
Journal of Computational and Applied Mathematics 451 (2024) 116109

A
0
(

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

A Matlab package computing simultaneous Gaussian quadrature
rules for multiple orthogonal polynomials
Teresa Laudadio a,∗, Nicola Mastronardi a, Walter Van Assche b, Paul Van Dooren c

a Istituto per le Applicazioni del Calcolo ‘‘Mauro Picone’’, CNR, Via Amendola 122/D, Bari, 70126, Italy
b Department of Mathematics, KU Leuven, Celestijnenlaan 200B, Leuven, 3001, Belgium
c Department of Mathematical Engineering, Catholic University of Louvain, Batiment Euler (A.202), Avenue Georges Lemaitre
4, Louvain-la-Neuve, 1348, Belgium

A R T I C L E I N F O

MSC:
33C47
65D32
65F15

Keywords:
Multiple orthogonal polynomials
Simultaneous Gaussian quadrature rules
Banded Hessenberg eigenvalue problem

A B S T R A C T

The aim of this paper is to describe a Matlab package for computing the simultaneous Gaussian
quadrature rules associated with a variety of multiple orthogonal polynomials.

Multiple orthogonal polynomials can be considered as a generalization of classical orthogo-
nal polynomials, satisfying orthogonality constraints with respect to 𝑟 different measures, with
𝑟 ≥ 1. Moreover, they satisfy (𝑟 + 2)-term recurrence relations. In this manuscript, without loss
of generality, 𝑟 is considered equal to 2. The so-called simultaneous Gaussian quadrature rules
associated with multiple orthogonal polynomials can be computed by solving a banded lower
Hessenberg eigenvalue problem. Unfortunately, computing the eigendecomposition of such a
matrix turns out to be strongly ill-conditioned and the Matlab function balance.m does not
improve the condition of the eigenvalue problem. Therefore, most procedures for computing
simultaneous Gaussian quadrature rules are implemented with variable precision arithmetic.
Here, we propose a Matlab package that allows to reliably compute the simultaneous Gaussian
quadrature rules in floating point arithmetic. It makes use of a variant of a new balancing
procedure, recently developed by the authors of the present manuscript, that drastically reduces
the condition of the Hessenberg eigenvalue problem.

1. Introduction

In this paper, we consider the computation of simultaneous Gaussian quadrature rules associated with a variety of multiple
orthogonal polynomials (MOPs). MOPs originally appeared in Hermite–Padé approximation (simultaneous rational approximation)
and number theory. Recently, they turned out to be very useful in random matrix theory [1], combinatorics [2] and Markov
chains [3]. Simultaneous Gaussian quadrature was introduced in [4] to model computer graphics illumination, where the com-
putation of different weighted integrals with the same integrand function was needed. The aim was to minimize the evaluations
of the integrand function and maximize the order of the quadrature rules based on the same set of nodes. Simultaneous Gaussian
quadrature rules associated with MOPs related to the modified Bessel functions of the first and second kind were proposed in [5].
Gaussian quadrature with these special weight functions (and also with hypergeometric or confluent hypergeometric weights and
the exponential integral) requires the computation of the recurrence coefficients of the corresponding orthogonal polynomials from
the moments, which is an ill-conditioned numerical problem (see, e.g., [6,7]). Surprisingly, the recurrence coefficients of MOPs for
such weights are explicitly known, so that their numerical computation is avoided and the quadrature formula can be computed by

∗ Corresponding author.
E-mail address: teresa.laudadio@cnr.it (T. Laudadio).
vailable online 28 June 2024
377-0427/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cam.2024.116109
Received 20 March 2024; Received in revised form 18 June 2024

https://www.elsevier.com/locate/cam
https://www.elsevier.com/locate/cam
mailto:teresa.laudadio@cnr.it
https://doi.org/10.1016/j.cam.2024.116109
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2024.116109&domain=pdf
https://doi.org/10.1016/j.cam.2024.116109
http://creativecommons.org/licenses/by/4.0/

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

w

T

a

solving an eigenvalue problem obtained by properly arranging these recurrence coefficients into an Hessenberg matrix, as proposed
in [5,8].

MOPs are a generalization of orthogonal polynomials and can be divided into two classes: type I and type II [8]. In this paper
e focus on MOPs of type II. Suppose 𝑟 weight functions 𝑤(𝑖)(𝑥) ≥ 0, with support 𝛥(𝑖), 𝑖 = 1,… , 𝑟, on the real line are given. Then,

the sequence of MOPs
{

𝑝𝑛(𝑥)
}∞
𝑛=0 of type II satisfy the following orthogonality conditions [8]:

∫𝛥(𝑖)
𝑝𝑛(𝑥)𝑥𝑘𝑤(𝑖)(𝑥)𝑑𝑥 = 0, 0 ≤ 𝑘 ≤ 𝑛𝑖 − 1, (1)

with 𝑛 =
∑𝑟

𝑖=1 𝑛𝑖.
Let 𝛥 =

⋃𝑟
𝑖=1 𝛥

(𝑖). Two different systems of MOPs of type II can be considered [9,10]:

1. Angelesco system, where the open intervals 𝛥(𝑖), 𝑖 = 1,… , 𝑟, are disjoint, i.e., 𝛥(𝑖) ⋂𝛥(𝑗) = ∅, for 𝑖 ≠ 𝑗, and the closed intervals
𝛥(𝑖) are allowed to touch.

2. algebraic Chebyshev system (AT system), where 𝛥(𝑖) = 𝛥, 𝑖 = 1,… , 𝑟.

Then, 𝑝𝑛(𝑥) of type II has exactly 𝑛 zeros in 𝛥 [9, Th. 2].
A set of MOPs satisfies an (𝑟 + 2)-term recurrence relation. Without loss of generality, in this paper we focus on the case 𝑟 = 2.

herefore, the set of MOPs satisfies a 4-term recurrence relation1

𝑥𝑝𝑖(𝑥) = 𝑎𝑖𝑝𝑖+1(𝑥) + 𝑏𝑖𝑝𝑖(𝑥) + 𝑐𝑖𝑝𝑖−1(𝑥) + 𝑑𝑖𝑝𝑖−2(𝑥), 𝑖 = 0,… , 𝑛 − 1, (2)

with 𝑝−2(𝑥) = 𝑝−1(𝑥) = 0. Writing (2) in matrix form, we obtain

𝐻𝑛

⎡

⎢

⎢

⎢

⎢

⎣

𝑝0(𝑥)
𝑝1(𝑥)
⋮

𝑝𝑛−1(𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑎𝑛−1

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0

𝑝𝑛(𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑥

⎡

⎢

⎢

⎢

⎢

⎣

𝑝0(𝑥)
𝑝1(𝑥)
⋮

𝑝𝑛−1(𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

,

where 𝐻𝑛 is the 𝑛 × 𝑛 banded lower Hessenberg matrix with 2 sub-diagonals and one upper-diagonal :

𝐻𝑛 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏0 𝑎0 0 0 0 … 0
𝑐1 𝑏1 𝑎1 0 0 … 0
𝑑2 𝑐2 𝑏2 𝑎2 0 … 0
0 𝑑3 𝑐3 𝑏3 𝑎3 ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 … 0 𝑑𝑛−2 𝑐𝑛−2 𝑏𝑛−2 𝑎𝑛−2
0 … 0 0 𝑑𝑛−1 𝑐𝑛−1 𝑏𝑛−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3)

The Gaussian quadrature rule associated with classical orthogonal polynomials can be retrieved from the eigenvalue decomposition
of a symmetric tridiagonal matrix, and it is exact for polynomials of degree 2𝑛 − 1 [11]. The theory of simultaneous Gaussian
quadrature rules for the general case 𝑟 > 2 is described in [8].

