’), through an intermediate sys-
tematic stem-allomorphy class (lin-o ‘I untie’, e-li-s-a ‘I untied’) (Bompolas et al.,
2017; Ralli, 2005, 2006; Tsapkini et al., 2002). Even more complex gradients are
found in Russian verb and noun inflection (Brown, 1998; Corbett, 2011; Jakobson,
1948).

Secondly, sensitivity to the formal properties of a verb base is not a hallmark of
irregular inflection. In Hebrew, the closed Paal verb class is both unproductive and
insensitive to phonological patterns, whereas the open-ended and more productive
Piel verb class is porous to effects of phonological similarity (Farhy, 2020). Likewise,
Italian speakers are found to analogize target verb forms to clusters of stems that are
phonologically similar to the target stem and undergo the same stem transformation.
These clusters, called ‘reliability islands’ (Albright, 2002), are operative irrespective
of whether the analogized form is regular or irregular, accounting for:

i) the productivity of irregular inflection patterns, including human acceptability
judgements of nonce verb forms (Albright, 2002, 2009; Laudanna et al., 2004),
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elicited production of irregularly inflected forms from nonce verb bases (e.g.
Albright & Hayes, 2003; Bybee & Moder, 1983; Orsolini & Marslen-Wilson,
1997), (see also Say & Clahsen, 2002; Veríssimo & Clahsen, 2014, for somewhat
diverging evidence);

ii) the phonological sensitivity of speakers to regular inflection patterns (Albright,
2002, 2009);

iii) generalization strategies of both native (L1) (Farhy, 2020; Orsolini et al., 1998;
Nicoladis & Paradis, 2012) and non-native (L2) learners (Agathopoulou & Pa-
padopoulou, 2009; Cuskley et al., 2015; Farhy, 2020).

In the light of this evidence, the sharp functional separation between the declara-
tive and the procedural system can hardly be maintained. In addition, it is unclear how
the productivity of irregular inflectional patterns can coexist with lexical blocking. If
the partial matching of a nonce verb like frink with an existing irregular verb such as
drink is sufficient to block a rule-based process and trigger irregularization (frink >
frank: Ramscar (2002)), the way the two systems interact ought to be considerably
more graded and probabilistic than the simple mechanism of lexical blocking is ready
to acknowledge.

3 Psycholinguistic models of lexical access

The early psycholinguistic interest in morphemes as the minimal building blocks for
lexical organisation was motivated by the need to address issues of efficient pro-
cessing and retrieval of words stored in the mental lexicon. However, the question
immediately arose as to whether morpheme segmentation can really facilitate lexical
access. Early full listing models of the mental lexicon (Butterworth, 1983; Manelis
& Tharp, 1977) and later variants thereof (Giraudo & Grainger, 2000; Grainger et
al., 1991) answered negatively to this question. They assume that inflected forms are
accessed directly, irrespective of how regular and internally structured they are, be-
cause, all too often, morphologically complex words are semantically and formally
unpredictable (e.g., locality is not the property of being local, and *falled is not the
past tense of fall). Nonetheless, some full listing models do not dispense with a level
of morphemic units entirely. Rather, they place it above the level of central lexical
representations (Fig. 1a). Accordingly, morphemes represent the meaningful atomic
units which all members of an inflectional (paradigm) or derivational family project
to and activate, thus capturing the systematic correspondence of form and mean-
ing in sets of semantically transparent, morphologically related words. This dynamic
suggests a postlexical (or supralexical) view of morphological relatedness, whereby
words are recognized first, to then be related morphologically in lexical memory.

In contrast, the idea that morphemes can function as proper lexical access units
enforces a sublexical view of morphological structure, which reverses the processing
relation between morphemic and lexical units. As access units, morphemes medi-
ate lexical recognition and co-activation (Fig. 1b). Although sublexical models differ
from one another in matters of detail, they understand the role of morphemes in lexi-
cal memory in either of the following ways:
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Fig. 1 (a) a connectionist
version of the full listing model
of lexical access. (b) a
connectionist version of Pinker’s
Words and Rules theory
(adapted from Taft, 1994). In
both graphs, double circled
nodes indicate nodes activated
by the input string walked.
Only connections between
activated nodes are shown

i) as permanent access units to whole words in either full parsing models (Taft &
Forster, 1975; Taft, 1994, 2004), or dual mechanism models (Pinker & Prince,
1991);

ii) as pre-lexical processing routes, running in parallel with full-word access routes
and competing with the latter, in variants of the so-called race model (Caramazza
et al., 1988; Chialant & Caramazza, 1995; Frauenfelder & Schreuder, 1992; Lau-
danna & Burani, 1985; Schreuder & Baayen, 1995).

Sublexical and supralexical models of morphological access make some testable
predictions about the ways humans process inflectionally regular and irregular forms,
as summarized below.

3.1 Lexical recognition and access

That lexical frequency speeds up word recognition is classically interpreted as a mem-
ory effect (Howes & Solomon, 1951). The more frequently a word is encountered in
the input, the more deeply entrenched its storage representation in the mental lexicon
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is, and the quicker its access. Frequency effects have largely been used to investi-
gate the nature and organisation of lexical representations (Taft, 1994, 2004; Forster
et al., 1987). If reaction times to target forms in a lexical decision task are found
to (inversely) correlate with the frequency of the full forms, this has been generally
understood as evidence of holistic representation and memory-driven retrieval. Con-
versely, inverse correlation of response time with the frequency of roots/stems has
traditionally been interpreted as a hallmark of parsing-mediated recognition, with the
input form being obligatorily split into its constituent parts.

Full listing models accommodate full-form frequency effects on word processing
assuming that repeated access of a full-form unit in the lexicon raises the activation
level of the unit. As to stem frequency effects, it is assumed that the cumulative fre-
quency of all inflected forms of a lemma (i.e. the lemma’s paradigm frequency) raises
the activation level of the lemma unit at the semantic level of Fig. 1. Finally, interac-
tive activation between the lemma unit and all its afferent access units is used to ac-
count for priming effects between inflectionally related words (Giraudo & Grainger,
2001): all access units of the same abstract lemma can benefit from the downward
flow of activation coming from the lemma when the latter is activated by one of its
inflected forms.

In the same vein, sublexical frequency effects (see Bertram et al., 2000; Bradley,
1979; Burani & Caramazza, 1987; Taft, 1979, among others) are straightforwardly
accounted for by full parsing models, with obligatory morpheme-based parsing of an
input form activating sublexical access units. However, word frequency effects are
more difficult to accommodate in this framework. For example, the slow processing
speed of a low-frequency form like seeming is not predicted by the high-frequency of
its constituent parts. Taft (1979, 2004) suggests to account for word frequency effects
as the result of a post-lexical process of morpheme re-integration for semantic inter-
pretation. Accordingly, low word frequency effects arise not because full form units
are stored in the lexicon (Taft claims that they are not), but because low-frequency
inflected forms contain morphemes that are more difficult to recombine and interpret
at the morphosemantic level.

In principle, race models of lexical access are in a better position to account for
the factors influencing the interaction between the frequency of a morphologically
complex word and the frequency of its parts. One factor affecting this interaction
is the ratio of the frequency of the whole word and the frequency of its base: the
more frequent the complex form relative to its base, the more salient it is (Hay, 2001;
Hay & Baayen, 2005). In addition, the more the parts stand out in the whole word, the
stronger the paradigmatic relations the word entertains (Bybee, 1995). Note, however,
that also race models run into problems with effects of low frequency words such as
seeming. Since seem and ing are both high-frequency units, they are predicted to beat
their embedding low-frequency form in the race for lexical access. We are thus left
with the problem of why the processing of seeming does not take advantage of its
high-frequency parts (at least not as much as the race model would predict).

Priming effects are another important source of evidence for testing models of lex-
ical access. Full listing models can account for priming effects between regularly/ir-
regularly inflected forms and their bases through interactive activation between the
activated lemma unit and its inflected forms. However, this mechanism fails to accom-
modate priming effects between morphologically unrelated words, as with the case
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of corner priming corn (e.g. Crepaldi et al., 2010; Rastle et al., 2004). Dual mecha-
nism models readily account for priming between regularly inflected forms and their
bases, but fail to explain clear-cut evidence that irregularly inflected forms facilitate
visual identification of their bases (Crepaldi et al., 2010; Forster et al., 1987; Kielar
et al., 2008; Marslen-Wilson & Tyler, 1997; Meunier & Marslen-Wilson, 2004; Pas-
tizzo & Feldman, 2002). Besides, if one assumes that only irregular complex forms
are related morphologically after lexical access, degrees of semantic transparency
should not affect the priming of regulars, contrary to fact (Jared et al., 2017; Lõo
et al., 2022). Finally, any model of lexical access that account for priming effects
in terms of co-activation of lexical access units must implement an activation mech-
anism that explains why (i) levels of priming are continuously affected by degrees
of formal transparency of the prime, as with gave priming give better than brought
primes bring (Estivalet & Meunier, 2016; Orfanidou et al., 2011; Tsapkini et al.,
2002; Voga & Grainger, 2004), and (ii) priming facilitation takes place even when
the prime is not fully decomposable into constituent parts (Beyersmann et al., 2016;
Hasenäcker et al., 2016; Feldman, 1994; Heathcote et al., 2018; Morris et al., 2007).

3.2 Prediction-driven word processing

So far, we have analysed lexical processing as the outcome of partial matches of the
input word with stored lexical and sublexical units that are concurrently activated and
compete with one another for recognition. An interesting interpretation of this com-
petition can be gained by looking at the probabilistic dynamics governing efficient
selection of the appropriate candidate during online word processing, grounded in
the human ability to anticipate upcoming linguistic units in the input (Kuperberg &
Jaeger, 2016; Pickering & Clark, 2014; Lowder et al., 2018; McGowan, 2015). This
interpretation requires a dynamic, information-theoretical view of how language pro-
cessing proceeds. Processing unfolds through time in a sequential, incremental fash-
ion, by either attempting one specific prediction at each processing step, or entertain-
ing multiple hypotheses in parallel, each with some degree of probabilistic support.
Accordingly, the cost of processing a time-series of symbols is a function of how
predictable the series is, given the context in which it appears (Levy, 2008). For ex-
ample, predictability has been defined in the reading literature as the probability of
knowing a word before reading it, and it has been used to understand the variation of
gaze duration over words in eye tracking experiments (Bianchi et al., 2020; Kliegl et
al., 2006; Rayner, 1998).

It has been suggested (Baayen et al., 2007; Hay & Baayen, 2005) that speakers can
accomplish efficient selection of multiple, competing candidates by resorting to two
types of information available in lexical memory: the syntagmatic information about
the ways symbols are arranged in praesentia, along the linear dimension of time; and
the paradigmatic information about the ways words are mutually related in comple-
mentary distribution or in absentia (De Saussure, 1959). The syntagmatic dimension
informs speakers’ knowledge that -ing is an improbable inflectional ending when pre-
ceded by seem, and a probable constituent when preceded by walk. The paradigmatic
dimension captures the knowledge that seem is found as a verb stem in words such
as seems, seemed and seeming, or that walking and seeming share the same inflec-
tional ending. According to this interpretation, a frequency effect for a full form like
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seeming provides information about the entrenchment of the connection linking the
stem seem with the inflectional ending -ing. In other words, it offers an estimate of
the joint probability p(seem, ing), reflecting the combinatorial properties of the two
morphological units. In turn, a stem frequency effect provides information about the
neat contribution of a verb stem to the processing of all inflected forms that share
the same stem. In addition, combined with information for full-form frequency, stem
frequency information provides an estimate of the conditional probability of each in-
flected form given its paradigm: p(ing|seem) = p(seem, ing)/p(seem).1 Baayen et
al. (2007) show that the probabilistic interpretation of frequency effects accords well
with the marginal influence of stem frequency on the processing of low frequency
words, and the robust facilitatory influence of full form frequency on the processing
of low frequency forms. The authors report that the influence of stem frequency is
inhibitory for high frequency words and facilitatory for low frequency words.

