Bl H

\"g Wil T § o 6‘}‘
W LR v

ROBUST LOGIC PROGRAMMING

Lorenzo Strigini

IEl del CNR, Pisa, ltaly

Luca Simoncini

Universita’ di Reggio Calabria, Italy

ROBUST LOGIC PROGRAMMING
INTEREST OF THIS WORK:

- IMMEDIATE: PROGRAMMING TECHNIQUES
TO IMPROVE PRODUCTS BASED ON
PROLOG

- GENERAL: PROLOG AS AN EXAMPLE OF
{NON-PROCEDURAL, NON-VON NEUMANN,
ARTIFICIALLY INTELLIGENT} {LANGUAGE,
PROGRAMMING, COMPUTING}

HOW DOES IT FAIL? HOW CAN FAULTS BE
TOLERATED?

A.l. AND DEPENDABILITY
"A.L" MAY MEAN (PARNAS):

- APPLICATIONS THAT ARE NOT YET
COMMON AND WELL UNDERSTOOQOD;
HERE DEPENDABILITY PROBLEMS ARE
RELATED TO FUZZINESS IN REQUIREMENT
OR DIFFICULTIES IN MEASURING
PERFORMANCE

- METHODS LIKE RULE-BASED
PROGRAMMING.
WE ARE INTERESTED IN DEPENDABILITY
PROBLEMS SPECIFIC TO THESE METHODS:
WE USE PROLOG AS AN EXAMPLE, AND
THEN SEE WHICH CONCLUSIONS CAN BE
GENERALIZED.

IS PROLOG TYPICAL OF A.l. METHODS? AT
LEAST, IT IS PRAISED AND SOLD AS A
PROGRAMMING LANGUAGE FOR A.lL.

PROLOG
A NON-IMPERATIVE LANGUAGE.

A PROLOG PROGRAM (OR DATABASE) IS JUST
A DESCRIPTION OF THE PROBLEM.

AN INTERPRETER (A PROBLEM SOLVING
PROGRAM) CAN THEN USE THE PROGRAM TO
ANSWER QUERIES.

INTERPRETER MAY MEAN: A CONVENTIONAL
INTERPRETER, DEDICATED HARDWARE, RULES
FOR COMPILING A PROGRAM INTO

PROCEDURAL INSTRUCTIONS FOR SEARCHING
THE DATABASE

child(jane,jill).
female(jill).
female(jane).
male(james).
male(arthur).

daughter(X,Y) :- child(X,Y), female(X).
son(X,Y) :- child(X,Y), male(X).
mother(X,Y) :- child(Y,X), female(Y).
father(X,Y) :- child(Y,X), male(Y).
parent(X,Y) :- mother(X,Y).
parent(X,Y) :- father(X,Y).

EXAMPLES OF QUERIES:

?- male(jill).
no

?- daughter(X,Y).
X = jane, Y = jill ;
no

2.

PROS AND CONS OF PROLOG.
THEORETICAL ADVANTAGES:

- SIMPLICITY - THE PROGRAMMER CAN
DISREGARD HOW SOLUTIONS ARE OBTAINED

AND CONCENTRATE ON WHAT THEY SHOULD
BE:

- EFFICIENCY - THE INTERPRETER CAN BE
MADE FASTER (E.G. BY PARALLELISM)
WITHOUT CHANGING THE PROGRAMS;

- FLEXIBILITY - A DATA BASE CAN BE
QUERIED TO OBTAIN ANY RESPONSE THAT
IS DEDUCTIBLE FROM IT.

DISADVANTAGES:

- INEFFICIENCY A GENERAL-PURPOSE
INTERPRETER IS GENERALLY INEFFICIENT; A
PROGRAM THAT ANSWERS SOME QUERIES
EFFICIENTLY MAY BE VERY INEFFICIENT
WITH OTHER QUERIES.

THIS REQUIRES: A) THE PROGRAMMER TO

PAY MUCH ATTENTION TO HOW SOLUTIONS

ARE OBTAINED; B) THE IMPLEMENTORS TO

ADD A LOT OF PROCEDURAL AND META-

LOGICAL CONSTRUCTS.