For 𝑟 = 2, the simultaneous Gaussian quadrature rule associated with MOPs [8],
𝑛
∑

𝑘=1
𝜔(𝑗)
𝑘 𝑓 (𝑥𝑗) = ∫𝛥(𝑖)

𝑓 (𝑥)𝑤(𝑗)(𝑥)𝑑𝑥 + 𝐸(𝑗)
𝑛 (𝑓), 𝑗 = 1, 2,

with 𝐸(𝑗)
𝑛 (𝑓) = 0, if 𝑓 is a polynomial of degree 𝑛+ 𝑛𝑗 − 1, can be retrieved from the eigenvalue decomposition of the matrix 𝐻𝑛 [8,

Th. 3.2],[5, Th. 2]. Therefore, the degree of exactness of the simultaneous Gaussian quadrature rule is maximal if all 𝑛𝑗 , 𝑗 = 1, 2, in
(1) are equal [12]. The following theorem holds:

Theorem 1. The nodes 𝑥𝑗 , 𝑗 = 1,… , 𝑛, of the simultaneous Gaussian quadrature rule are given by the eigenvalues of the banded Hessenberg
matrix 𝐻𝑛 (3). Moreover, let us denote by 𝒖(𝑗) = [𝑢(𝑗)1 , 𝑢(𝑗)2 ,… , 𝑢(𝑗)𝑛]𝑇 , and 𝒗(𝑗) = [𝑣(𝑗)1 , 𝑣(𝑗)2 ,… , 𝑣(𝑗)𝑛]𝑇 the left and right eigenvectors of 𝐻𝑛
ssociated with 𝑥𝑗 , respectively. Then,

𝜔(1)
𝑗 =

𝑣(𝑗)1 𝑓1,1𝑢
(𝑗)
1

𝒖(𝑗)𝑇 𝒗(𝑗)
, 𝜔(2)

𝑗 =
𝑣(𝑗)1

(

𝑓2,1𝑢
(𝑗)
1 + 𝑓2,2𝑢

(𝑗)
2

)

𝒖(𝑗)𝑇 𝒗(𝑗)
, 𝑗 = 1,… , 𝑛, (4)

where

𝑓1,1 = ∫𝛥(1)
𝑝0(𝑥)𝑤(1)(𝑥)𝑑𝑥,

𝑓2,1 = ∫𝛥(2)
𝑝0(𝑥)𝑤(2)(𝑥)𝑑𝑥, 𝑓2,2 = ∫𝛥(2)

𝑝1(𝑥)𝑤(2)(𝑥)𝑑𝑥.

(5)

1 All the MOPS considered in the literature are monic, i.e., 𝑎 = 1, 𝑖 = 0, 1,… , 𝑛 − 1.
2

𝑖

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

m
o
c
G
B
L
T
d
T
T
T
T
T
I
N
A

3

i
r

𝐌
W

𝛼
I

Remark 1. For 𝑟 > 2, the simultaneous Gaussian quadrature rule
𝑛
∑

𝑘=1
𝜔(𝑗)
𝑘 𝑓 (𝑥𝑗) = ∫𝛥(𝑖)

𝑓 (𝑥)𝑤(𝑗)(𝑥)𝑑𝑥 + 𝐸(𝑗)
𝑛 (𝑓), 𝑗 = 1,… , 𝑟,

has degrees of exactness equal to 𝑛 + 𝑛𝑗 − 1, 𝑗 = 1,… , 𝑟 [4, Th. 1], [8, Th. 3.1].

Hence, simultaneous Gaussian quadrature rules associated with MOPs reduces to the computation of the eigendecomposition of
the Hessenberg matrix 𝐻𝑛, which, unfortunately, turns out to be strongly ill-conditioned [5]. Furthermore, the Matlab function
balance.m applied to the Hessenberg matrix 𝐻𝑛 does not improve the condition of the eigenvalue problem [13] and, then, the
Matlab function eig.m yields unreliable results. Therefore, procedures for computing simultaneous Gaussian quadrature rules are
implemented with variable precision arithmetic [5].

Recently, simultaneous Gaussian quadrature rules have been proposed for MOPs associated with modified Bessel functions of
the first and second kind [5,13], where the banded lower Hessenberg matrix 𝐻𝑛 is totally nonnegative. In particular, in [13], a
new balancing procedure has been proposed that drastically reduces the condition of the aforementioned Hessenberg eigenvalue
problem, thereby allowing to compute the associated simultaneous Gaussian quadrature rule in floating point arithmetic in a reliable
way.

Based on the results described in [13], we develop here an algorithm for computing simultaneous Gaussian quadrature rules
associated with different kinds of MOPs, for which the banded lower Hessenberg matrix was not totally nonnegative, and we describe
the associated Matlab package, which requires only (𝑛2) computational complexity and (𝑛) memory.

The paper is organized as follows. Notations are introduced in Section 2. The handled classes of MOPs are listed in Section 3.
Moreover, the use of the Matlab function ClassMOP.m, generating the coefficients of the recurrence relations of the associated
MOPs, is described in Section 4. The use of the function GaussMOP.m, computing the nodes and the weights of the chosen class of
MOPs, is reported in Section 5, followed by the description of the proposed numerical method in Sections 6 and 7. Numerical tests
are reported in Section 8, followed by the concluding remarks. Finally, the Matlab codes can be found in the Appendix.

2. Notations

Upper-case letters 𝐴,𝐵,…, denote matrices and 𝐴𝑚,𝑛, or simply 𝐴𝑚 if 𝑚 = 𝑛, denotes matrices of size (𝑚, 𝑛). The entry (𝑖, 𝑗) of a
atrix 𝐴 is denoted by 𝑎𝑖,𝑗 . Submatrices are denoted by the colon notation of Matlab, i. e., 𝐴(𝑖 ∶ 𝑗, 𝑘 ∶ 𝑙) is the submatrix of 𝐴

btained by the intersection of rows 𝑖 to 𝑗 and columns 𝑘 to 𝑙, and 𝐴(𝑖 ∶ 𝑗, ∶) and 𝐴(∶, 𝑘 ∶ 𝑙) are the rows of 𝐴 from 𝑖 to 𝑗 and the
olumns of 𝐴 from 𝑘 to 𝑙, respectively.
iven 𝐴 ∈ R𝑛×𝑛 and 𝑘 ∈ Z, −𝑛 + 1 ≤ 𝑘 ≤ 𝑛 − 1, 𝚝𝚛𝚒𝚞(𝐴, 𝑘) denotes the matrix with elements on and above the 𝑘th diagonal of 𝐴.
old lower-case letters 𝒙, 𝒚,… ,𝝎,…, denote vectors, and 𝑥𝑖 denotes the 𝑖th element of the vector 𝒙.
ower-case letters 𝑥, 𝑦,… , 𝜆, 𝜃,…, denote scalars.
he identity matrix of order 𝑛 is denoted by 𝐼𝑛, and its 𝑖th column, 𝑖 = 1,… , 𝑛, i.e., the 𝑖th vector of the canonical basis of R𝑛, is
enoted by 𝒆𝑖.
he zero vector of length 𝑛 is denoted by 𝒐𝑛.
he 𝑖-th subdiagonal of a matrix 𝐻 ∈ R𝑚×𝑛 is denoted by 𝚍𝚒𝚊𝚐(𝐻,−𝑖).
he diagonal matrix with entries 𝑑1,… , 𝑑𝑛 is denoted by 𝚍𝚒𝚊𝚐(𝑑1,… , 𝑑𝑛).
he notation ⌊𝑦⌋ stands for the largest integer not exceeding 𝑦 ∈ R+.
he notation 𝑘 ≫ 0 stands for 𝑘 ∈ N, with 𝑘 very large.
f 𝑥 ∈ C, (𝑥) denotes the real part of 𝑥.
umbers in scientific notation 𝑎 × 10𝑏, with 𝑎, 𝑏 ∈ R, are represented as 𝑎(𝑏) in Section 8.
flop denotes a floating point operation (sum, subtraction, multiplication, division). The square root is considered a flop as well.