The number of lexical relations within an inflection paradigm (or paradigm size) is
also found to have a direct facilitatory influence on the processing speed of a word’s
inflectional variants. Paradigm entropy, an information-theoretical measure of the
size of an inflection paradigm, speeds up processing response time (Baayen et al.,
2007; Moscoso del Prado Martín et al., 2004; Tabak et al., 2005). Paradigm entropy
grows with the number of paradigmatically-related forms, and is a direct function
of how uniformly distributed their frequencies are: the more equally frequent the
paradigmatically-related forms, the higher their paradigm entropy.

The view that lexical processing is based on competition and selection among
paradigmatically related candidates is supported by another effect of paradigmatic
distributions on lexical processing: the interaction between paradigm entropy and
inflectional entropy, an information-theoretical measure of the distribution of in-
flectional endings in their own conjugation class. Milin et al. (2009a,b) show that
paradigm entropy and inflectional entropy facilitate visual word recognition. How-
ever, if the two diverge, a conflict arises resulting in slower word recognition. Ferro et
al. (2018) showed that this divergence quantifies the degree of mutual dependence be-
tween a stem and its affix, defined as the statistical distance of their joint distribution
from the hypothesis of their stochastic independence (Kullback & Leibler, 1951).2

This suggests a straightforward linguistic interpretation of the Kullback-Leibler dis-
tance in terms of morphological co-selection. When a stem sk strongly selects a spe-
cific affixal variant, this variant is likely to have a low probability of following other
stems, and a much higher conditional probability of following sk . A syntagmatically
highly expected affix which is not highly expected paradigmatically appears to inhibit
processing.

Summing up, none of the lexical architectures reviewed in this section provides
a full account of the vast array of effects on inflection processing reported in the
psycholinguistic literature. It is highly unlikely that the variety and gradedness of
these effects can be accounted for by multiplying units and levels of representation
in the lexicon. In what follows, we propose a different take on the issue. Over the

1Here, the pipe symbol ‘|’ within parentheses reads “probability of ing GIVEN seem”.
2In probability, two events A and B are dependent if they influence each other, i.e. if knowledge of one
event changes the probability that the other event may occur, i.e. if p(A|B) �= p(A). Since p(A|B) =
p(A,B)/P (B), two events are said to be independent when their joint probability p(A,B) = p(A) ·p(B).
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Table 1 The present indicative
(sub)paradigms of Latin AMO

‘love’, SUM ‘be’ and VOLO

‘want’ (dashes mark traditional
morph boundaries)

PRES. IND. AMO SUM VOLO

1S am-o su-m vol-o

2S am-a-s e-s vi-s

3S am-a-t es-t vul-t

1P am-a-mus s-u-mus vol-u-mus

2P am-a-tis es-tis vul-tis

3P am-a-nt s-u-nt vol-u-nt

last two decades, principles of information-theory have offered an elegant mathemat-
ical framework for quantifying and formalising dynamic aspects of word processing,
storage and retrieval, leading to a number of predictions about the role of expectation
in word comprehension. From this perspective, word processing and word learning
are naturally interpreted as processes of uncertainty reduction (Levy, 2008; Ram-
scar & Port, 2016). The approach dovetails well with a discriminative view of Word
and Paradigm morphology (Baayen et al., 2011; Blevins, 2016) whereby words are
assumed to be concurrently stored in our declarative lexical memory, where they
are organised and accessed as subsets of morphologically related lexical candidates
(paradigms and conjugation classes), combined with dedicated distributional mea-
sures that take into account their use and circulation in a language community. In
what follows, we first provide a probabilistic, information-theoretical model of some
dynamic aspects of the interaction between the syntagmatic and paradigmatic dimen-
sions of word families in lexical memory. We will then take a step away from issues of
lexical representation, to focus on issues of word processing from a machine learning
perspective. Self-organising discriminative neural networks provide such a perspec-
tive.

4 The discriminative dimension of inflectional morphology

Following Blevins (2016), the discriminative dimension of an inflection system de-
fines the amount of full formal contrast realised within the system, and how elements
of formal contrast are used to convey the set of morphosyntactic features associated
with the paradigm. In an ideal discriminative inflection system, each paradigm cell is
filled by a distinct inflected form. To illustrate, the Latin form amo ‘I love’ in Table 1
uniquely conveys a full set of tense, mood, person and number features of Latin verb
inflection, making the form unambiguously interpretable out of context.

Not all inflected forms of a paradigm are equally different from one another in
their surface realisation. Some forms differ in one letter/sound only (amas vs. amat),
some in two letters/sounds (amo vs. amat), some others in more than two (amo vs.
amamus). Irregular paradigms like SUM ‘be’ present radically suppletive forms (sum
vs. estis), but a minimum of redundancy is nonetheless found in some cells (sum vs.
sumus). If all (distinct) inflected forms in the same paradigm were treated as equally
different, one could not quantify the varying discriminative potential of regularly vs.
irregularly inflected forms.
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Limiting ourselves to inflectional processes that involve segmental affixation,3 we
can express any inflected form ws

i in a paradigm P s as the result of a combination
of two morphs: a stem ss

k and its affix as
h.4 Accordingly, we can rewrite the inflected

form ws
i as the ordered pair 〈ss

k, a
s
h〉, and the probability p(ws

i ) of hearing ws
i as

p(ss
k, a

s
h). By indexing both stems and affixes with the P s paradigm they belong to,

we are bringing allomorphy into the calculation. In fact, in some paradigms, a stem
and an affix can be realised by specific alternating forms, sometimes independently,
sometimes jointly.

To illustrate, a present indicative form of Latin VOLO ‘want’ (Table 1) can start
with any of three stem allomorphs (vol-, vi- and vul-), each selecting only a subset
of the present indicative paradigm cells. Drawing on information-theoretical metrics
for predictive processing (Hale, 2003, 2016; Levy, 2008; Piantadosi et al., 2011), the
amount of paradigmatic uncertainty in processing an inflected form 〈ss

k, a
s
h〉 (e.g. vult

‘(s)he/it wants’) can be quantified as the expected communicative cost incurred by
a Latin speaker when the contextually appropriate inflection as

h (e.g., -t) is heard in
combination with a specific ss

k (e.g. vul-) of the paradigm P s (e.g. VOLO):

c(〈ss
k, a

s
h〉) = −log2(p(ss

k, a
s
h)). (1)

Equation (1) defines the processing cost of an inflected form as the negative loga-
rithmic function of its probability, also known as pointwise entropy (pH) of the form.
The cost goes down to 0 if the probability of the form is 1, and takes increasingly
larger value as its probability gets smaller. This reflects the intuition that the rarer an
event is, the more information it conveys, and the more costly it is to process (i.e., the
more processing effort it takes). In other words, more probable events are processed
in a more routinised way. But how does knowledge of a form’s paradigm affect its
processing cost?

Let us assume that a spoken inflected form is being processed, and that the stem’s
form has just been accessed. This information will help recognise the whole form
according to Equation (2).

c(〈ss
k, a

s
h〉|ss

k) = −log2(p(as
h|ss

k)). (2)

In the equation, the negative logarithmic function takes as argument the condi-
tional probability p(as

h|ss
k) of hearing as

h after ss
k was heard, namely:

p(as
h|ss

k) = |〈ss
k, a

s
h〉|

J∑

j=1

|〈ss
k, a

s
j 〉|

(3)

3In principle, the approach can naturally be extended to tonal and apophony-based morphologies, by
adding non-segmental features such as stress and intonational patterns to feature-rich representations of
inflected forms, in line with so-called “features and classes” models of inflection bootstrapping, success-
fully adopted in the computational morphology literature: see Hammarström and Borin (2011) and Pirrelli
(2018) for concise overviews.
4For our purposes, an affix can be a combination of a prefix and a suffix, as with the case of most German
past participles such as geglaubt ‘believed’ and gehalten ‘held’. Note that this complex morphological
process (circumfixation) does not affect the way probabilities are calculated.
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where J ranges across the entire set of affixes selected by the stem’s paradigm, and
|〈ss

k, a
s
h〉| counts the number of times 〈ss

k, a
s
h〉 is found in the input.5 p(as

h|ss
k) equals

1 when the stem ss
k selects one affix only, and it decreases as soon as ss

k is found
in combination with other affixes. Thus, the logarithmic cost of processing 〈ss

k, a
s
h〉

after ss
k is heard is larger when ss

k belongs to a regular paradigm. In fact, an invariant,
regular stem removes less processing uncertainty about an upcoming affix than an
allomorphic stem does.

The other side of the coin is that stem allomorphy increases the cost of processing
a stem given its own paradigm:

H(ss |P s) =
I∑

i=1

p(ss
i |P s)c(ss

i |P s). (4)

In equation (4), p(ss
k |P s) is the probability of having ss

k selected within its own
paradigm:

p(ss
k |P s) =

J∑

j=1

|〈ss
k, a

s
j 〉|

I∑

i=1

J∑

j=1

|〈ss
i , a

s
j 〉|

(5)

where I and J are, respectively, the number of stem allomorphs and the number of
affixes in P s , and c(ss

k |P s) is the negative logarithmic function of p(ss
k |P s).

Equation (4) defines the entropy of the stem distribution within a paradigm.
H(ss |P s) equals 0 when the paradigm P s has one stem form only (I = 1), and in-
creases as the uncertainty of selecting one particular stem allomorph increases. Note
that uncertainty is a function of the number of stem allomorphs and their distribution
in the paradigm. The more equiprobable (i.e. uniform) the distribution is, the higher
its entropy. Entropy thus measures the pointwise processing cost of a paradigm’s verb
stems, averaged by p(ss

k |P s). A more linguistic implication of equation (4) is that it
defines a stem’s processing cost in terms of (un)certainty in stem selection, thereby
providing a measure of paradigm regularity by probabilistic levels of stem allomor-
phy.

As to the distribution of affixes, and their role in apportioning processing costs
in word recognition, Milin et al. (2009a) reported that response latencies in a vi-
sual decision task are positively correlated with the degree of divergence between the
probability distribution of an inflected form in a paradigm, and the distribution of the
affix selected by the inflected form. Their evidence shows that speakers are sensitive
to both intra-paradigmatic and inter-paradigmatic distributional effects of inflected
forms. However strongly an affixal allomorph is selected by a stem, and however
high its conditional probability given the stem, speakers find it harder to process the

5In fact, a specific stem allomorph may select only a subset of its paradigm’s affixes. In this case, some
|〈ss

k
, as

h
〉| pairs will equal 0 and will not increase the ratio’s denominator.
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allomorph if it has a comparatively low probability of being selected in its own con-
jugation class. This effect cannot be predicted by forward conditional probabilities
(i.e. probabilities of an upcoming symbol given its preceding context), but requires
computation of backward probabilities (i.e. the probability for a stem to be selected,
given its suffix). We provisionally conclude that the discriminative dimension of in-
flectional morphology is governed by both forward and backward distributional fac-
tors, and that any plausible model of inflection processing must be able to take all
these factors into account. Against this background, we turn now to show that sim-
ple principles of discriminative learning, implemented by a recurrent neural network,
go a long way in modelling non-linear effects of lexical and sublexical frequency on
word processing.

5 Self-organising discriminative lexical memories

All models of lexical access reviewed in Sect. 3 assume the existence of some layers
of representational units, and an independent access procedure mapping an input sig-
nal (e.g. a time series of sounds) to layered units through cascaded levels of activation.
However, these models tell us comparatively little about how units come into exis-
tence in the first place. What makes a child memorise a form as an unsegmented ac-
cess unit, or decompose it into multiple smaller units? Even those approaches where
more segmentation hypotheses can be entertained concurrently (as in race models
of lexical access), ignore the fundamental question of why a speaker should split an
input signal into smaller parts.