- PROGRAMS USED IN UNFORESEEN WAYS
MAY FAIL IN UNFORESEEN WAYS

EXAMPLES OF NON-LOGICAL BUILT-IN
PREDICATES:

CUT: FREEZES THE CHOICES MADE FOR
SOME VARIABLES SO THAT BACKTRACKING
CANNOT CHANGE THEM

ASSERT: ADDS A CLAUSE TO THE DATABASE

RETRACT: REMOVES A CLAUSE FROM THE
DATABASE

VAR, NONVAR: TRUE IF A TERM IS (IS NOT)
AN UNINSTANTIATED VARIABLE WHEN THE
PREDICATE IS ENCOUNTERED DURING
EXECUTION

ETC.

RELIABILITY PROBLEMS WITH PROLOG:
ACCIDENTAL: ARISING FROM YOUTH:
- MANY PROLOG ENVIRONMENTS ARE TOYS

- IDEAL PURITY IS CONSIDERED MORE THAN
PRACTICAL NECESSITIES

LACK OF: TYPES, MODULES, NAME SCOPE
LIMITATIONS, EXCEPTION HANDLING. |
MOST TYPING ERRORS DON'T CAUSE ANY
SYNTACTIC ERROR: THEY JUST CREATE A
LEGAL WRONG PROGRAM.

(RECENT PROLOG IMPLEMENTATIONS INCLUDE
MANY OF THESE FEATURES.

FURTHER IMPROVEMENTS ARE LIKELY WITH
NEWER DEVELOPMENT ENVIRONMENTS
AND/OR LANGUAGES)

LACK OF STANDARDS: DIFFERENT
IMPLEMENTATIONS HAVE DIFFERENT
SEMANTICS AND INCONSISTENT LIBRARIES

PROBLEMS INHERENT IN:

- THE SEQUENTIAL SEARCH STRATEGY OF
ORDINARY PROLOG ?

- THE PROGRAMMING STYLE BASED ON FIRST-
ORDER LOGIC?

- NON-PROCEDURAL PROGRAMMING?

10

A POSSIBLE OBJECTION:

LOGICAL PROGRAMMING DOES NOT NEED
FAULT-TOLERANCE, BECAUSE:

A. PROLOG IS LOGIC: YOU CAN PROVE
CORRECTNESS IF YOU CARE TO;

B. Al. PROGRAMS ARE NATURALLY ROBUST:
IF THEY CANNOT FIND A SOLUTION AT
FIRST, THEY WILL KEEP SEARCHING AND
FIND ONE IF AT ALL POSSIBLE.

11

ANSWERS:

A.

B.

PROLOG PROGRAMS ARE NOT PURE LOGIC.

THE EXECUTION IS CONTROLLED BY SUCH
THINGS AS THE ORDERING OF CLAUSES.

PROGRAMS THAT ARE CORRECT
DESCRIPTIONS OF PROBLEMS AND FAIL TO
PRODUCE SOLUTIONS ARE COMMONPLACE.

SUCCESSFUL PROLOGS HAVE LOTS OF
PROCEDURAL OR META-LOGIC
PREDICATES, WHOSE MEANING DEPENDS
ON DETAILS OF THE WORKINGS OF THE
INTERPRETER.

IT HAS BEEN SHOWN THAT MANY PROLOG
PROGRAMS ARE MENAT TO EXECUTE LIKE
IMPERATIVE PROGRAMS.

WHAT ABOUT FAULTS IN THE SUPPORT
(HW PLUS OS PLUS INTERPRETER)?

WE WANT CORRECT SOLUTIONS, NOf JUST
ANY SOLUTION.

REDUNDANCY IN LOGIC PROGRAMS CAN
HAPPEN BY CHANCE AND EVEN BE
HARMLESS, BUT USEFUL REDUNDANCY
NEEDS PLANNING.

12

SOFTWARE FAULT-TOLERANCE:
USING EXTRA INFORMATION ABOUT THE
PROBLEM BESIDE THE INFORMATION
NECESSARY TO FIND A SOLUTION.