. Classes of the multiple orthogonal polynomials

The considered classes of MOPs are listed below. For each of them, the corresponding weights 𝑤(1)(𝑥) and 𝑤(2)(𝑥), the integration
ntervals, the recurrence relations, and the coefficients (5), involved in the computation of the vectors of weights 𝝎(1) and 𝝎(2), are
eported.

𝐎𝐏1 ∶ Multiple Jacobi–Piñeiro polynomials
eights:

(

𝑤(1)(𝑥), 𝑤(2)(𝑥)
)

∶= (𝑥𝛼1 (1 − 𝑥)𝛼0 , 𝑥𝛼2 (1 − 𝑥)𝛼0) ,

𝑗 > −1, 𝑗 =, 0, 1, 2, 𝛼1 − 𝛼2 ∉ Z.
nterval: 𝛥(𝑖) = [0, 1], 𝑖 = 1, 2.
3

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.
Recurrence relation coefficients:

𝑏0 = (1 + 𝛼1)∕(2 + 𝛼0 + 𝛼1);

𝚏𝚘𝚛 𝑖 = 1, 2,…

𝑏2𝑖 =
(

36𝑖4 + (48𝛼0 + 28𝛼1 + 20𝛼2 + 38)𝑖3 + (21𝛼20 + 8𝛼21 + 4𝛼22 + 30𝛼0𝛼1

+18𝛼0𝛼2 + 15𝛼1𝛼2 + 39𝛼0 + 19𝛼1 + 19𝛼2 + 9)𝑖2 + (3𝛼30 + 10𝛼20𝛼1
+4𝛼20𝛼2 + 6𝛼0𝛼21 + 2𝛼0𝛼22 + 11𝛼0𝛼1𝛼2 + 5𝛼21𝛼2 + 3𝛼1𝛼22 + 12𝛼20 + 3𝛼21
+3𝛼22 + 13𝛼0𝛼1 + 13𝛼0𝛼2 + 8𝛼1𝛼2 + 6𝛼0 + 3𝛼1 + 3𝛼2)𝑖 + 𝛼20 + 𝛼0𝛼1
+ 𝛼2𝛼21 + 2𝛼2𝛼21𝛼0 + 2𝛼20𝛼1 + 𝛼21𝛼0 + 𝛼22𝛼0 + 𝛼22𝛼1 + 𝛼30𝛼1 + 𝛼20𝛼

2
1

+ 𝛼22𝛼0𝛼1 + 𝛼22𝛼
2
1 + 2𝛼2𝛼20𝛼1 + 3𝛼2𝛼1𝛼0 + 2𝛼2𝛼20 + 𝛼1𝛼2 + 𝛼30 + 𝛼0𝛼2

)

×
(

(3𝑖 + 𝛼0 + 𝛼2)(3𝑖 + 𝛼0 + 𝛼1)(3𝑖 + 𝛼0 + 𝛼2 + 1)(3𝑖 + 𝛼0 + 𝛼1 + 2)
)−1

;

𝚏𝚘𝚛 𝑖 = 0, 1,…

𝑏2𝑖+1=
(

36𝑖4 + (48𝛼0 + 20𝛼1 + 28𝛼2 + 106)𝑖3 + (21𝛼20 + 4𝛼21 + 8𝛼22 + 18𝛼0𝛼1.

+30𝛼0𝛼2 + 15𝛼1𝛼2 + 105𝛼0 + 41𝛼1 + 65𝛼2 + 111)𝑖2 + (3𝛼30 + 4𝛼20𝛼1
+10𝛼20𝛼2 + 2𝛼0𝛼21 + 6𝛼0𝛼22 + 11𝛼0𝛼1𝛼2 + 3𝛼21𝛼2 + 5𝛼1𝛼22 + 30𝛼20 + 5𝛼21
+13𝛼22 + 23𝛼0𝛼1 + 47𝛼0𝛼2 + 22𝛼1𝛼2 + 72𝛼0 + 25𝛼1 + 49𝛼2 + 48)𝑖

+18𝛼0𝛼2 + 8𝛼2𝛼20 + 4𝛼1 + 4𝛼22𝛼1 + 8𝛼1𝛼2 + 2𝛼30 + 5𝛼22𝛼0 + 8𝛼2𝛼1𝛼0
+12𝛼2 + 7 + 15𝛼0 + 𝛼22𝛼

2
1 + 10𝛼20 + 6𝛼0𝛼1 + 2𝛼2𝛼21 + 2𝛼20𝛼1 + 𝛼21𝛼0

+5𝛼22 + 𝛼2𝛼30 + 𝛼22𝛼
2
0 + 𝛼21 + 𝛼2𝛼21𝛼0 + 2𝛼2𝛼20𝛼1 + 2𝛼22𝛼0𝛼1

)

×
(

(3𝑖 + 𝛼0 + 𝛼2 + 1)(3𝑖 + 𝛼0 + 𝛼1 + 2)(3𝑖 + 𝛼0 + 𝛼2 + 3)(3𝑖 + 𝛼0 + 𝛼1 + 3)
)−1

;

𝑐1 = (1 + 𝛼0)(1 + 𝛼1)(3 + 𝛼0 + 𝛼1)−1(2 + 𝛼0 + 𝛼1)−2;

𝚏𝚘𝚛 𝑖 = 1, 2,…

𝑐2𝑖 = 𝑖(2𝑖 + 𝛼0)(2𝑖 + 𝛼0 + 𝛼1)(2𝑖 + 𝛼0 + 𝛼2)
(

54𝑖4 + (63𝛼0 + 45𝛼1 + 45𝛼2)𝑖3

+ (24𝛼20 + 8𝛼21 + 8𝛼22 + 42𝛼0𝛼1 + 42𝛼0𝛼2 + 44𝛼1𝛼2 − 8)𝑖2 + (3𝛼30 + 𝛼31
+ 𝛼32 + 12𝛼20𝛼1 + 12𝛼20𝛼2 + 3𝛼0𝛼21 + 3𝛼0𝛼22 + 33𝛼0𝛼1𝛼2 + 8𝛼21𝛼2 + 8𝛼1𝛼22
−3𝛼0 − 4𝛼1 − 4𝛼2)𝑖 + 𝛼30𝛼1 + 𝛼30𝛼2 + 6𝛼20𝛼1𝛼2 + 𝛼31𝛼2 + 𝛼1𝛼32 + 3𝛼0𝛼21𝛼2

+3𝛼0𝛼1𝛼22 − 𝛼0𝛼1 − 𝛼0𝛼2 − 2𝛼1𝛼2
) (

(3𝑖 + 𝛼0 + 𝛼1 + 1)(3𝑖 + 𝛼0 + 𝛼2 + 1)
)−1

(

(3𝑖 + 𝛼0 + 𝛼1)2(3𝑖 + 𝛼0 + 𝛼2)2(3𝑖 + 𝛼0 + 𝛼1 − 1)(3𝑖 + 𝛼0 + 𝛼2 − 1)
)−1

;