The advent of Artificial Neural Networks in the 80’s (Rumelhart & McClelland,
1987) put word learning at the core of the lexical research agenda. Classical multi-
layered perceptrons were designed to learn to associate activation patterns across
three layers of processing units (an input layer, an output layer and an intermediate
hidden layer), via gradual adjustments of internal connection weights. Early connec-
tionist models, however, failed to deal with many aspects of human word processing
satisfactorily. First, they represented an input word like ‘$cat$’ (the symbol ‘$’ stand-
ing for a word boundary) as the set of trigrams {‘$Ca’, ‘cAt’, ‘aT$’}, where each
trigram conjunctively encodes a single character with its embedding context. Sets of
conjunctive trigrams could simply not model the intrinsic temporal dynamic of the
language input and how human processing expectations change with time. Secondly,
word inflection was modelled as the mapping of an input base form onto its inflected
output form (e.g. go → went), subscribing to fundamentally derivational and con-
structive models of lexical production (Baayen, 2007; Blevins, 2006, 2016). Thirdly,
gradient descent protocols for training neural networks (Rumelhart & McClelland,
1987) required signal back propagation and supervision, an idea which is difficult to
implement in the brain, where biological synapses are known to change their con-
nection weights only on the basis of local signals, i.e. the levels of activation of the
neurons they connect. Thus weights cannot depend on the computations of all down-
stream neurons. In addition, it was not clear what the source of error signalling could
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possibly be, considering that children’s productions are rarely sensible to external
explicit correction (Ramscar & Yarlett, 2007).6

To address some of these pitfalls, Baayen et al. (2011) propose a Naïve Discrim-
inative approach to word learning (hereafter NDL), based on a simple two-layer net-
work, where input units representing cues are connected to output units representing
outcomes. Weights between cues and outcomes are estimated using an adapted variant
of Rescorla-Wagner equations of error-driven learning (Rescorla & Wagner, 1972),
that simulate the predictive response of a learner to a conditioned stimulus, i.e. an
originally neutral stimulus that became strongly associated with (i.e. conditioned by)
an outcome. For cues that are present in the input, the weights to a given outcome
are updated, depending on whether the outcome was correctly predicted. The predic-
tion strength or activation for an outcome is defined as the sum of the weights on the
connections from the cues in the input to the outcome. If the outcome is present in a
learning event, together with the cues, then the weights are increased by a fixed pro-
portion (the network learning rate) of the difference between the maximum predic-
tion strength and the current activation. When the outcome is not present, the weights
are decreased by a factor that is inversely proportional to the current activation.

In the NDL literature, cues are represented by ordered pairs (bigrams) or triplets
(trigrams) of the units (letters or sounds) making up an input word. Outcomes are
localist, one-hot representations of lexico-semantic units.7 Unlike interactive activa-
tion models, where lexical competition is resolved dynamically through activation
and inhibition at processing time, here competition shapes the network connections
between the two layers at learning time. In particular, semantic vectors with stronger
connection weights enter into a stronger correlation with word frequency. NDL net-
works are considerably simpler than even the earliest, and simplest connectionist
models, thereby addressing some of the biologically most questionable aspects of
classical neural networks, such as lack of local error representation and multi-layer
back-propagation. Nonetheless, both NDL networks and their more recent, linear
variants (Baayen et al., 2019; Heitmeier et al., 2021) represent the linguistic input
using set of trigrams. This makes it difficult for them to model the inherent temporal
dynamic of lexical representations, and quantitatively analyse their impact on speak-
ers’ serial word processing. In what follows, we introduce a family of recurrent topo-
logical neural networks (Temporal Self-Organising Maps or TSOMs: Kohonen, 2002;
Koutnik, 2007; Pirrelli et al., 2011) that use principles of discriminative learning to
represent and store surface forms dynamically, i.e. as time series of input stimuli.

6Note, in passing, that the recent, prepotent evolution of classical connectionist architectures into deep
recurrent neural networks (Bengio et al., 1994; Hochreiter & Schmidhuber, 1997; Malouf, 2017), while
remedying the original pittfals of Rumelhart and McClelland’s derivational modelling of inflection (Mal-
ouf, 2017; Cardillo et al., 2018), do not seem to address, and rather possibly exacerbate, problems of
neurobiological plausibility.
7In Linear Discriminative Learning, a recent development of NDL (Baayen et al., 2019; Heitmeier et
al., 2021), one-hot representations have been replaced by distributed representations of word meanings,
or word embeddings, which are real-valued vectors reflecting the semantic and syntactic distributional
properties of lexical items in large corpora.
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Fig. 2 Activation chains for the German verb forms kommen (‘come’ INF/1P-3P PRES IND), gekommen
(‘come’ PAST PART) and kamen (‘came’ 1P-3P PAST IND) in a TSOM trained on German conjugation.
Winning nodes for the three input strings are circled. Pointed arrows represent temporal connections link-
ing consecutively activated nodes. All chains start with a ‘#’ node (the form onset symbol) and end to a ‘$’
node (the form offset symbol). Different nodes respond to the substrings kom- and gekom-, and identical
nodes respond to the substring -men$. Only connections between winning nodes are shown

5.1 TSOMs

A TSOM is a recurrent topological network of processing nodes activated by tem-
poral input signals. An input word, encoded as a time series of symbols, creates an
activation pattern that is internally propagated across nodes, and is stored in inter-
node connections. By being repeatedly exposed to more and more input words, a
TSOM learns to develop increasingly specialised activation patterns, i.e. patterns that
are selectively associated with specific words or classes of words.8

Figure 2 shows three activation patterns for the German input forms kommen
(‘come’ INF/1P-3P PRES IND), gekommen (‘come’ PAST PART) and kamen (‘came’
1P-3P PAST IND). Each pattern consists in a chain of winning nodes (also known as
best matching units), i.e. nodes that have responded most strongly to a temporal input
signal. As input letters are presented one at a time, nodes are activated accordingly.
In the Figure, pointed arrows depict the forward temporal connections linking each
winning node to its successor, and represent the direction of the activation flow from
one node to another. Each node is labelled with the letter to which the node responds
most strongly. Nodes responding to the same letter type are clustered together on the
map. In addition, each node in a topological cluster is trained to respond to a context-
specific instance of the letter associated with the node’s cluster. For example, the first
m in kommen activates a node that was trained to respond to m preceded by o in the
string ko. The second m will activate a topologically close node specialised for m

8A full description of TSOM equations, parameters and decay functions can be found in Marzi et al.
(2019) (see this link). Marcello Ferro’s TSOM installation package is available at http://www.comphyslab.
it/redirect/?id=tsom_setup.

https://www.frontiersin.org/articles/10.3389/fcomm.2019.00048/full#supplementary-material
http://www.comphyslab.it/redirect/?id=tsom_setup
http://www.comphyslab.it/redirect/?id=tsom_setup
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Fig. 3 Architecture of a TSOM “unfolded” over two successive time steps. Solid arrows denote connec-
tions between the input vector (rectangle box) and the map proper (square box). The dashed arrow repre-
sents recurrent temporal connections, whereby the map activation at time t-1 re-enters the map activation
at time t. Nodes are depicted as circles, whose shades of grey denote activation levels

preceded by m in the string kom, and so forth. Unlike classical conjunctive represen-
tations such as Wickelphones or Open Bigrams, where the length of the embedding
context is set a priori once and for all, in a TSOM the length of a conjunctive context
varies adaptively, depending on how often the context is found in the input at learn-
ing time. The more frequently a TSOM sees a word during training, the more likely
it will respond to the word with a pool of specialised nodes, i.e. nodes that are most
sensitive to the specific sequence of letters making up that word. Conversely, letters
that are found in low-frequency contexts are responded to by less specialised (i.e.
less context-sensitive) default nodes. Finally, since temporal connections are trained
at learning time, they end up embodying stable conditional expectations for future
events based on the current input, thus shaping the strong predictive bias of a TSOM.
This highly adaptive, learning-driven behaviour makes TSOMs especially instrumen-
tal in investigating dynamic aspects of word processing.

5.1.1 The learning algorithm

Self-Organising Maps (SOMs, Kohonen, 2002) were originally designed to simulate
the dynamic somatotopic organisation of the human somatosensory cortex, where
specialised cortical areas develop to fire to specific classes of input stimuli (Almassy
et al., 1998; Tononi et al., 1998). TSOMs are a recurrent variant of SOMs whose
nodes are equipped with two layers of connectivity (Fig. 3): i) an input layer (as
in classical SOMs) and ii) a recurrent temporal layer. One-way connections on the
input layer project the input vector to each map node, which thereby gets attuned
to the external stimuli the map is trained on. In addition, one-time delay re-entrant
connections on the temporal layer project each node to all map nodes (including
itself).

During training, a TSOM is exposed to a pool of input stimuli sampled according
to a certain probability distribution. At each learning step, a TSOM adjusts its input
connections to learn what stimulus is currently input. A TSOM that has been repeat-
edly exposed to a specific class of stimuli (e.g. a type of sound or a letter) develops
a topologically connected area of nodes specialised in responding to that class (as
shown in Fig. 4). In addition, while learning a stimulus, a TSOM adjusts its temporal
connections (Fig. 3) to learn when the stimulus appears in the input. Figure 5 pictures
the two adaptive steps implementing this mechanism with the input bigram ab:
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Fig. 4 Topological self-organisation of nodes in two lexical maps trained on English verb forms with
uniform (left) and corpus-based (right) distributions. Nodes are labelled with the letter they respond to
most strongly. Different nodes in the same letter cluster are activated by context-specific realisations of the
labelling letter

Fig. 5 The two-step learning
algorithm of a TSOM temporal
layer over successive time ticks.
Top: activation spreads from the
winning node a at time tick t-1
to the winning node b at time
tick t and its neighbouring nodes
(light grey circles)). Bottom:
selective inhibition goes from all
losing nodes at time tick t-1 to
the current winning node b

(1) (a) the temporal connection from a to b is strengthened, and (b) the connections
from a to a few neighbouring nodes within a radial distance r (or neighbourhood
radius) from b at time t are strengthened too (connections are depicted as solid
arrows in Fig. 5, top panel);

(2) all other temporal connections to b are concurrently weakened (connections are
depicted dashed arrows in Fig. 5, bottom panel).

Step (1.a) enforces a delta rule that is common to an entire family of recurrent
neural networks (Marzi et al., 2020). In contrast, the strengthening of a’s forward
connections to topological neighbours of b (step 1.b), and the weakening of all other
connections to b are a special feature of TSOMs. The combination of steps (1) and (2)
approximates Rescorla-Wagner equations (Pirrelli et al., 2020; Rescorla & Wagner,
1972). The simultaneous presence of a cue (stimulus a) and an outcome (stimulus b)
strengthens the connection between their responding nodes, whereas the absence of a
cue when the outcome is present weakens the predictive potential of the cue relative
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Fig. 6 Connectivity patterns in a TSOM before training (left), after j training epochs (centre), after n

training epochs (right).

to the outcome. If more cues compete to predict the same response, they will tend to
weaken each other.9

As in most artificial neural networks, the plasticity of a TSOM, i.e. its ability to
change its connectivity to adapt it to changes in the input, diminishes with the amount
of training. This is a function of the learning rate with which connection weights are
made closer to the current input, and the TSOM’s neighbourhood radius (learning
step (1)). Both parameters tend to zero with the number of training epochs.

5.1.2 The learning bias

Figure 6 illustrates the learning bias of a toy TSOM over three training epochs: before
training (e0), at an intermediate epoch (ej ), and at the final epoch (en). At e0 (leftmost
panel), the map is a tabula rasa, with no structural or temporal bias. All nodes respond
equally strongly to all stimuli, and their temporal connection weights are distributed
uniformly. This corresponds to a level of maximum entropy in the map’s temporal
connectivity (see Sect. 6.2.4 for more detail), yielding even levels of activation across
all map nodes, represented as light grey circles in the figure.

Through learning, nodes become increasingly more responsive to some specific
input stimuli (letters or sounds) only. At epoch ej , the map is trained on two input
strings: #abca and #bbcc (with # marking the start of the word). Here, winning
nodes (white circles) are labelled with the letter they respond most strongly to. Nodes
and their temporal connections (depicted as arrows in the figure) give rise to possibly
overlapping data structures known as word graphs. In a word graph, each node can
be arrived at through more incoming edges, so that it can be used to represent the
same symbol (a letter) that appears in different positions and contexts. For example,
the c1-node can be arrived at from either a b2-node or a b3-node, meaning that the
node is activated by both #abca and #bbcc. The resulting network is compact and
parsimonious, with one processing node firing in multiple contexts, and some con-
nections (solid arrows) that are more heavily weighted than others (dashed arrows).