A METHOD IS DEFINED BY:

- WHICH INFORMATION IS PROVIDED
(NECESSARY CONDITIONS ABOUT THE
SOLUTION, ALTERNATIVE WAYS OF
COMPUTING THE SOLUTION)

- HOW THE REDUNDANT INFORMATION IS
USED TO OBTAIN A MORE RELIABLE
SOLUTION, OR TO SIGNAL AN ERROR

REDUNDANT INFORMATION IS EASILY
EXPRESSED IN PROLOG.

EXAMPLES OF FAULT TOLERANCE IN PROLOG
PROGRAMS

ASSERTIONS (PRE/POST CONDITIONS)

ASSERTIONS WITH BACKWARD RECOVERY
DIVERSITY WITH ADJUDICATION

13

/* this combination first uses <constructive
predicates (X,Y,..)> to find a solution, then
checks it by assertion(X,Y,..) */

statement(X,Y,..) :- <constructive predicates
(X,Y,..)>, assertion(X,Y,..).

assertion(X,Y,...) = nonvar(X),
nonvar(Y),..,<appropriate
predicates>, !.

/* notice the nonvar() and the cut *
/* by adding this, we can treat a failed
assertion explicitly:*/

assertion(X,Y,..) :- <series of predicates to
handle exception>.

/* assertions on preconditions */

statement(X,Y,..) :- assertion(X,Y,..),
<constructive predicates (X,Y,..)>.
assertion(X,Y,..) :- nonvar(...),..,

<other predicatess>.

14

/* if we can code two diverse ways to satisfy a

goal, and want to use backtracking as

backward recovery */

recoverable_goal(X,Y,..) :- procedurei(X,Y,..),
assertion(X,Y,..).

recoverable goal(X,Y,..) :-

procedure2(X,Y,..), assertion(X,Y,..).

15

/* if we can code two diverse ways to satisfy a

goal, and want static redundancy with

comparison */

duplex_goal(In1, In2,..,0ut1,0ut2,..) :-
procedurei1(ini,in2,.,0ut1,0ut2,..),
procedure2(ini,in2,.0ut1',0ut2',..),
consistency(Out1,0ut2,..,0utt’,
Out2',..).

consistency(Out1,0ut2,..,0ut1',0ut2',..) :-
<predicates(Out1,0ut2,..,0ut1’,0ut?2

ea)>.

/* we can deal with mismatches by */

consistency(Out1,0ut2,..,0ut1',0ut2',..) :-
<predicates(Out1,0ut2,..,0ut1’,0ut?2’
bee)>, L.

consistency(Out1,0ut2,..,0ut1',0ut2',..) :-
<exception handling predicates)s>.

/* serious problems arise with backtracking
and/or multiple solutions */

16

/* in general for N diverse implementations */
Nuplex_goal(In1, In2,..,0ut1,0ut2,..) :--

procedurei(in1, In2,..,0uti1, Out21,

..);, procedure2(ini,
In2, ., 0ut12,0ut22,..),
procedureN(lm |n2, ,Out1N

Out2N, ..),
adjudlcator(Ouﬂ 1,0ut21,..,0ut1N,
Out2N,..).

/* This required all N procedures to succeed.
Instead, we may want threshold voting, which
is cumbersome without explicit non-
determinism */

17

ASPECTS THAT NEED ATTENTION:
DISTRIBUTION
PARALLELISM

WAYS OF DIRECTING THE SEARCH STRATEGY

WAYS OF DIRECTING THE MAPPING OF
EXECUTION ON HARDWARE MODULES (TO
TOLERATE HARDWARE FAULTS)

18

FAILURE MODES OF PROLOG PROGRAMS.
(FOR ANY CAUSE: PROGRAMMING ERROR OR FAILURE IN
THE SUPPORT)

THE NORMAL OUTPUT OF A PROLOG
PROCEDURE (PROGRAM) MAY BE:

- SUCCESS WITH INSTANTIATION OF 0 OR
MORE VARIABLES

- FAILURE (NO ASSIGNMENT OF VALUES TO
VARIABLES SATISFIES THE CALLING GOAL)

FAILURE MODES:

- FAILURE TO PRODUCE A SOLUTION THAT
EXISTS, WITH INFINITE SEARCH

- FAILURE TO PRODUCE A SOLUTION THAT
EXISTS (LE. IS LOGICALLY DEDUCTIBLE
FROM THE DATABASE) :

- PRODUCTION OF A WRONG SOLUTION
(LOGICAL ERROR)

- FAILURE TO PRODUCE A SOLUTION,
BECAUSE IT IS NOT DEDUCTIBLE FROM THE
DATABASE (LOGICAL ERROR)

- NON-DETERMINISM OF SOLUTION FROM
REDUNDANT DATABASE

19

INVOLUNTARY/UNPREDICTABLE REDUNDANCY
MAY ARISE FROM SELF MODIFYING
PROGRAMS AS WELL AS FROM COMPLEXITY,
E.G. THROUGH MAINTAINANCE

20

PROBLEMS WITH THE LOGICAL PARADIGM:
- CLOSED WORLD ASSUMPTION;
- LACK OF NEGATION

PROBLEMS WITH THE SEARCH STRATEGY:
VULNERABILITY TO

- UNBOUNDED RECURSION
- CIRCULAR REFERENCES

21

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- ancestor(X,2), ancestor(Z Y).
parent(abraham isaac).

parent(isaac, jacob).

/* The query
?- ancestor(A,B).

obtains the answers:
A = abraham, B = isaac ;
A = isaac, B = jacob ;
A = abraham, B = jacob
Not enough heap space.
*/

SOLUTIONS FOR THIS TYPE OF FAILURE:
LIMITING DEPTH OF SEARCH; PARALLEL
SEARCH

22

OF COURSE, THIS TOY EXAMPLE WOULD
WORK CORRECTLY IF WRITTEN AS:

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
parent(abraham, isaac).
parent(isaac, jacob).
parent(jacob,a).

/* The query:

?- ancestor(A,B).

gets the answers:
A = abraham, B = isaac ;
A = isaac, B = jacob ;
A = abraham, B = jacob ;
no
*/

LANGUAGE FEATURES FOR IMPROVING
RELIABILITY OF PROGRAMS:

NORMAL FEATURES OF HIGH-LEVEL
LANGUAGES:

MODULES WITH NAME SCOPE RULES

ANNOTATION OF INPUT AND OUTPUT
ARGUMENTS

LIMITATIONS TO SELF-MODIFIABILITY
THROUGH ASSERT AND RETRACT

EXCEPTION HANDLING FOR:
- —-INTERPRETER-GENERATED EXCEPTIONS;
- PROGRAMMER-DEFINED EXCEPTIONS

OTHER FEATURES FOR ROBUSTNESS AT RUN-
TIME :

LIMITS ON DEPTH OF SEARCH (LOOP
DETECTION, TIME-OUTS OR NUMBER OF
STEPS?)

PARALLEL SEARCH: SIMPLIFIES REDUNDANT
PROGRAMMING, RISKS NON-DETERMINISM

LIMITS ON EFFECTS OF SELF-MODIFICATION
(ATOMICITY RULES)?

24

TENTATIVE CONCLUSIONS:

- PROLOG HAS PROBLEMS THAT CAN BE
CORRECTED BY NORMAL SOFTWARE
ENGINEERING REMEDIES: STRUCTURE AND
DISCIPLINE

- THE NON-PROCEDURAL STYLE HAS PROS AND
CONS:

SHIFT OF COMPLEXITY FROM APPLICATION
TO INTERPRETER: +

LESS CONTROL ON PROGRAM BEHAVIOUR:

NON-PORTABILITY OF PROGRAMS BETWEEN
INTERPRETERS: -

SIMPLICITY OF ADDING REDUNDANCY: +

DIFFICULTY IN DIRECTING USE OF
REDUNDANCY: -

25

- THERE ARE PECULIAR FAILURE MODES:

DIFFERENCE BETWEEN "FAILED" PROCEDURE
ACTIVATION (NO SOLUTION) AND WRONG
SOLUTION

UNCONTROLLED REDUNDANCY

26