𝑐2𝑖+1= (2𝑖 + 𝛼0 + 1)(2𝑖 + 𝛼0 + 𝛼1 + 1)(2𝑖 + 𝛼0 + 𝛼2 + 1)
(

54𝑖5 + (63𝛼0 + 45𝛼1

+45𝛼2 + 135)𝑖4 + (24𝛼20 + 8𝛼21 + 8𝛼22 + 42𝛼0𝛼1 + 42𝛼0𝛼2 + 44𝛼1𝛼2 + 126𝛼0
+76𝛼1 + 104𝛼2 + 120)𝑖3 + (3𝛼30 + 𝛼31 + 𝛼32 + 12𝛼20𝛼1 + 12𝛼20𝛼2 + 3𝛼0𝛼21
+3𝛼0𝛼22 + 33𝛼0𝛼1𝛼2 + 8𝛼21𝛼2 + 8𝛼1𝛼22 + 36𝛼20 + 5𝛼21 + 19𝛼22 + 54𝛼0𝛼1
+72𝛼0𝛼2 + 66𝛼1𝛼2 + 87𝛼0 + 39𝛼1 + 81𝛼2 + 45)𝑖2 + (𝛼30𝛼1 + 𝛼30𝛼2
+6𝛼20𝛼1𝛼2 + 𝛼31𝛼2 + 𝛼1𝛼32 + 3𝛼0𝛼21𝛼2 + 3𝛼0𝛼1𝛼22 + 3𝛼30 + 2𝛼32 + 12𝛼20𝛼1
+12𝛼20𝛼2 + 6𝛼0𝛼22 + 33𝛼0𝛼1𝛼2 + 5𝛼21𝛼2 + 11𝛼1𝛼22 + 18𝛼20 + 20𝛼0𝛼1
+38𝛼0𝛼2 + 14𝛼22 + 26𝛼1𝛼2 + 24𝛼0 + 6𝛼1 + 24𝛼2 + 6)𝑖 + 𝛼30𝛼1 + 3𝛼20𝛼1𝛼2
+3𝛼0𝛼1𝛼22 + 𝛼1𝛼32 + 𝛼30 + 𝛼32 + 3𝛼20𝛼1 + 3𝛼20𝛼2 + 6𝛼0𝛼1𝛼2 + 3𝛼0𝛼22

+3𝛼1𝛼22 + 3𝛼20 + 3𝛼22 + 2𝛼0𝛼1 + 6𝛼0𝛼2 + 2𝛼1𝛼2 + 2𝛼0 + 2𝛼2
)

× (3𝑖 + 𝛼0 + 𝛼1 + 3)−1(3𝑖 + 𝛼0 + 𝛼2 + 2)−1(3𝑖 + 𝛼0 + 𝛼1 + 2)−2

−2 −1 −1
4

×(3𝑖 + 𝛼0 + 𝛼2 + 1) (3𝑖 + 𝛼0 + 𝛼1 + 1) (3𝑖 + 𝛼0 + 𝛼2) ;

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

C

C

R

𝐌

W

𝛼

I

𝚏𝚘𝚛 𝑖 = 1, 2,…

𝑑2𝑖 = 𝑖(2𝑖 + 𝛼0)(2𝑖 + 𝛼0 − 1)(2𝑖 + 𝛼0 + 𝛼1)(2𝑖 + 𝛼0 + 𝛼1 − 1)(2𝑖 + 𝛼0 + 𝛼2)

× (2𝑖 + 𝛼0 + 𝛼2 − 1)(𝑖 + 𝛼1)(𝑖 + 𝛼1 − 𝛼2)(3𝑖 + 𝛼0 + 𝛼1 + 1)−1

× (3𝑖 + 𝛼0 + 𝛼1)−2(3𝑖 + 𝛼0 + 𝛼2)−1(3𝑖 − 1 + 𝛼0 + 𝛼1)−2

× (3𝑖 + 𝛼0 + 𝛼2 − 1)−1(3𝑖 + 𝛼0 + 𝛼1 − 2)−1(3𝑖 + 𝛼0 + 𝛼2 − 2)−1,

𝑑2𝑖+1= 𝑖(2𝑖 + 𝛼0 + 1)(2𝑖 + 𝛼0)(2𝑖 + 𝛼0 + 𝛼1)(2𝑖 + 𝛼0 + 𝛼1 + 1)

× (2𝑖 + 𝛼0 + 𝛼2 + 1)(2𝑖 + 𝛼0 + 𝛼2)(𝑖 + 𝛼2)(𝑖 + 𝛼2 − 𝛼1)

× (3𝑖 + 𝛼0 + 𝛼1 + 2)−1(3𝑖 + 𝛼0 + 𝛼2 + 2)−1(3𝑖 + 𝛼0 + 𝛼1 + 1)−1

× (3𝑖 + 1 + 𝛼0 + 𝛼2)−2(3𝑖 + 𝛼0 + 𝛼1)−1(3𝑖 + 𝛼0 + 𝛼2)−2(3𝑖 + 𝛼0 + 𝛼2 − 1)−1.

oefficients (5), involved in the computation of the weights:

𝑓1,1 =
𝛤 (1+𝛼0)𝛤 (1+𝛼1)
𝛤 (2+𝛼0+𝛼1)

,

𝑓2,1 =
𝛤 (1+𝛼0)𝛤 (1+𝛼2)
𝛤 (2+𝛼0+𝛼2)

, 𝑓2,2 =
(

(1 + 𝛼2) − (2 + 𝛼0 + 𝛼2)𝑏0
) 𝛤 (1+𝛼0)𝛤 (1+𝛼2)

𝛤 (3+𝛼0+𝛼2)
,

where 𝛤 is the Gamma function [14, p. 255] defined as

𝛤 (𝑧) = ∫

∞

0
𝑡𝑧−1𝑒−𝑡𝑑𝑡, (𝑧) > 0,

and computed by the Matlab function gamma.m.

References: [9,15].

𝐌𝐎𝐏2 ∶ Multiple Laguerre polynomials of first kind

Weights:

(

𝑤(1)(𝑥), 𝑤(2)(𝑥)
)

∶= (𝑥𝛼1𝑒−𝑥, 𝑥𝛼2𝑒−𝑥) ,

𝛼𝑗 > −1, 𝑗 = 1, 2.

Interval: 𝛥(𝑖) = [0,∞), 𝑖 = 1, 2.

Recurrence relation coefficients:

𝚏𝚘𝚛 𝑖 = 0, 1, 2,…
𝑏2𝑖 = 3𝑖 + 𝛼1 + 1,
𝑏2𝑖+1 = 3𝑖 + 𝛼2 + 2,
𝑐2𝑖 = 𝑖(3𝑖 + 𝛼1 + 𝛼2),
𝑐2𝑖+1 = 3𝑖2 + (𝛼1 + 𝛼2 + 3)𝑖 + 𝛼1 + 1,
𝑑2𝑖 = 𝑖(𝑖 + 𝛼1)(𝑖 + 𝛼1 − 𝛼2),
𝑑2𝑖+1 = 𝑖(𝑖 + 𝛼2)(𝑖 + 𝛼2 − 𝛼1).

oefficients (5), involved in the computation of the weights:

𝑓1,1 = 𝛤 (1 + 𝛼1),
𝑓2,1 = 𝛤 (1 + 𝛼2), 𝑓2,2 = 𝛤 (1 + 𝛼2)(𝛼2 − 𝛼1).

eferences: [9,16,17].