9From a functional point of view, the combined effect of the two learning steps amounts to building opti-
mally discriminative lexical patterns, i.e. chains of strongly connected processing nodes that can activate
a contextually appropriate lexical representation as quickly and efficiently as possible given the current
input stimuli.
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As a result, the entropy of connections at epoch ej is lower than at epoch e0. We will
refer to context-free nodes such as c1 (i.e. nodes that respond to the same letter type
in different contexts) as blended nodes.

At the end of training (rightmost panel of Fig. 6), the pattern of node connections
in the map resembles a word tree, a data structure where letter nodes are arranged
hierarchically starting from the common vertex ‘#’, known as the “root” of the tree.
In a word tree, every node has only one parent node, and no, one or many child
nodes. Accordingly, onset-sharing strings activate identical processing nodes, but no
common nodes are activated by strings where different stems are followed by the
same suffix. In the right panel of Fig. 6, the blended node c1 is replaced by two
specialised nodes (namely c2 and c3) that are activated by context-specific stimuli.
Weights of repeatedly used connections go up to 1 (solid arrows), and weights of
unused connections go down to 0. Hence, the entropy of the map’s connectivity is
minimised: no branching connections emanate from a string’s uniqueness point, i.e.
from the point at which the string diverges from any other string in the input (Marslen-
Wilson, 1984). We conclude that the general learning bias of a TSOM is towards
an increasing specialisation of its processing resources, enforced by (i) multiplying
the number of dedicated nodes, (ii) reducing the number of blended nodes, and (iii)
minimising the overall entropy of their temporal connections.

Moving away from a toy-example to a real training scenario, whether a word map
ends up developing a more tree-like or a more graph-like data structure is contingent
upon the dynamic trade-off between the spreading-activation bias, implemented by
step (1) of the learning algorithm, and the specialisation bias enforced by step (2).
This dynamic is modulated by the frequency distribution of training items, both in
isolation and within their word families. If some high-frequency forms are input to a
map, their node connections will tend to specialise more often and inhibit connections
of less frequent forms, because items that activate the same pool of processing nodes
come into competition with one another for discriminative specialisation (Fig. 5, bot-
tom diagram). Strengthening a connection between two nodes a and b weakens the
connections between other nodes and b. From a lexical perspective, the processing
competition between forms reflects the topological self-organisation of these forms
in the mental lexicon, and the role of word frequency in specialising processing nodes
to maximise a map’s processing predictivity (see Sect. 5.1.3). Finally, it sheds light
on the role of a word’s relative frequency within its own family of morphologically-
related forms, arguably the lexicon’s most salient domain of competitive word co-
activation.

5.1.3 Processing and generalisation

A word tree is a maximally discriminative data structure for lexical access. Starting
from an input word’s onset, upon reaching the word’s uniqueness point, an optimally
discriminative map should have a strong predictive bias for the word’s remaining
letters/sounds prior to input offset. Ideally, only one forward connection is available
to complete recognition of the input form, and the map’s activation flow propagates
to one downstream node. This is a processing advantage, as it reduces uncertainty
while strengthening the map’s predictive bias. From a lexical perspective, the bias
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dynamically describes the state of a long-term memory where the input word is stored
holistically.

A map whose processing nodes are structured in a word tree behaves poorly in
generalising to novel forms, i.e. forms the map was never trained on. To illustrate,
consider the map in Fig. 6 at epoch en. When prompted with the novel string #abcc,
the map would find it hard to process it, although it was trained on independent evi-
dence of ab and cc. There is no connection that predicts an upcoming letter c after
the string #abc is recognised. In the machine learning literature, this situation is de-
scribed as a case of overfitting to input data, which arises when a trained map fits too
closely to the training data to be able to use already acquired patterns in different con-
texts. Conversely, the more entropic map at learning epoch ej in Fig. 6 would have no
problems in processing the novel string #abcc. In fact, the map’s memory structure
contains a blended node (c1) that can respond to an input letter (c) shared by more
forms.10 As the node lies at the intersection of two word graphs, it has two alternative
post-synaptic connections making different predictions about an upcoming stimulus.
This makes room for generalisation, which is possible only when a map is open to
more events than those it was originally exposed to, i.e. when it is less certain and
more entropic. This condition, however, makes the map less predictive in processing
familiar strings, i.e. less able to entertain strong expectations about upcoming events.

Summing up, TSOMs model lexical storage/access implementing a mechanism
of functional specialisation of probabilistic node chains that dynamically respond to
a continuously changing input signal. The mechanism has a great potential to un-
ravel the intricate cluster of gradient effects on inflection processing reported in the
psycholinguistic literature. In the following sections, we focus on such effects by
analysing the processing behaviour and the structural self-organisation of TSOMs
trained on different verb inflection systems.

6 Experimental evidence

6.1 Materials and method

6.1.1 Training data

Ten TSOMs were independently trained on five sets of inflected verb forms from En-
glish, French, German, Italian and Spanish conjugations, sampled with two different
training regimes.11 To ensure maximally balanced samples of regular and irregular
paradigms in all languages, and minimise the number of paradigm gaps (i.e. the num-
ber of forms per paradigm that were not attested in our corpora), verb paradigms were

10Note that in both strings c is immediately preceded by the same letter b, and this makes c more likely
to activate the same context-sensitive node.
11Other verb systems are currently being investigated, and some preliminary results for Arabic, Modern
Greek and Russian conjugations have already been reported elsewhere (Bompolas et al., 2017; Marzi,
2020, 2022; Marzi et al., 2019). For our present purposes, we opted to keep the focus on the Germanic/Ro-
mance contrast, to better control for linguistic variables such as typological variation and inflectional com-
plexity.
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first ranked on the basis of corpus-based cumulative frequencies of their verb forms.
The top-50 most frequent paradigms in each language were then used for training.12

For each verb paradigm, we used the same set of 15 paradigm cells across all
languages: the infinitive and past participle, the present participle for English, Ger-
man, French and the gerund for Spanish and Italian, the 6 present tense and 6 past
tense cells of the indicative. The selection was intended to include a representative
(albeit by no means exhaustive) sample of paradigm cells that are known to offer ev-
idence of stem alternation in both Germanic and Romance languages (Fertig, 2020;
Hinzelin, 2022). Our sampling decision to select only comparatively few verb forms
for training was motivated by the following reasons: (i) the TSOM incremental learn-
ing algorithm scales up poorly to a realistically sized lexicon;13 (ii) due to the high
correlation between word frequency and age of acquisition (Baayen et al., 2006), we
could nonetheless hope to focus on basic effects of frequency distributions on early
stages of inflection learning; (iii) results from five repetitions of a full training ses-
sion of 750 items for each language turned out to provide enough statistical power
for fundamental frequency effects to be observed (including marginal stem-frequency
effects, in line with Baayen et al., 2007); (iv) in a realistic processing scenario, we
can expect contextual factors to narrow down the set of potential lexical competitors
to a manageable subset of the most likely candidates (see Sect. 7 for a discussion of
issues of scalability of the present architecture to a more realistic scenario).

We trained a TSOM on each language sample. All training forms were adminis-
tered in their standard orthography. Letters in each input form were presented one
at a time, in their left-to-right order, encoded as mutually orthogonal one-hot input
vectors.14 No information about morphological segmentation, morpho-syntactic and
morpho-lexical features was associated with orthographic codes during training. In
the end, each TSOM was trained as an autoencoder, i.e. it had to learn how to store
and reproduce, in the correct order, the sequences of letters it was exposed to at learn-
ing time.

Two training regimes were used. Input forms were shown to a TSOM in random
order, using either (a) a uniform distribution, or (b) a real distribution based on corpus
frequency counts. To ensure comparability across corpora of different size, corpus
frequencies were scaled to a normalised frequency range in the 1-1001 interval. Thus,
the most highly attested word form in each language sample was shown to the map
1001 times per epoch, and all unattested forms (paradigm gaps) were input once per
epoch. In the uniform training regime, each form was input to the map 5 times per

12We used the Celex corpus for English and German (Baayen et al., 1995), the FrWaC corpus for French
(Baroni et al., 2009), the European Spanish Ten Ten corpus for Spanish (Jakubíček et al., 2013); the Paisà
corpus for Italian (Lyding et al., 2014). We compensated for the wide difference in size between the above-
mentioned resources by using sampling and scaling criteria that counterbalanced the bias of Zipfian tails
of different length in corpora of different size.
13Currently available packages for massively parallel batch training of self-organising maps (e.g. Wittek
et al., 2017) require some adaptation to include batch training for temporal connections.
14A one-hot vector is assigned 0s in all cells, with the only exception of a single 1 in a cell, which is used
to identify each letter uniquely. A one-hot vector encoding thus makes no assumption about the similarity
between letter pairs, making each letter vector equally distant (in fact orthogonal) to all other letter vectors.
As each letter has the same discriminative value from a morphological perspective, this choice does not
introduce an inappropriate encoding bias into our input data.
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Table 2 Composition of training data for TSOM simulations by language: number of regular and irregular
paradigms (R/I); number of distinct word types and size of the training set (due to inflectional syncretism,
each language-specific training set presents a different number of form types); number of map nodes;
mean percentage of serial recall (recall) and standard deviation (sd) for word types in the uniform training
regime; mean token frequency (mean f ) and mean percentage of serial recall (recall) and standard deviation
(sd) in the corpus-based regime. Serial recall defines the process of producing the correct sequence of
letters making up an inflected form, from the full set of the form’s winning nodes

language R/I types/size map nodes
UNIFORM CORPUS-BASED

recall (sd) mean f recall (sd)

English 20/30 280/750 35x35 100% (0) 19.3 99.52% (0.82)

German 16/34 504/750 40x40 99.76% (0.17) 13.7 99.52% (0.27)

French 23/27 661/750 40x40 99.54% (0.31) 8.9 95.60% (1.45)

Spanish 23/27 715/750 40x40 99.94% (0.13) 23.5 98.28% (0.55)

Italian 23/27 748/750 42x42 99.79% (0.15) 6.9 99.26% (0.21)

epoch. This means that syncretic forms, i.e. identical forms functionally associated
with more paradigm cells, were input 5 times multiplied by the number of paradigm
cells they fill in.

A full training session for each language consisted of 100 learning epochs. At each
epoch, all forms in a language sample were randomly presented to the map according
to their specific frequency distribution. The map’s learning rate and neighbourhood
radius were made decay exponentially over epochs, with a general time constant τ

equal to 25 epochs. This means that, after the first 25 training epochs, the initial value
of the temporal learning rate, γT = 1, is reduced to 1/e = 0.368. A training session
was repeated 5 times for each language. At the end of a language-specific session,
the accuracy of a trained map on two specific lexical tasks (see section on Training
evaluation) was measured on the entire sample of input forms. Accuracy scores were
then averaged across the five training sessions for that language (see Table 2 for
details about the composition of training data for all languages, and accuracy scores
in the serial recall task).

To balance the amount of a map’s processing resources allocated for each language
and avoid overfitting to training samples containing fewer inflected types, the number
of memory nodes in a TSOM varied from one language to another as a function of
the enumerative complexity of the inflection paradigms used for training. Due to the
learning bias of a TSOM (see Sect. 5.1.2), we thus kept approximately constant the
ratio between the number of processing nodes in the map and the number of nodes in
the word tree representing all inflected forms in each language sample. As the ratio
is insensitive to the frequency distribution of forms in a sample, the number of nodes
in a language-specific map was the same in both uniform and corpus-based training
regimes.

6.1.2 Training evaluation

Upon the end of a training session, each trained map was evaluated on two tasks:
serial word recall and word prediction.
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In a serial word recall task, the map is prompted to produce the correct sequence
of letters of an inflected form from the full activation pattern of the form’s winning
nodes (i.e. the nodes responding most highly to the form during training: Marzi et al.,
2012). A map can carry out the task successfully only if the winning nodes “contain”
sufficiently accurate information about each symbol and its position in the word. A
recalled input form is correct if all letters making up the form are recalled in the cor-
rect order. Details of training samples, map size and the map’s performance in the
serial recall task for each language are reported in Table 2. That all maps in the 5 lan-
guages show near ceiling performance in serial recall indicates that their processing
resources are equally suited for the complexity of the input space they were trained
on, and no serious language-specific bias was introduced in the experiment set-up.