𝐎𝐏3 ∶ Multiple Laguerre polynomials of second kind

eights:

(

𝑤(1)(𝑥), 𝑤(2)(𝑥)
)

∶= (𝑥𝛼0𝑒−𝛼1𝑥, 𝑥𝛼0𝑒−𝛼2𝑥) ,

0 > −1, 𝛼𝑗 > 0, 𝑗 = 1, 2, 𝛼1 ≠ 𝛼2.

nterval: 𝛥(𝑖) = [0,∞), 𝑖 = 1, 2.
5

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

C

Recurrence relation coefficients:

𝚏𝚘𝚛 𝑖 = 0, 1, 2,…

𝑏2𝑖 =
𝑖(𝛼1 + 3𝛼2) + (1 + 𝛼0)𝛼2

𝛼1𝛼2
,

𝑏2𝑖+1 =
𝑖(3𝛼1 + 𝛼2) + (2 + 𝛼0)𝛼1 + 𝛼2

𝛼1𝛼2
,

𝑐2𝑖 =
𝑖(2𝑖 + 𝛼0)(𝛼21 + 𝛼22)

𝛼21𝛼
2
2

,

𝑐2𝑖+1 =
2𝑖2(𝛼21 + 𝛼22) + 𝑖

(

𝛼21 + 3𝛼22 + 𝛼0(𝛼21 + 𝛼22)
)

+ (1 + 𝛼0)𝛼22
𝛼21𝛼

2
2

,

𝑑2𝑖 =
𝑖(2𝑖 + 𝛼0)(2𝑖 + 𝛼0 − 1)(𝛼2 − 𝛼1)

𝛼31𝛼2
,

𝑑2𝑖+1 =
𝑖(2𝑖 + 𝛼0)(2𝑖 + 𝛼0 + 1)(𝛼1 − 𝛼2)

𝛼1𝛼
3
2

.

oefficients (5), involved in the computation of the weights:

𝑓1,1 = 𝛼−1−𝛼01 𝛤 (1 + 𝛼0),
𝑓2,1 = 𝛼−1−𝛼02 𝛤 (1 + 𝛼0), 𝑓2,2 = 𝛼−11 𝛼−2−𝛼02 (𝛼1 − 𝛼2)𝛤 (2 + 𝛼0).

References:[9,18].

𝐌𝐎𝐏4 ∶ Multiple Hermite polynomials

Weights:

(

𝑤(1)(𝑥), 𝑤(2)(𝑥)
)

∶=
(

𝑒−𝑥
2+𝛼1𝑥, 𝑒−𝑥

2+𝛼2𝑥
)

,

𝛼1, 𝛼2 ∈ R, 𝛼1 ≠ 𝛼2.

Intervals: 𝛥(𝑖) = (−∞,∞), 𝑖 = 1, 2.

Recurrence relation coefficients:

𝚏𝚘𝚛 𝑖 = 0, 1, 2,…

𝑏2𝑖 = 𝛼1∕2,

𝑏2𝑖+1 = 𝛼2∕2,

𝑐𝑖 = 𝑖∕2,

𝑑2𝑖 = 𝑖(𝛼1 − 𝛼2)∕4,

𝑑2𝑖+1 = 𝑖(𝛼2 − 𝛼1)∕4.

Coefficients (5), involved in the computation of the weights:

𝑓1,1 = 𝑒
𝛼21
4
√

𝜋,

𝑓2,1 = 𝑒
𝛼22
4
√

𝜋, 𝑓2,2 =
𝛼2−𝛼1

2 𝑒
𝛼22
4
√

𝜋.

References: [9].

𝐌𝐎𝐏5 ∶ Multiple Laguerre–Hermite polynomials

Weights:

(

𝑤(1)(𝑥), 𝑤(2)(𝑥)
)

∶=
(

𝑒−𝑥
2
|𝑥|𝛽 , 𝑒−𝑥

2
𝑥𝛽

)

,

𝛽 > −1.

Intervals: 𝛥(1) = (−∞, 0], 𝛥(2) = [0,∞).
6

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

w

R

𝐌
W

I
R

R

Recurrence relation coefficients:

𝚏𝚘𝚛 𝑖 = 0, 1, 2,…

𝑏2𝑖 = 𝑋(𝛽)
𝑖 ,

𝑏2𝑖+1 = −𝑋(𝛽)
𝑖 ,

𝑐2𝑖 =
𝑖
2 ,

𝑐2𝑖+1 =
2𝑖+𝛽+1

2 − (𝑋(𝛽)
𝑖)2

𝑑2𝑖 =
𝑖
2𝑋

(𝛽)
𝑖−1,

𝑑2𝑖+1 = − 𝑖
2𝑋

(𝛽)
𝑖

ith 𝑋(𝛽)
𝑖 = −

𝛤
(

𝑖+𝛽+2
2

)

𝛤
(

𝑖+𝛽+1
2

) . Moreover, for large 𝑖, 𝑋(𝛽)
𝑖 = −

√

𝛽+𝑖
2 + 𝑜(

√

𝑖) [9].

Coefficients (5), involved in the computation of the weights:

𝑓1,1 =
1
2𝛤

(

1+𝛽
2

)

,

𝑓2,1 =
1
2𝛤

(

1+𝛽
2

)

, 𝑓2,2 =
1
2

(

−𝑏0𝛤
(

1+𝛽
2

)

+ 𝛤
(

2+𝛽
2

))

.

eferences: [9,17].

𝐎𝐏6 ∶ MOPs Associated with the Modified Bessel function of the second kind (Macdonald function) 𝐾𝜈 (𝑥)
eights:

(

𝑤(1)(𝑥), 𝑤(2)(𝑥)
)

∶=
(

2𝑥𝛼+𝜈∕2𝐾𝜈 (2
√

𝑥), 2𝑥𝛼+(𝜈+1)∕2𝐾𝜈+1(2
√

𝑥)
)

,

𝛼 > −1, 𝜈 ≥ 0, with 𝐾𝜈 (𝑥) the modified Bessel function of the second kind given by

𝐾𝜈 (𝑥) ∶=
1
2

(𝑥
2

)𝜈

∫

∞

0
𝑒𝑥𝑝

(

−𝑡 − 𝑥2

4𝑡

)

𝑡−𝜈−1𝑑𝑡.

nterval: 𝛥(𝑖) = [0,∞), 𝑖 = 1, 2.
ecurrence relation coefficients:

𝚏𝚘𝚛 𝑖 = 0, 1, 2,…
𝑏𝑖 = 𝑖(3𝑖 + 𝛼 + 2𝜈) + (𝛼 + 1)(3𝑖 + 𝛼 + 𝜈 + 1),
𝑐𝑖 = 𝑖(𝑖 + 𝛼)(𝑖 + 𝛼 + 𝜈)(3𝑖 + 2𝛼 + 𝜈),
𝑑𝑖 = 𝑖(𝑖 − 1)(𝑖 + 𝛼)(𝑖 + 𝛼 − 1)(𝑖 + 𝛼 + 𝜈)(𝑖 + 𝛼 + 𝜈 − 1).

Coefficients (5), involved in the computation of the weights:

𝑓1,1 = 𝛤 (𝛼 + 1)𝛤 (𝛼 + 𝜈 + 1),
𝑓2,1 = 𝛤 (𝛼 + 1)𝛤 (𝛼 + 𝜈 + 2), 𝑓2,2 = 𝛤 (𝛼 + 2)𝛤 (𝛼 + 𝜈 + 2).

References: [5,19,20].

𝐌𝐎𝐏7 ∶ MOPs associated with the Modified Bessel functions of the first kind 𝐼𝜈 (𝑥)
Weights:

(

𝑤(1)(𝑥), 𝑤(2)(𝑥)
)

∶=
(

𝑥𝜈∕2𝐼𝜈 (2
√

𝑥)𝑒−𝛽𝑥, 𝑥(𝜈+1)∕2𝐼𝜈+1(2
√

𝑥)𝑒−𝛽𝑥
)

,

𝛽 > 0, 𝜈 > −1 where 𝐼𝜈(𝑥) is the modified Bessel function of the first kind [21],

𝐼𝜈 (𝑥) =
(𝑧
2

)𝜈 ∞
∑

𝑘=0

(

𝑧
2

)2𝑘

𝑘!𝛤 (𝜈 + 𝑘 + 1)
, 𝜈 ∈ R.