In a word prediction task, each input word form is presented to a trained map one
letter at a time, from the word’s onset (‘#’) to its offset (‘$’). At each time step t ,
we compute the most likely winning node at time t + 1, given the input context at
time t .15 The label associated with the most highly pre-activated node is the map’s
best guess (i.e. the most expected letter lEt+1), which is matched against the actually
upcoming letter in the input form, or target letter lTt+1. The map’s prediction rate
(p_rate) is incremented by one for each hit, and reset to 0 for each miss:

p_rate(t + 1) =
{

p_rate(t) + 1, if lEt+1 = lTt+1

0, if lEt+1 �= lTt+1

(6)

Every TSOM was tested on the entire training set in the two training regimes of
uniform vs. corpus-based distributions. Section 6.2 presents a detailed quantitative
analysis of the maps’ performance in the prediction task.

6.1.3 Data annotation

TSOMs were trained on a discretized flow of inflected forms, which are input one
character at each time step. Input data include word-boundaries (‘#’ and ‘$’), but
provide no structural or featural information about morphological constituent parts.
Nonetheless, we deemed it useful to see how time series of a map’s processing re-
sponses to an inflected form are aligned with information of the form’s morphological
structure, or how they reflect standard criteria of morphological classification. For this
purpose, input forms were manually segmented into stem + affix patterns, according
to the Aronovian hypothesis that stems are strictly morphomic (Aronoff, 1994), and
Spencer’s principle of Maximisation of the stem (Spencer, 2012). In addition, we split
our training data into two clusters, namely R-form vs. I-form, depending on whether
an inflected form belongs to an inflectionally regular (R) or irregular (I) paradigm.
Paradigms whose forms contain no stem alternants (i.e. paradigms selecting a unique
surface stem) were classified as regular, and paradigms presenting patterns of stem
alternation (whether phonologically or morphologically conditioned) were classified

15The pre-activation vector yn(t + 1) of a map of n nodes at time t + 1 is computed by multiplying the
map’s level of activation yn(t) at time t with the matrix Mn×n of the weights of the map’s post-synaptic
(i.e. “forward”) temporal connections. The resulting product Mn×nyn(t) computes the amount of map’s
current activation that propagates at time step t + 1.
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as irregular. The distribution of regular and irregular paradigms in our training set is
given in Table 2.

This classification reflects an implicational view of Word and Paradigm morphol-
ogy, whereby patterns of morphological variation are taken to be interdependent in
ways that allow speakers to predict novel forms on the basis of their known paradigm
companions (Ackerman & Malouf, 2013; Blevins et al., 2017; Bonami & Beniamine,
2016; Marzi et al., 2020; Marzi, 2020). Accordingly, inflectional regularity is not
word-based, since it does not pertain to the intrinsic form of a specific morphological
process, but rather paradigm-based: it is a property of the network of morpholog-
ical relations that each form entertains with other forms within its own inflection
paradigm, and qualifies the amount of competition/redundancy that a family network
conveys.

Two issues warrant a brief comment. First, cases of purely orthographic, phono-
logically invariant adjustment (e.g. Italian cerc-are/cerch-i ‘to find/you find PRESENT

TENSE 2nd PERSON SINGULAR’, or English change/ chang-ing) were glossed as reg-
ular. Phonological stem identity was thus treated differently from orthographic stem
identity, a choice that, however morphologically sensible, is not supported by data
on visual word recognition, which are known to be possibly affected by specific
orthographic effects (e.g., Tsapkini et al., 2002). Secondly, the choice of treating
both morphologically and phonologically conditioned allomorphy as determinants
of paradigm irregularity is theoretically debatable, particularly in connection with
the analysis of prima facie phonological alternation patterns such as diphthongiza-
tion in Romance languages (see, for diverging theoretical accounts, Albright, 2009;
Bermúdez-Otero, 2013; Burzio, 2004; Miret, 1998; O’Neill, 2014; Pirrelli & Battista,
2000). However, for our present concerns, the choice is supported by psycholinguis-
tic evidence attesting human sensitivity to graded patterns of formal transparency
within inflectional paradigms, irrespective of whether the patterns are phonologically
or morphologically motivated (see Sect. 3 above). Since TSOMs are used here as ex-
planatory models of human lexical storage and access, it made sense to assess their
behaviour against a psycholinguistically motivated benchmark.

6.2 Data analysis

6.2.1 Processing

How difficult is it for a trained map to process an inflected form? And what factors
affect processing costs? To thoroughly address these questions, we measured how
easily a trained TSOM can predict an input form, by showing the entire form to
the map one letter at a time from ‘#’ to ‘$’. The idea, borrowed from the literature on
word/sentence reading (Bianchi et al., 2020; Kliegl et al., 2006; Rayner, 1998), is that
the predictability of an input form correlates inversely with the serial processing cost
of the form. Put simply, highly predictable words are easier to process than hardly
predictable words. In what follows, we analyse how a map’s prediction rates vary
with time, as a function of letter position across each input form. Statistical analyses
were modelled with R (R Core Team, 2022) as generalised additive models (gam
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Fig. 7 Non-linear regression plots (ggplot function, loess method) fitting a TSOM’s prediction rates with
interaction effects between German inflected forms in regular (R) and irregular (I) paradigms and distance
to morph boundary (MB); verb forms are administered to the TSOM with uniform (left panel) and corpus-
based frequency (right panel) distributions. Shaded areas indicate 95% confidence intervals

function), and visualised using non-linear regression plots and contour plots (ggplot
and fvisgam functions).16

6.2.2 (Ir)regularity

Figure 7 shows non-linear regression plots fitting prediction rates of the German map
by letter position in the input word, for the two training regimes: a uniform distribu-
tion (left plot) and a skewed, corpus-based distribution (right plot). For all forms, the
position of each input letter is computed as its distance to the stem-suffix boundary in
the input form, based on the manual segmentation of our data. Thus, x = 0 marks the
first letter in the suffix of an inflected form, and negative x-values denote the position
of each letter in the stem.17 On the vertical axis, y values represent fitted levels of a
map’s prediction rate, as defined by equation 6 above. Rates are plotted for forms in
both regular (R) and irregular (I) inflection paradigms (hereafter referred to respec-
tively as R-forms and I-forms), where paradigm regularity is assessed categorically
as reported in Sect. 6.1.

In both panels, starting from a word’s onset (leftmost tail of each plot), predic-
tion rates get higher as one moves rightwards to the stem-suffix boundary (x = 0).18

As more of a word is processed, uncertainty in processing an upcoming letter is ex-
pectedly reduced, with the rate of prediction rising accordingly. However, such an
ascending trend is far from linear, and variation in prediction rates appears to corre-
late with morphological structure. In a uniform training regime (left panel of Fig. 7),
stems in regular paradigms (or R-stems, blue dashed line) are significantly easier to

16Training and output data for each language, and a commented R script for statistical models are available
as Supplementary Materials at this link.
17The inflectional prefix GE- in German past participle forms is segmented as part of the stem, and assigned
negative x values.
18German prediction curves start above 0, to then drop and start rising again. Such across the board ef-
fect, which is not observed to a comparable extent in other languages of our sample, reflects the map’s
expectation for a GE- prefix.

https://cnrsc-my.sharepoint.com/:f:/g/personal/claudia_marzi_cnr_it/EiigA6yDhaxMkhB7BdebXC0B_Sr4wMWml26SAuCDOhpxzg?e=PfXUBx
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Table 3 GAMs fitted to prediction rates for stems and suffixes, as a function of letter distance to morph
boundary for R-forms and I-forms. Paradigms and words are added as random effects. R2 indicates the
explained variance of each fitted model

UNIFORM TRAINING CORPUS-BASED TRAINING

R2 R-forms I-forms
R2 R-forms I-forms

slope p-value slope p-value slope p-value slope p-value

English
stems 57.1% 0.61 <2e–16 0.41 <2e–16 49.2% 0.80 <0.001 0.39 <2e–16

suffixes 56.1% 0.78 <0.05 0.68 <2e–16 61.2% 0.76 >0.05 0.77 <2e–16

German
stems 51.1% 0.53 <2e–16 0.31 <2e–16 32.8% 0.34 <0.001 0.29 <2e–16

suffixes 21.7% −0.22 <2e–16 0.09 <0.001 27.6% 0.02 <0.001 0.22 <2e–16

French
stems 61.0% 0.60 <2e–16 0.29 <2e–16 54.8% 0.57 <2e–16 0.20 <2e–16

suffixes 37.9% 0.54 <0.001 0.64 <2e–16 29.5% 0.29 <0.001 0.38 <2e–16

Spanish
stems 46.7% 0.48 <2e–16 0.36 <2e–16 48.1% 0.48 <2e–16 0.35 <2e–16

suffixes 29.3% 0.33 <0.001 0.39 <2e–16 27.7% 0.16 <2e–16 0.34 <2e–16

Italian
stems 54.9% 0.58 <2e–16 0.33 <2e–16 27.2% 0.29 <2e–16 0.20 <2e–16

suffixes 19.0% 0.15 <2e–16 0.39 <2e–16 19.6% 0.13 <0.001 0.23 <0.001

predict than stems in irregular paradigms (or I-stems, magenta solid line), where par-
tially overlapping stem allomorphs compete for lexical access. Accordingly, y values
are significantly lower for I-stems (x < 0). In Table 3 we report coefficients from
GAMs fitted to prediction rates for German stems in both training regimes.

Things change when we focus on the stem-ending transition (x = 0). Here, a deep
drop in prediction is observed for R-forms only. In Sect. 4, we argued that this is an
expected outcome of the ways conditional probabilities of inflectional endings (given
the stem) are shaped by the combinatorial properties of regular inflection. Conversely,
I-stems are less combinatorial, as they typically select a smaller range of inflectional
endings. This reduces the probabilistic independence between a stem allomorph and
a suffix, and increases the conditional expectation for the upcoming letters making up
the suffix given the stem, facilitating processing at morph boundaries. Thus, predic-
tion rates for suffixes in irregular paradigms are significantly higher than for suffixes
in regular paradigms (see Table 3).

Negative slopes for suffix prediction with uniform distributions are a unique fea-
ture of German conjugation, reflecting the structure of its inflection markers. In many
cells, longer endings are in fact a one-letter extension of shorter endings (e.g. glaub-e,
glaub-e-n, glaub-e-n-d), often making paradigmatically related forms compete with
one another until their offset. Finally, corpus-based distributions make suffixes more
predictable on average, due to their skewed distribution in paradigms and inflection
classes.

Stem prediction rates in the two training regimes for English, French, Spanish
and Italian conjugations show the same pattern described for German R-forms vs. I-
forms. We observe significantly higher values for prediction rates in R-stems than in
I-stems, and lower prediction rates for suffixes in regular paradigms than for suffixes
in irregular paradigms (see Table 3).

Prediction trends in Fig. 7 show that TSOMs are sensitive to non trivial structural
aspects of R-forms vs. I-forms, where the two classes have been defined a priori.
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Fig. 8 Regression plots of interaction effects between stem probability ranges and distance to the morph
boundary (distance to MB) fitting prediction scores for German (top panels) and Italian (bottom panels) in
both uniform (left, language) and corpus-based (right, language F) training distributions

Can a TSOM develop a more endogenous, graded notion of inflectional (ir)regular-
ity? For both training conditions, in Fig. 8, we plotted the predictive bias of a TSOM
processing German (top) and Italian (bottom) paradigms, based on the amount of
intra-paradigmatic co-activation/competition between stem allomorphs in the mental
lexicon. In particular, each non-linear plot is associated with a specific range in the
likelihood for a stem allomorph to be selected within its own paradigm: namely, its
conditional probability p(ss

k |P s). Ranges are defined by cutting probability values
at the 1st and 3rd quartiles of their distribution, with low representing the 1st quar-
tile, medium the 2nd-3rd quartiles, and high the 4th quartile. In the plots, stems in
higher ranges of p(ss

k |P s) are (i) easier to process, (ii) perceptually more salient, and
(iii) more segmentable as sublexical constituents. We interpret this evidence as lend-
ing support to a graded view of stem regularity, based on the probabilistic support
that each stem allomorph receives from the set of paradigmatically-related surface
forms sharing the stem (or stem family). The fewer stem allomorphs compete with
one another, the easier their processing. Regression models fitting prediction rates
for stems in the 5 languages show that the effect of the stem’s conditional probability
is highly significant and accounts for a substantial amount of data variance in both
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Table 4 Frequency mean
values, and statistical
distribution differences (Welch
two sample t-test), for inflected
forms in regular (R) and
irregular (I) paradigms in our
sample of the 50 most frequent
verb paradigms in English,
German, French, Spanish and
Italian conjugation systems

language I R p-value

English 94.81 24.60 <2e-16

German 24.93 10.41 <0.001

French 15.54 4.36 <0.001

Spanish 33.84 13.43 <2e-16

Italian 10.38 2.94 <0.001

training conditions.19 For each language, we observed a positive significant effect
of stem conditional probability (p-value < 0.001), and the following R2 values for
the uniform and corpus-based training condition respectively: 57.6% and 49.6% (En-
glish); 52.4% and 34.8% (German); 63.6% and 52.5% (French); 48.0% and 49.7%
(Spanish); 54.5% and 27.9% (Italian).

6.2.3 Frequency

Structural effects significantly interact with word frequency distributions. In Fig. 7
(right panel), prediction rates in the corpus-based training condition for R-forms are
comparatively lower than those observed for the uniform distributions, suggesting
that R-stems tend to be associated with less entrenched (and less predictive) node
chains in a map trained with corpus-based distributions. We interpret this effect as
the outcome of a tougher competition between regular and irregular paradigms. In
fact, in a corpus-based training regime the frequency of R-forms is significantly lower
than that of I-forms (see Table 4), and this accounts for the lower rate of prediction of
R-forms in the right panel of Fig. 7. Training a TSOM on corpus-based frequencies
makes high-frequency I-forms powerful attractors of processing resources, leaving
fewer nodes for the map to recruit for processing R-forms. As a result, average levels
of prediction rates in the processing of both classes get considerably closer.

Figure 9 provides a broadly consistent cross-linguistic picture of the role of
corpus-based frequency distributions in this dynamic. Prediction rates are plotted for
English, German, French, Spanish and Italian forms, grouped in three frequency bins:
low (left panel), medium (mid panel) and high frequency (right panel), corresponding
to the 1st, 2nd-3rd and 4th distribution quartile. All plots give substantial evidence of
the inherently gradient effect of morphological discontinuity on predictive process-
ing, even in an inflectionally impoverished system such as English conjugation. In all
languages, word frequency raises prediction rates by reducing the average processing
surprisal at the stem-suffix boundary (Levy, 2008), i.e. the negative log-probability
of processing a suffix at x = 0, upon being shown the input form’s stem at x = −1.
This general trend notwithstanding, a few interesting inter-linguistic differences are
observed. In English and German, high-frequency R-forms and I-forms show no sign
of morphological discontinuity at the stem-suffix boundary. In contrast, in Romance
languages the impact of morphological structure on prediction scores is consistent

19Ten GAMs were fitted to letter prediction on stems using the interaction between the letter distance
to the morph boundary and the stem conditional probability (as a continuous variable) as fixed effects,
paradigms and words as random effects, for all 5 languages.
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Fig. 9 Non-linear regression plots fitting TSOMs’ prediction rates for low, medium and high frequency (F)
bins of English, German, French, Spanish and Italian verb inflected forms, with interaction effects between
R-forms (dotted lines) and I-forms (solid lines) and letter distance to the morph boundary (distance to MB).
For all languages, TSOMs were trained on corpus-based distributions (language F)

across inflection classes and frequency bins. This is in line with what we know of
“hybrid” inflection systems like Romance conjugation, where both regular and irreg-
ular paradigms are based on combinatorial patterns (Marzi & Pirrelli, 2022).

Combinatorial patterns are nonetheless affected by a significant interaction with
token frequency. In all plots of Fig. 9, word-internal structure is perceived through the
gradient support that morphological boundaries receive from the mutual probabilis-
tic dependence (or mutual information) between stems and suffixes, i.e. the extent to
which the presence of a stem makes an ensuing suffix more or less likely to occur.
On top of this effect, the strong predictive bias prompted by a high-frequency form
“smooths” the form’s internal structure, making the processor remarkably less sen-
sitive to morphological discontinuity. A Gestalt-like perception of individual forms
appears to override local constituency effects, confirming the role that corpus-based
distributions of surface forms play in affecting a TSOM’s predictive bias.
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Fig. 10 Non-linear regression plots fitting pointwise entropy (entropy) of forward connections by letter
distance to morph boundary (distance to MB) for R-forms (dotted lines) and I-forms (solid lines) in TSOM
maps trained on English, German, French, Spanish and Italian conjugations with corpus-based distribu-
tions (F)

6.2.4 Network connectivity

Input frequency distributions shape a TSOM’s connections between map nodes and
the input vector (input connections), as well as the connections linking each map node
to any other node at one time delay (temporal connections: see Fig. 3). In particular,
lexical frequency effects have a direct impact on the strength of temporal connections,
which in turn determine the map’s processing bias. At each processing step, activa-
tion flowing from a winner node propagates through its weighted forward temporal
connections. If weights are evenly distributed, i.e. if the node’s forward connections
are equally strong, many downstream nodes will receive a comparable amount of acti-
vation from the winner node and are equally likely to fire at the subsequent time step.
This increases processing uncertainty. Conversely, when one forward connection of a
node is much stronger than other connections leaving the same node, the downstream
node to which the strongest connection projects will have a much greater chance of
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firing at the ensuing time step. As connection weights are competitively shaped by in-
put frequencies according to Rescorla-Wagner equations, the topological distribution
of connection weights across the map provides the explanatory link between input
data frequency and the map’s processing bias.

This is shown in Fig. 10, where we plot non-linear regressions of the pointwise
entropy (pH) of forward connections from nodes that respond to R-forms and I-forms
in the five languages. Once more, full forms are centred on the morph boundary, and
grouped in three frequency bins: low (1st quartile), medium (2nd-3rd quartiles) and
high (4th quartile). pH is computed as the negative log-ratio between the weight
ck
〈Wt ,Wt+1〉 on the connection between winner nodes Wt and Wt+1 (respectively at

time t and t + 1), and the sum of the weights of all forward connections from Wt :

pH(t) = −log2(
ck
〈Wt ,Wt+1〉∑

ci∈f _C(Wt )

ci
) (7)

where f _C(Wt) denotes the set of all forward connections from the winner node
Wt . Equation (7) measures the amount of local, functional uncertainty of a TSOM
processing each single letter of an input verb form. pH goes down as more of the
input form is processed and the form’s uniqueness point is approached. The tendency
mirrors a general structural property of word trees, the number of whose bifurcation
points gets smaller as we move away from the root of the tree (i.e from the word’s
onset). However steep, the descent is nonetheless non-linear, with the morph bound-
ary sitting in between two inflection points of the curve: a entropy local minimum
(left of MB) and an entropy local maximum (right of MB). In most plots, the effect
is more pronounced for R-forms, showing that (i) the morph boundary marks a point
in the map’s connectivity where the number of forward connections increases, and
(ii) the increase is higher for R-forms than I-forms. Finally, pH levels are modulated
by token frequency. Accordingly, high-frequency forms appear to prune out forward
connections, reducing the number of downstream nodes to which activation may flow.

The evidence points to a structural effect of training data on the processing bias
of the map. Paradigm (ir)regularity has two consequences on the organisation of pro-
cessing nodes in a lexical map. Firstly, the distribution of connections between nodes
that process invariant stems in regular paradigms (R-stems) is less entropic. Since no
stem allomorphs compete for activation of a cluster of identical nodes, node chains
are more entrenched (i.e. they contain stronger connections with fewer bifurcations)
and this facilitates stem processing. However, the statistical independence between
R-stems and inflectional endings requires multiple forward connections at the stem-
suffix boundary, increasing processing uncertainty. Secondly, in irregular paradigms
stem allomorphs compete with one another for lexical access, and are typically fol-
lowed by a restricted range of inflectional endings. The distribution of connections
between stem-processing nodes is thus more entropic, making stem processing more
effortful. Conversely, the number of forward connections linking each stem allo-
morph with its suffixes goes down, and the entropy of the distribution of connection
weights goes down accordingly, making suffix processing easier.

It should be emphasised that pH levels are computed from the distribution of
weights on forward connections of a map’s winner nodes. These effects cannot just
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be dismissed as merely epiphenomenal. Pointwise entropy actually measures a struc-
tural bias in the way a lexical map organises stored verb forms while learning them.
The evidence is in line with the processing costs computed in Sect. 4.

6.2.5 Paradigmatic effects

Here, we intend to assess whether a TSOM’s processing bias is also affected by dis-
tribution effects that arise within inflectional paradigms and inflectional classes, and
in particular by those interactive frequency effects of stems, suffixes and full forms
the human word processor has been shown to be sensitive to (see Sect. 3.1).

Five independent GAMs were fitted to TSOM’s full-form prediction rates in our
language sample, using the interaction of surface form frequency, stem frequency
and distance to morph boundary as predicting variables, with surface forms and
paradigms as random effects. Models show a robust facilitatory effect of surface
form frequency, and no significant effects of stem frequency (with the only excep-
tion of a marginally significant effect for Italian) on the prediction rates of inflected
forms.20

Of central importance for the current study, all languages showed a significant neg-
ative interaction between surface form frequency and stem frequency. This is shown
by the contour plots of Fig. 11, where prediction rates appear to increase for increas-
ing values of surface frequencies (i.e. moving rightwards from the bottom left corner
of a plot). In addition, a null (or slightly inhibitory) effect of stem frequency on low
frequency forms gets inhibitory in high-frequency forms (top right corner of the plot).
To illustrate, when a TSOM processes a low-frequency form (e.g. seeming), the high
frequency of the stem seem appears to compensate for the drop in prediction at the
stem-ending boundary, yielding a null effect. However, processing the stem-ending
boundary of a medium-high frequency form like looked is not equally facilitated.

The evidence is in line with human data reported for English (Baayen et al., 2007)
and Dutch (Baayen et al., 2002) verb inflection. Baayen and colleagues (2007) addi-
tionally report a small facilitation effect of stem frequency in English low-frequency
verb forms of regular paradigms. In fact, when we separately fitted two GAMs to the
prediction rates for English R-forms and I-forms, we found a positive effect of stem
frequency on the processing of R-forms, and a small negative effect on the processing
of I-forms (both statistically significant),21 as shown in the contour plots of Fig. 12
(top panel).