Interval: 𝛥(𝑖) = [0,∞), 𝑖 = 1, 2.
ecurrence relation coefficients:

𝚏𝚘𝚛 𝑖 = 0, 1, 2,…
𝑏𝑖 = (1 + 𝛽(𝜈 + 2𝑖 + 1))∕𝛽2,
𝑐𝑖 = 𝑖(2 + 𝛽(𝜈 + 𝑖))∕𝛽3,

4

7

𝑑𝑖 = 𝑖(𝑖 − 1)∕𝛽 .

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

w

d

I
R
L

w

T

C

R

𝐌
W

Coefficients (5), involved in the computation of the weights:

𝑓1,1 = 𝛽−1−𝜈𝑒
1
𝛽 ,

𝑓2,1 = 𝛽−2−𝜈𝑒
1
𝛽 , 𝑓2,2 = 𝛽−3−𝜈𝑒

1
𝛽 .

References: [5,21].

𝐌𝐎𝐏8 ∶ MOPs associated with the Gauss’ hypergeometric function
Weights:

𝑤(1)(𝑥) ∶= 𝛤 (𝑐)𝛤 (𝑑)
𝛤 (𝑎)𝛤 (𝑏)𝛤 (𝛿)𝑥

𝑎−1(1 − 𝑥)𝛿−1 2𝐹1

([

𝑐 − 𝑏
𝑑 − 𝑏

]

, 𝛿, 1 − 𝑥
)

,

𝑤(2)(𝑥) ∶= 𝛤 (𝑐+1)𝛤 (𝑑)
𝛤 (𝑎)𝛤 (𝑏+1)𝛤 (𝛿)𝑥

𝑎−1(1 − 𝑥)𝛿−1 2𝐹1

([

𝑐 − 𝑏
𝑑 − 𝑏 − 1

]

, 𝛿, 1 − 𝑥
)

,

ith 𝑎, 𝑏, 𝑐, 𝑑 ∈ R+, 𝑐 + 1, 𝑑 > 𝑎, 𝑐, 𝑑 > 𝑏, 𝛿 = 𝑐 + 𝑑 − 𝑏 − 𝑎 > 0, and

2𝐹1

([

𝛼
𝛽

]

, 𝛾, 𝑧
)

=
∞
∑

𝑖=0

(𝛼)𝑖(𝛽)𝑖
(𝛾)𝑖

𝑧𝑛

𝑛!

is the Gauss’ hypergeometric function, computed by the Matlab function hypergeom.m, and (𝜇)𝑖 denotes the Pochhammer symbol
efined by

(𝜇)0 ∶= 0,

(𝜇)𝑖 ∶= 𝜇(𝜇 + 1)⋯ (𝜇 + 𝑖 − 1), 𝑖 ∈ Z+.

nterval: 𝛥(𝑖) = [0, 1], 𝑖 = 1, 2.
ecurrence relation coefficients:
et

𝜆3𝑖 =
𝑖(𝑎 + 𝑖 − 1)(𝑐′𝑖 − 𝑏 − 1)

(𝑐′𝑖 + 𝑖 − 2)(𝑐′𝑖 + 𝑖 − 1)(𝑐′𝑖+1 + 𝑖 − 2)
,

𝜆3𝑖+1 =
𝑖(𝑏 + 𝑖)(𝑐′𝑖+1 − 𝑎 − 1)

(𝑐′𝑖 + 𝑖 − 1)(𝑐′𝑖+1 + 𝑖 − 2)(𝑐′𝑖+1 + 𝑖 − 1)
,

𝜆3𝑖+2 =
(𝑎 + 𝑖)(𝑏 + 𝑖)(𝑐′𝑖 − 1)

(𝑐′𝑖 + 𝑖 − 1)(𝑐′𝑖 + 𝑖)(𝑐′𝑖+1 + 𝑖 − 1)
,

ith

𝑐′𝑖 =
{

𝑐 + 𝑘, if 𝑖 = 2𝑘 − 1,
𝑑 + 𝑘, if 𝑖 = 2𝑘.

hen

𝚏𝚘𝚛 𝑖 = 0, 1, 2,…
𝑏𝑖 = 𝜆3𝑖𝜆3𝑖+1𝜆3𝑖+2,
𝑐𝑖 = 𝜆3𝑖+1𝜆3𝑖+3 + 𝜆3𝑖+2𝜆3𝑖+3 + 𝜆3𝑖+2𝜆3𝑖+4,
𝑑𝑖 = 𝜆3𝑖+2𝜆3𝑖+4𝜆3𝑖+6.

oefficients (5), involved in the computation of the weights:

𝑓1,1 = 1,
𝑓2,1 = 1, 𝑓2,2 =

𝑎(𝑐−𝑏)
𝑐𝑑(𝑐+1) .

eferences: [22].

𝐎𝐏9 ∶ MOPs associated with the confluent hypergeometric function
eights:

𝑤(1)(𝑥) ∶=
𝛤 (𝑐)

𝛤 (𝑎)𝛤 (𝑏)
𝑒−𝑥𝑥𝑎−1𝑈 (𝑐 − 𝑏, 𝑎 − 𝑏 + 1, 𝑥),

𝑤(2)(𝑥) ∶=
𝛤 (𝑐 + 1)
𝛤 (𝑎)𝛤 (𝑏)

𝑒−𝑥𝑥𝑎−1𝑈 (𝑐 − 𝑏 + 1, 𝑎 − 𝑏 + 1, 𝑥),

where 𝑈 (𝑎, 𝑏, 𝑧) is the confluent hypergeometric function [14, p.504–505], computed by the Matlab function kummerU.m,

𝑈 (𝑎, 𝑏, 𝑧) = 1
𝛤 (𝑎) ∫

∞

0
𝑒−𝑧𝑡𝑡𝑎−1(1 + 𝑡)𝑏−𝑎−1𝑑𝑡, (𝑧) > 0,(𝑎) > 0,

+

8

𝑎, 𝑏, 𝑐 ∈ R , 𝑐 > max{𝑎, 𝑏}.

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

R

R

Interval: 𝛥(𝑖) = [0,∞), 𝑖 = 1, 2.
ecurrence relation coefficients:

𝚏𝚘𝚛 𝑖 = 0,1, 2,…

𝑏2𝑖 = (2𝑖 + 1)(𝑎 + 2𝑖)(𝑏 + 2𝑖)
𝑐 + 3𝑖 − 2𝑖(𝑎 + 2𝑖 − 1)(𝑏 + 2𝑖 − 1)

𝑐 + 3𝑖 − 1 ,

𝑏2𝑖+1 =
(2𝑖 + 2)(𝑎 + 2𝑖 + 1)(𝑏 + 2𝑖 + 1)

𝑐 + 3𝑖 + 2 − (2𝑖 + 1)(𝑎 + 2𝑖)(𝑏 + 2𝑖)
𝑐 + 3𝑖 ,

𝑐2𝑖 = 2𝑖(𝑎 + 2𝑖 − 1)(𝑏 + 2𝑖 − 1)
𝑐 + 3𝑖 − 1

((2𝑖 − 1)(𝑎 + 2𝑖 − 2)(𝑏 + 2𝑖 − 2)
2(𝑐 + 3𝑖 − 2)

− 2𝑖(𝑎 + 2𝑖 − 1)(𝑏 + 2𝑖 − 1)
𝑐 + 3𝑖 − 1 + (2𝑖 + 1)(𝑎 + 2𝑖)(𝑏 + 2𝑖)

2(𝑐 + 3𝑖)

)

,

𝑐2𝑖+1 = (2𝑖 + 1)(𝑎 + 2𝑖)(𝑏 + 2𝑖)
𝑐 + 3𝑖

(𝑖(𝑎 + 2𝑖 − 1)(𝑏 + 2𝑖 − 1)
(𝑐 + 3𝑖 − 1)

− (2𝑖 + 1)(𝑎 + 2𝑖)(𝑏 + 2𝑖)
(𝑐 + 3𝑖) + (𝑖 + 1)(𝑎 + 2𝑖 + 1)(𝑏 + 2𝑖 + 1)

𝑐 + 3𝑖 + 1

)

,

𝑑2𝑖 = 2𝑖(2𝑖 + 1)(𝑎 + 2𝑖 − 1)(𝑎 + 2𝑖)(𝑏 + 2𝑖 − 1)(𝑏 + 2𝑖)(𝑐 + 𝑖 − 1)
(𝑐 + 3𝑖 − 2)(𝑐 + 3𝑖 − 1)(𝑐 + 3𝑖)(𝑐 + 3𝑖 − 1)(𝑐 + 3𝑖)(𝑐 + 3𝑖 + 1)

× (𝑐 − 𝑎 + 𝑖)(𝑐 − 𝑏 + 𝑖)

𝑑2𝑖+1 =
(2𝑖 + 1)(2𝑖 + 2)(𝑎 + 2𝑖)(𝑎 + 2𝑖 + 1)(𝑏 + 2𝑖)(𝑏 + 2𝑖 + 1)

(𝑐 + 3𝑖)(𝑐 + 3𝑖 + 1)(𝑐 + 3𝑖 + 2) .

Coefficients (5), involved in the computation of the weights:

𝑓1,1 = 1,
𝑓2,1 = 1, 𝑓2,2 = − 𝑎𝑏

𝑐(𝑐+1) .

eferences: [23].
In the sequel, we denote the 𝑘-th MOP by 𝐌𝐎𝐏𝑘, for 𝑘 ∈ {1, 2,… , 9}.

4. Matlab function ClassMOP.m

Here, the Matlab function ClassMOP.m for computing the coefficients of the recurrence relation associated with different
classes of MOPs is described.

The Matlab command is

[𝒃, 𝒄,𝒅, 𝐹]=𝙲𝚕𝚊𝚜𝚜𝙼𝙾𝙿(𝙸𝙲, 𝑛,𝜶)

The input parameters of ClassMOP.m are:

• IC: kind of MOPs.
• 𝑛: number of nodes of the simultaneous Gaussian quadrature rule.
• 𝜶: vector of parameters characterizing the weights.

The output parameters of ClassMOP are:

• 𝒃: the main diagonal of 𝐻𝑛.
• 𝒄: the first subdiagonal of 𝐻𝑛.
• 𝒅: the second subdiagonal of 𝐻𝑛.
• 𝐹 ∶ the 2 × 2 lower triangular matrix in (5).

The list of input parameters for the considered classes of MOPs is summarized in Table 1.

5. Matlab function GaussMOP.m

Here, the Matlab function GaussMOP.m for computing the simultaneous Gaussian quadrature rule associated with different
kinds of weights, is reported.

The Matlab command for computing the simultaneous Gaussian quadrature rule is

[𝒙,𝝎(1),𝝎(2), ier]=GaussMOP(𝒃, 𝒄,𝒅, 𝑛, 𝐹)

The input parameters of GaussMOP.m are:

• 𝒃: the main diagonal of 𝐻𝑛.
• 𝒄: the first subdiagonal of 𝐻𝑛.
• 𝒅: the second subdiagonal of 𝐻𝑛.
9

• 𝑛: number of nodes of the simultaneous Gaussian quadrature rule.

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

T

T

6

t
t

Table 1
Input parameters of the Matlab function ClassMOP.m.

MOP # nodes 𝛼

1 𝑛 [𝛼0 , 𝛼1 , 𝛼2]𝑇 , 𝛼𝑗 > −1, 𝑗 = 0, 1, 2, 𝛼1 − 𝛼2 ∉ Z
2 𝑛 [𝛼1 , 𝛼2]𝑇 , 𝛼𝑗 > −1, 𝑗 = 1, 2

3 𝑛 [𝛼0 , 𝛼1 , 𝛼2]𝑇 , 𝛼0 > −1, 𝛼𝑗 > 0, 𝑗 = 1, 2, 𝛼1 ≠ 𝛼2 .

4 𝑛 [𝛼1 , 𝛼2]𝑇 , 𝛼1 , 𝛼2 ∈ R, 𝛼1 ≠ 𝛼2
5 𝑛 [𝛽]𝑇 , 𝛽 > −1

6 𝑛 [𝛼, 𝜈]𝑇 , 𝛼 > −1, 𝜈 ≥ 0

7 𝑛 [𝛽, 𝜈]𝑇 , 𝛽 > 0, 𝜈 ≥ −1

8 𝑛 [𝑎, 𝑏, 𝑐, 𝑑]𝑇 , 𝑎, 𝑏, 𝑐, 𝑑 ∈ R+ , 𝑐 + 1, 𝑑 > 𝑎, 𝑐, 𝑑 > 𝑏.

9 𝑛 [𝑎, 𝑏, 𝑐]𝑇 , 𝑎, 𝑏, 𝑐 ∈ R+ , 𝑐 > max{𝑎, 𝑏}.

• 𝐹 ∶ the 2 × 2 lower triangular matrix in (5).

he output parameters of GaussMOP.m are:

• 𝒙: vector of nodes of the simultaneous Gauss quadrature rule.
• 𝝎(1): vector of weights of the simultaneous Gaussian quadrature rule corresponding to 𝑤(1)(𝑥).
• 𝝎(2): vector of weights of the simultaneous Gaussian quadrature rule corresponding to 𝑤(2)(𝑥).
• ier: is set to zero for normal return, otherwise ier is set to 𝑗 if the 𝑗-th node has not been determined after 30 iterations.

he algorithm is summarized in the following steps, described in detail in Sections 6 and 7, respectively:

• Transformation of 𝐻𝑛 to the similar matrix �̂�𝑛 ∶= 𝑆−1
𝑛 𝐻𝑛𝑆𝑛.

• Computation of the simultaneous Gaussian quadrature rule.

. Transformation of 𝑯𝒏 to the similar matrix �̂�𝒏 ∶= 𝑺−𝟏
𝒏 𝑯𝒏𝑺𝒏

As described in Section 1, the computation of simultaneous Gaussian quadrature rules associated with MOPs relies on that of
he eigenvalues 𝑥𝑗 and corresponding left and right eigenvectors 𝒖(𝑗) and 𝒗(𝑗), 𝑗 = 1,… , 𝑛, respectively, of 𝐻𝑛. As noticed in [5],
he latter eigenvalue problem is very ill-conditioned for all classes of MOPs listed in Section 3. Furthermore, the Matlab function
balance.m, commonly applied to reduce the eigenvalue condition number, does not improve the condition of the considered
eigenvalue problem, and, therefore, the Matlab function eig.m does not yield reliable results [5,13]. Indeed, in most cases, the
eigenvalues computed by eig.m are complex conjugate, while the MOPs have only real zeros.