Interestingly, other verb systems show a similar pattern, albeit with some subtle,
language-specific differences. The bottom panels of Fig. 12 illustrate the situation in
Spanish, where regular and irregular paradigms show a similar trend in uncertainty
reduction for increasing surface form frequencies (despite a substantial difference in
frequency ranges).22

20For details on model’s p-values and explained variance, see this link.
21For details on model’s p-values and explained variance, see this link.
22For details on model’s p-values and explained variance, see this link.

https://cnrsc-my.sharepoint.com/:b:/g/personal/claudia_marzi_cnr_it/Eb5_xqTbzXBCrLPurKpxeV0BzFOQTMBaJ19sbzITjyIfig?e=7OGt61
https://cnrsc-my.sharepoint.com/:b:/g/personal/claudia_marzi_cnr_it/Eb5_xqTbzXBCrLPurKpxeV0BzFOQTMBaJ19sbzITjyIfig?e=7OGt61
https://cnrsc-my.sharepoint.com/:b:/g/personal/claudia_marzi_cnr_it/Eb5_xqTbzXBCrLPurKpxeV0BzFOQTMBaJ19sbzITjyIfig?e=7OGt61
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Fig. 11 Contour plots of the non-linear interaction of word (full form) frequency (x-axis) and stem fre-
quency (y-axis), in five GAMs fitted to full form prediction for all our languages, as a function of distance
to morph boundary in interaction with form frequency and stem frequency. Yellow indicates higher, and
green lower prediction rates. The fvisgam function excludes points at 0.2 unit square distance from predic-
tion rates

We can understand more of the prediction patterns found in English (and Spanish)
R-forms, by looking at the panels of Fig. 13, plotting four independent contour plots
of prediction rates for English stems and suffixes in R-forms and I-forms respec-
tively.23 In R-forms, an increase in stem frequency makes the stem more predictable
irrespective of the frequency of its embedding form (Fig. 13, top left panel). When
stem frequency grows, however, the increase in suffix prediction for increasing values
of word frequency gets slower, because a stem that occurs in more forms is less likely
to predict its ensuing suffix (Fig. 13, top right panel). To a first approximation, the
prediction rate of a full form can be computed as a summation of the prediction rates
scored on its stem and suffix (see Baayen et al. (2007), for a similar proposal). The
slight facilitation of stem frequency for low-frequency English R-forms thus shows
that stem prediction increases more quickly than suffix prediction decreases, but only
in the low word-frequency range. English I-forms, conversely, present a different
dynamic. First, stem prediction increases with word frequency (Fig. 13, bottom left
panel), because a high-frequency I-form makes its own stem a stronger competitor of
other stem allomorphs. In contrast, the frequency of stems in I-forms appears to be
inhibitory, as it negatively correlates with stem length (Pearson’s r = −0.46, p-value

23For details on model’s p-values and explained variance, see this link.

https://cnrsc-my.sharepoint.com/:b:/g/personal/claudia_marzi_cnr_it/Eb5_xqTbzXBCrLPurKpxeV0BzFOQTMBaJ19sbzITjyIfig?e=7OGt61
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Fig. 12 Contour plots of the
interaction of word (full form)
frequency (x-axis) and stem
frequency (y-axis) for R-forms
(left plots) and I-forms (right
plots) in English (top panel) and
Spanish (bottom panel) in
GAMs fitted to full form
prediction as a function of
distance to the morph boundary
in interaction with surface word
frequency and stem frequency.
Yellow indicates higher, and
green lower prediction rates.
The fvisgam function excludes
points at 0.2 unit square distance
from prediction rates

Fig. 13 Contour plots of the interaction of word (x-axis) and stem (y-axis) frequency in GAMs fitted to
stem (left plots) and suffix (right plots) prediction for English forms in regular (R, top plots) and irregular
(I, bottom plots) paradigms, in interaction with distance to morph boundary, surface word frequency and
stem frequency. The fvisgam function excludes points at 0.2 unit square distance from prediction rates
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Fig. 14 Non-linear regression plots fitting prediction rates by letter distance to morph boundary (MB = 0)
for full forms in the 5 languages, binned by levels of |f orm|/|stem| ratio: low ratio (magenta), medium
ratio (blue), high ratio (black)

< 2.2e−16), and shorter stems can only make a small contribution to an incremental
prediction score. As to suffix prediction (Fig. 13, bottom right panel), processing is
inhibited by increasing values of stem frequency, for the same reason stem frequency
is inhibitory of suffix processing in R-forms. By adding up the two prediction rates
of stem and suffix, the end balance for the processing of a full I-form is eventually
negative for growing stem frequencies, yielding a net inhibitory effect.

A more dynamic view of the effects on word processing of the interaction between
stem and form frequencies for the 5 languages is shown in Fig. 14. Here, we plotted
prediction rates for all sampled forms, binned24 by low, medium and high values of
the |f orm|/|stem| ratio, computed dividing the frequency of an inflected form by
the frequency of its stem. The ratio measures the conditional probability p(ei |sk) of
an inflectional ending ei given its stem sk (see Equation (3) above) or, equivalently,
the probabilistic weight of an inflected form < sk, ei > within its own stem family.
Its values range between 0 and 1 (0 < |f orm|/|stem| ≤ 1), yielding 1 when the fre-
quency of a form equals the frequency of its stem (i.e. when a stem occurs in one
inflected form only), and getting lower for low frequency forms with high stem fre-
quencies. For all languages, low-frequency forms containing high-frequency stems
(low |f orm|/|stem| ratio) get a processing headstart on forms with higher values of
|f orm|/|stem|. Such an early facilitation is followed by a later drop in suffix predic-
tion due to the competition with other forms of the same paradigm. The early head-
start in English and Spanish is in line with the facilitation effect of stem frequency

24Bins are defined by cutting distributional values of the ratio at the 1st and 3rd quartiles.
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Fig. 15 Non-linear regression plots fitting prediction rates by letter distance to morph boundary (MB = 0)
for full forms with low |f orm|/|stem| ratios, in three word frequency (F) bins: low F (red), medium F
(purple), high F (grey)

in the low word-frequency range observed in Fig. 12 (left panels). Nonetheless, the
trend is common to all languages, as shown in Fig. 15, where we plotted prediction
rates for low |f orm|/|stem| ratio forms with low, medium and high frequency: fa-
cilitation turns out to be overwhelmingly stronger in the low word-frequency range
(red lines).

Finally, we assessed the role of the frequency distributions of inflectional endings
on the processing of inflected forms (see Fig. 16). In this connection, the ratio be-
tween the frequency of a form and that of its inflectional ending (|f orm|/|ending|)
proves to be a useful tool. The ratio measures the conditional probability p(sk|ej )

of a stem given its inflectional ending or, in other words, the amount of probabilis-
tic (in)dependence between a stem and its ending. Its value is 1 when the frequency
of a form equals the frequency of its ending (i.e. when an inflectional ending is se-
lected by one form only), and goes down for forms with endings that are selected
by many other stems. Five independent GAMs, fitted to prediction rates by levels of
|f orm|/|ending| ratios for all our languages, show that high-frequency endings in
low-frequency words (low |f orm|/|ending| ratio) are processed more easily than
endings selected by one or few stems only. This is in line with evidence that in-
flectional endings selected by a large family of stems are processed more easily by
speakers (Baayen et al., 2007). Note in addition that an inflected form < sk, ej >

with a strongly selected low-frequency ending has a high relative entropy, since their
probability p(sk, ej ) is much larger than the product p(sk) · p(ej ) of the probabili-
ties of their constituents (see Sect. 3.2). This evidence provides a simple explanatory
framework for the relative entropy effect observed by Milin et al. (2009a).
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Fig. 16 Non-linear regression plots fitting prediction rates by letter distance to morph boundary (MB = 0)
for full forms in three |f orm|/|ending| ratio bins: low ratio (orange), medium ratio (cyan), high ratio
(slate-grey)

7 General discussion

In essence, a TSOM models lexical access as consisting in discriminating between
time-bound cues (e.g. a time-series of letters in dynamic competition for their predic-
tive value) for a target lexical unit to be accessed. During lexical learning, competition
proceeds through a continuous, incremental update of a cue’s predictive bias, based
on the number of times the cue is seen (or is not seen) be associated with the outcome.
Ultimately, a TSOM shows an inherent bias for developing maximally discriminative
node chains, i.e. patterns of node activation that maximise predictive processing, and,
ultimately, ensure fast and accurate lexical access. During online lexical processing
of an input signal, node chains are activated incrementally, with node activation prop-
agating through temporal connections. This allowed us to provide a dynamic analysis
of how processing (un)certainty changes while the input unfolds in time, in ways that
would be difficult to replicate with human subjects.

In a TSOM, co-activation and competition between candidates for lexical access is
modelled as resulting from an interaction between the syntagmatic dimension and the
paradigmatic dimension of lexical knowledge (see Sect. 3.2). The effects on lexical
access of this dynamic are far reaching. Being a member of a large paradigm family
gives an inflected form a processing advantage, since the cumulative frequency of the
family strengthens the connections between nodes that are activated by more family
members. The effect accounts for uncertainty reduction in the processing of verb
stems within (sub)regular paradigms, and dovetails well with well-known effects of
facilitation in processing words that belong to large word families.

Co-activation triggers processing competition, since only one member of an acti-
vated family will typically be consistent with the input target. TSOMs use competi-
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tion at learning time to shape inter-node connections. This mechanism provides the
explanatory link between the amount of competition in the input and the structural
entropy of the forward connections emanating from a TSOM’s chains of activated
nodes after training. Evenly distributed connections create a balanced competition
that maximises processing uncertainty. Conversely, when one forward connection is
much stronger than other connections from the same node, one member of the family
will be pre-activated more strongly than other members. We showed that this fun-
damentally predictive bias can account for a variety of effects in the speakers’ word
processing behaviour, including their sensitivity to paradigm entropy and the inflec-
tional (ir)regularity gradient.

7.1 Frequency effects

All our models show a significant facilitatory effect of word token frequency on lex-
ical processing, modulated by morphological structure and length of sublexical con-
stituents. Although token frequency effects have traditionally been interpreted as a
hallmark of holistic storage and retrieval, our evidence lends support to Baayen and
colleagues’ (2007) information-theoretical interpretation of token frequency as an
estimate of the joint probability of the constituent parts of morphologically complex
forms.

Our evidence confirms the comparatively marginal role of stem frequency in the
processing of an inflected verb form when the form’s surface frequency is taken into
account (Baayen et al., 2007). The facilitatory effect of a regular stem on the recogni-
tion of a surface form (from the stem’s onset up to its end) is compensated by a drop
in prediction at the stem-suffix boundary, caused by the larger entropy in the stem’s
continuation cohort (Wurm et al., 2006). This counterbalancing effect is thrown into
sharper relief when we look at both ends of lexical frequency distributions. A high-
frequency form whose paradigm contains many frequent forms is bound to be pro-
cessed more slowly than a high-frequency form with fewer paradigm companions,
as the former’s stem has a wider range of possible continuations. The effect reverses
in low-frequency forms, where the processing boost provided by the shared stem is
comparatively stronger.

Our evidence also accounts for the role that the frequency distribution of inflec-
tional endings plays in word processing. High-frequency endings help the recognition
of low-frequency target forms because they provide an independent processing boost
to an otherwise weakly connected chain of processing nodes. Conversely, when a
low-frequency allomorphic ending is strongly selected by an irregular stem, the for-
mer slows down recognition of the target word. It looks like the inhibitory effect of
a low-frequency ending is not compensated by a lower entropy in the stem’s contin-
uation cohort, due to the overall low-frequency of its surface form. This interaction
provides a simple explanation of the relative entropy effect (Milin et al., 2009a). If
an inflectional ending is strongly selected by a stem (high relative entropy), the end-
ing’s frequency will closely approximate the frequency of its embedding surface form
(their |f orm|/|ending| ratio being close to 1). Accordingly, low-frequency forms
with high relative entropy will be harder to process, since they do not benefit from
high-frequency, deeply entrenched endings.
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7.2 Structural effects

All present observations are based on non-linear regression models that allow us to
focus on the time course of a TSOM’s processing response. This way, we could con-
trol for processing variations over time, measured while a TSOM is processing an
input form. In addition, by aligning the time window with the structural properties
of each input form, we could investigate non-linear changes along multiple dimen-
sions of linguistic information. Such a dynamic analysis of time course data goes well
beyond traditional measurements obtained by summarising behavioural data in a cer-
tain time window, to arrive at a mean value, or estimate a general trend. In fact, mean
values can mask subtle changes in the processing dynamic, while assigning identical
linear estimates to substantially different non-linear trends.

Effects of morphological structure on processing are easier to detect in regular
verb paradigms than in irregular ones. First, stems in regular paradigms are formally
consistent across their inflected forms and have no direct competitors in their own
paradigm. They thus benefit from cumulative frequencies and are easier to predict. In
addition, they are often longer than stems in irregular paradigms, and this increases
their average prediction rates. Finally, they select a larger number of suffix types,
with a resulting drop in processing prediction at the stem-suffix transition. All these
factors explain a stable processing advantage of R-forms over I-forms in a time win-
dow spanning from the verb stem’s onset to its end. However, at least part of this
advantage reverses in the processing of the final part of an inflected form, due to a
higher probabilistic dependence between stems and inflectional endings in irregular
paradigms.

Other factors, such as token frequency distributions and word length, can have an
impact on this non-linear dynamic. In particular, when a TSOM is trained on sur-
face forms that are sampled by their token frequency, the processing advantage of R-
stems over I-stems diminishes overall. Since we did not change the size of paradigms
(each consisting of 15 cells), but only the distribution of the cell forms across the two
regimes, lower levels of average prediction for less entropic samples attest a non lin-
ear effect of competition between realistically distributed forms: few high-frequency
words are better predicted at the expenses of a (Zipfian) tail of low-frequency words.
Nonetheless, real frequency effects do not cancel out non-linear structural effects in
enumeratively more complex inflection systems, i.e. systems that mark morphologi-
cal contrast with a larger number of morphological exponents (see Fig. 9).

7.3 Implications for a lexical architecture

All simulations reported in the previous pages were based on self-organisation pro-
cesses involving surface lexical forms. They were blind to whether two surface forms
actually belong to the same paradigm (e.g. fall and fell), or are only acciden-
tal lexical neighbours (e.g. tall and tell). We can ask ourselves whether these
results extend to a more realistic learning scenario, where lexical semantics is taken
into account.

In Fig. 17, we use a TSOM as a layer of topologically self-organised units for lexi-
cal access. In the figure, nodes at the bottom layer define the input vector of a TSOM.
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Fig. 17 A recurrent topological self-organising version of a three-levelled model of lexical access. Double
circled nodes indicate nodes activated by the input string fell. Inter-level connections are shown as
solid two-pointed arrows between activated nodes. Intra-level dashed lines represent temporal connections
between nodes/letters that are serially activated with one-time delay. For convenience, sequences of nodes
responding to letter substrings are graphically represented as single multi-letter nodes (e.g. walk- or -ing)

Double circled nodes are incrementally activated by the input form fell, and prop-
agate their activation to a lexico-semantic layer. Inter-layer propagation is assumed
to flow interactively (this is graphically represented by two-pointed arrows), i.e. with
activation from lower levels being continuously affected by activation coming back
from higher levels. We further assume that propagation takes place in a cascaded way
(Peterson & Savoy, 1998), so that access units can (pre-)activate upper lexical nodes
before any single candidate has been explicitly selected. Access units are structured as
partially overlapping word graphs, whose activation simulates co-activation of multi-
ple candidates that compete for lexical access. The process accounts for the gradient
activation of neighbour candidates (e.g. fall and fell), which share a few processing
nodes. Since temporal connections are trained on surface forms sampled according to
their frequency distributions, high-frequency candidates are activated more strongly
than low-frequency candidates.

Distributed graph-based representations are not to be confused with morpheme
splitting. Although some node graphs can share blended nodes (i.e. winning nodes
activated by different surface forms), each word graph is learned to optimally re-
spond to a full surface form, not to sublexical parts, and morphological structure is
reflected by the ways probabilistic weights are distributed over temporal connections.
In addition, both blended and dedicated processing chains insist on a single level of
connectivity, and do not require to be functionally segregated. Such a distributed al-
location of probabilistic weights over a single layer of synaptic connectivity accounts
for (i) continuously graded levels of morphological structure, and (ii) graded patterns
of lexical priming as a function of the formal similarity between surface forms.

How does this framework account for semantically sensitive priming effects (e.g.
fell primes fall, but tell fails to prime tall), vs. semantically blind priming effects (e.g.
corner primes corn) (Crepaldi et al., 2010)? It is commonly assumed that members of
an inflectional paradigm are related semantically in the mental lexicon more strongly
than members of a derivational family (e.g. Marslen-Wilson et al., 1994; Levelt et al.,
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1999). It is thus reasonable to expect reverberation of semantic information from the
top layer down to the access layer to affect the topological organisation of inflected
forms more consistently than the topological organisation of derivatives. In the end,
word graphs of inflected forms will implicitly encode lemma information, whereas
word graphs for derivatives will not, thus making access units for derivatives less
sensitive to meaning than paradigmatically-related forms.

Other lexical models are certainly compatible with the evidence reported here,
Bybee’s Network Morphology being probably the best known and closest exam-
ple (Bybee, 1995; Bybee & McClelland, 2005). In Bybee’s model, stored words
that present overlapping substrings and overlapping meanings are mutually related
through paradigmatic connections. The larger the network of paradigmatic con-
nections, the more salient the morphological structure of its members. Conversely,
the strength of paradigmatic connections correlates negatively with word token fre-
quency. Hence, high frequency forms are weakly connected with other forms, and
tend to be perceived holistically. TSOMs provide a more parsimonious account of
the inverse correlation between token frequency and perception of morphological
structure via paradigmatic relations. Due to learning step 1, a frequent form devel-
ops highly specialised syntagmatic connections, and it weakens its paradigmatic con-
nections with other forms in the same paradigm (learning step 2). Conversely, more
evenly distributed paradigmatically related forms develop weaker syntagmatic con-
nections, and a more prominent morphological structure.

Our approach presents several points of contact with Baayen and colleagues’ dy-
namic modelling of word recognition as a staged process of lexical selection de-
scribed by information-theoretical equations (Baayen et al., 2007). In particular, we
fully agree with the authors’ emphasis on a probabilistic interpretation of word fre-
quency effects as part of a predictive conditional probability p(ej |sk). We showed
that this interpretation follows naturally from the dynamic operation of Rescorla-
Wagner equations in the process of TSOMs’ lexical self-organisation at learning time.
In fact, unlike interactive activation models where lexical competition is resolved dy-
namically at processing time, TSOMs use lexical competition to shape the network
of temporal connections between processing nodes at learning time. Thereby, they
can develop a long-term, predictive sensitivity to morphological structure that arises
in the context of stored full form representations to maximise processing efficiency.
From this perspective, the integrative view of processing and learning that under-
pins a TSOM architecture is in good accord with Apfelbaum and McMurray’s (2017)
view that lexical representations are learned while they are processed, and not after
processing competition has been resolved.

8 Concluding remarks

The debate on the role played by morphological regularity in the ways speakers pro-
cess and access inflected words has taken centre stage in the psycholinguistic liter-
ature on lexical modelling. Classical two-staged models see sublexical constituents
as the peripheral stepping stones from which central lexical representations of mor-
phologically complex items are accessed. Accordingly, regular, high-frequency mor-
phemic constituents are expected to provide a faster route to lexical representations
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than either low-frequency or subregular morphemic constituents. In assuming a direct
correspondence between linguistic units and their mental correlates, two-staged mod-
els expect regular forms to be easier to process than irregular forms just because the
former (unlike the latter) contain parts that are themselves more frequent and easier
to process than their full forms.

Two-staged models have been extremely influential in the psycholinguistic and
linguistic literature on lexical competence, as they appeared to offer a firm neuropsy-
chological foundation to a fully compositional, rule-based view of morphological
competence. Albeit linguistically appealing, the assumption fails to account for (i)
non-categorical, gradient effects of morphological regularity and productivity, (ii)
human pervasive sensitivity to both local and global probabilistic distributions in lex-
ical data, (iii) non-compositional and non-linear interactions between surface form
frequency and the frequency of sublexical parts. All in all, two-staged approaches
appear to comparatively neglect a functional perspective on language, according to
which lexical processing and word storage/retrieval are highly time-bound, non-linear
processes, modulated by a variety of structural, distributional and semantic factors.

The present contribution offers several reasons to believe that TSOMs provide
and interesting experimental and explanatory framework for investigating word pro-
cessing/storage issues from a functional perspective. First, with its emphasis on the
time-bound nature of lexical data, a TSOM approach is in line with the Word and
Paradigm view that inflected forms are the basic building blocks of human morpho-
logical competence. It thus flies in the face of the reductionist assumption that the
properties of a morphologically complex word boil down to the properties of its sub-
lexical parts. We showed that it is simply not possible to model the way humans
process an inflected form by replacing information about the form’s frequency with
information about the frequency of its parts. This does not mean that sublexical fre-
quencies are irrelevant. In fact, they interact significantly with full form frequencies
during processing. However, the interaction does not make full forms dispensable in
the least.

Secondly, TSOMs offer a computationally tractable way to simulate aspects of
the interaction between word processing, storage and learning that are amenable to
a sensible psycholinguistic intepretation. Their architectural simplicity and neurobi-
ological plausibility make them instrumental for investigating adaptive lexical self-
organisation in the face of a rich morphological input. Since TSOMs’ mathematical
framework is rooted in Rescorla-Wagner equations, our evidence shows that discrim-
inative learning principles can go a long way in approximating Bayesian networks
of probabilistic expectations over time-series of lexical data. This also provides an
explanatory framework for information-theoretical models of word processing, and
justifies our present, exclusive focus on surface forms and lexical and sublexical fre-
quencies, as a way to complement much established work in discriminative word
learning, primarily concerned with the mapping of lexical forms onto meanings.

A TSOM approach is also in good accord with psycholinguistic literature that em-
phasises the role of lexical processing, rather than lexical representation in a strict
sense, for our understanding of human word competence (Apfelbaum & McMur-
ray, 2017; Ji et al., 2011; Kuperman et al., 2010; Libben, 2006, 2010). Accordingly,
the human processor appears to be able to use all information that is available to
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it, accessing and integrating data on different time scales (from symbolic units and
morphological chunks to full forms and beyond). We showed that, in TSOMs, lexical
data are memorised as more or less automatised processing routines (depending on
the degree of probabilistic support they receive from the input), since lexical repre-
sentations consist of the very same nodes that are activated at processing time (Marzi
& Pirrelli, 2015). This runs against the functional distinction between dynamic, al-
gorithmic processes (rules) and static memory representations (lexical data) in which
two-staged morphological approaches are apparently grounded.

Last but not least, a detailed quantitative analysis of our data showed that the global
self-organisation of stored processing patterns reflect the frequency distributions of
different levels of word-internal structure, from full words to stems and inflectional
endings. Although a TSOM is trained to store and process surface forms, it does not
always converge on optimal, one-sized activation patterns. In fact, the level of granu-
larity of the patterns reflects the degree of structural overlapping and frequency-based
competition in the input data. TSOMs are thus ultimately supportive of the psycho-
logical reality of gradient word structure, according to which sublexical constituents
are not just the epiphenomenal by-product of speakers’ word processing habits, but
play a significant role in the ways processing expectations are informed by the acqui-
sition and structural organisation of these habits.

For sure, we are not suggesting here that word frequency and structure (ir)regular-
ity are the only factors affecting the processing bias of a speaker. Many other deter-
minants of word processing and learning, such as length, age of acquisition, semantic
basicness, perceptual salience, communicative intent, valence and relevance (to name
but a few) are found to play a significant role (Baayen et al., 2016). In Sect. 7.3, we
discussed how to augment a TSOM with a self-organising layer of lexico-semantic in-
formation accounting for semantically-driven effects of word family size. Testing the
algorithmic behaviour of such an augmented architecture is an important direction for
future research, paving the way to a quantitatively and qualitatively thorough assess-
ment of TSOMs as computational models of speakers’ word processing behaviour.
Having said that, it would nonetheless be surprising if the ubiquitous role that fre-
quency and structure play in the processing of inflection were simply the accidental
result of a coalition of other independent predictors. We are inclined to favour more
functional, explanatory analyses grounded in our current knowledge of the general
properties of human memory (Wixted, 2004). Discriminative, information-theoretical
models of word processing can help researchers get a principled understanding of the
exceedingly tight relationship between word frequency, paradigm entropy and gradi-
ent morphological structure in processing inflection, and discover new correlations in
verb systems of increasing inferential or enumerative complexity.

Finally, in the present work we have exclusively been concerned with the pro-
cessing bias of fully-trained TSOMs, by looking into the structural and behavioural
end results of their self-organisation. One would nonetheless expect that, due to the
neuro-computational interconnection between learning and processing, future analy-
ses of the incremental ways processing (un)certainty and perception of word-internal
structure change developmentally with learning epochs will offer fresh insights into
the process of language maturation and the acquisition of word knowledge by both
children and adults.
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