To reduce the eigenvalue condition number of the Hessenberg matrix 𝐻𝑛, a new diagonal balancing procedure has been recently
introduced in [13], whose main idea consists of transforming 𝐻𝑛 into a similar matrix

�̂�𝑛 ∶= 𝑆−1
𝑛 𝐻𝑛𝑆𝑛 (6)

having the same Hessenberg structure, with 𝑆𝑛 = 𝚍𝚒𝚊𝚐(𝑠1,… , 𝑠𝑛) a diagonal matrix, such that 𝚝𝚛𝚒𝚞(�̂�𝑛,−1) is symmetric.
After this similarity transformation, the condition of the eigenvalue problem for �̂�𝑛 is drastically reduced with respect to that

of 𝐻𝑛, as shown in Fig. 1, where the condition numbers of the eigenvalues of 𝐻𝑛 and �̂�𝑛, with 𝑛 = 20 and parameters listed in
Table 2 for all the considered MOPs, are displayed. Observe that the entries of the diagonal balancing matrix 𝑆𝑛 = 𝚍𝚒𝚊𝚐(𝑠1,… , 𝑠𝑛)
in (6), introduced in [13], grow as the factorial function, i.e., 𝑠𝑖 ∼ 𝑖! (see Table 3, fourth column), for most MOPs. Hence, for 𝑖 large
enough, e.g., 𝑖 > 170, 𝑠𝑖 > (2−2−52)21023, the largest finite floating-point number in IEEE

®
double precision. Therefore, in such cases,

the computation of 𝑠𝑖 yields Inf in Matlab.
To overcome this drawback, we consider here the same balancing technique applied to the matrix 𝐻𝑛, but without explicitly

computing the matrix 𝑆𝑛. Observe that we need to compute only 𝑠1 and 𝑠2, i.e., the first two entries in the main diagonal of 𝑆𝑛,
since they are involved in the computation of the weights of the simultaneous Gaussian quadrature rules (11). The Matlab function
DscaleS2.m, implementing the new balancing technique, is displayed in Table 8 in the Appendix.

Since the considered MOPs are monic, i.e., 𝑎𝑖 = 1, 𝑖 = 0, 1,… , 𝑛 − 1, then [13]

𝑠𝑖 =
√

𝑐1𝑐2 ⋯ 𝑐𝑖, 𝑖 = 1,… , 𝑛. (7)

Furthermore, denoted by

𝑐𝑖 = ℎ̂𝑖+1,𝑖, 𝑖 = 1,… , 𝑛 − 1,

𝑑𝑖 = ℎ̂𝑖+1,𝑖−1, 𝑖 = 2,… , 𝑛 − 1,

defined 𝑠0 ≡ 1, it turns out [13],

𝑐𝑖 = 𝑐𝑖
𝑠𝑖−1 , 𝑖 = 1,… , 𝑛 − 1, (8)
10

𝑠𝑖

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

𝛼

L
f

P

Table 2
MOPs parameters used for com-
puting the eigenvalue condition
number of 𝐻20 and �̂�20 , shown
in Fig. 1.
IC 𝛼

1 [−0.5, −0.2, 0.4]𝑇

2 [−0.5, 0.5]𝑇

3 [−0.5, 0.2, 0.4]𝑇

4 [0.2, 0.5]𝑇

5 [0.5]𝑇

6 [−0.5, 0.5]𝑇

7 [0.5, −0.5]𝑇

8 [1, 1, 3, 2]𝑇

9 [3, 2.5, 7.5]𝑇

Fig. 1. Condition number of the eigenvalues of 𝐻20 (left) and of the eigenvalues of �̂�20 (right) for all the considered MOPs.

𝑑𝑖 = 𝑑𝑖
𝑠𝑖−2
𝑠𝑖

, 𝑖 = 2,… , 𝑛 − 1. (9)

For each MOP in Section 3, the asymptotic behavior of 𝑐𝑖 and 𝑑𝑖, respectively denoted by 𝑐𝑖≫0 and 𝑑𝑖≫0, can be represented as the
product of a constant times a power of 𝑖, i.e.,

𝑐𝑖≫0 = 𝜃𝑐 𝑖
𝜌𝑐 and 𝑑𝑖≫0 = 𝜃𝑑 𝑖

𝜌𝑑 , 𝜃𝑐 , 𝜃𝑑 , 𝜌𝑐 , 𝜌𝑑 ∈ R,

except for 𝐌𝐎𝐏3, 𝐌𝐎𝐏4, 𝐌𝐎𝐏5, where the even and odd cases need to be distinguished. Moreover, 𝑐𝑖≫0 and 𝑑𝑖≫0 depend on 𝛼1 and
2 for 𝐌𝐎𝐏3 and 𝐌𝐎𝐏4, and on 𝛽 for 𝐌𝐎𝐏7.

The following Lemma holds.

emma 1. Let 𝑐𝑖, 𝑑𝑖, 𝑐𝑖, 𝑑𝑖, 𝑖 = 0, 1,… , 𝑛− 1, be, respectively, the entries of the first and second subdiagonal of 𝐻𝑛 and the entries of the
irst and second subdiagonal of �̂�𝑛 = 𝑆−1

𝑛 𝐻𝑛𝑆𝑛. Then

𝑐𝑖≫0 =
√

𝑐𝑖, 𝑑𝑖≫0 =
𝑑𝑖
𝑐𝑖
. (10)

roof. By (7),

𝑠 = 𝑠
√

𝑐 = 𝑠
√

𝜃 𝑖𝜌𝑐 .
11

𝑖 𝑖−1 𝑖 𝑖−1 𝑐

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

M

c

Table 3
Asymptotic behavior of the coefficients 𝑐𝑖 , 𝑑𝑖, 𝑐𝑖 , 𝑑𝑖, 𝑖 = 0, 1,… , 𝑛 − 1, and 𝑠𝑖 , 𝑖 = 1,… , 𝑛..
𝐌𝐎𝐏 𝑐𝑖≫0 𝑑𝑖≫0 𝑠𝑖≫0 𝑐𝑖≫0 𝑑𝑖≫0

𝐌𝐎𝐏1 3
(

4
27

)2 (

4
27

)3
3𝑖∕2

(

4
27

)𝑖 √

3
(

4
27

)

1
3

4
27

𝐌𝐎𝐏2 3
(

𝑖
2

)2 (

𝑖
2

)3 (√

3
2

)𝑖
𝑖!

√

3
2
𝑖 𝑖

6

𝐌𝐎𝐏3
𝑖2

2
𝛼21+𝛼

2
2

𝛼21𝛼
2
2

(−1)𝑖 𝑖3 (𝛼2−𝛼1)

2
(

𝛼2+(−1)
𝑖

1 𝛼2−(−1)
𝑖

2

)

(

𝛼21+𝛼
2
2

2𝛼21𝛼
2
2

)

𝑖
2 𝑖!

√

𝛼21+𝛼
2
2

2(𝛼21𝛼
2
2)
𝑖 (−1)𝑖 𝑖(𝛼2−𝛼1)

𝛼(−1)
𝑖

1 𝛼(−1)
𝑖+1

2 (𝛼21+𝛼
2
2)

𝐌𝐎𝐏4
𝑖
2

(−1)𝑖 𝑖(𝛼1−𝛼2)
8

√

𝑖!
2𝑖

√

𝑖
2

(−1)𝑖 (𝛼1−𝛼2)
4

𝐌𝐎𝐏5
𝑖
4

(−1)𝑖+1
√

𝑖3

8

√

𝑖!
4𝑖

√

𝑖
4

(−1)𝑖+1
√

𝑖
4

𝐌𝐎𝐏6 3𝑖4 𝑖6 3
𝑖
2 (𝑖!)2

√

3𝑖2 1
3
𝑖2

𝐌𝐎𝐏7
𝑖2

𝛽2
𝑖2

𝛽4
𝑖!
𝛽𝑖

𝑖 𝑖
𝛽2

𝐌𝐎𝐏8 3
(

4
27

)2 (

4
27

)3 (
√

3 4
27

)𝑖 √

3 4
27

1
3

4
27

𝐌𝐎𝐏9
280
81

𝑖2 3−3−3
1+(−1)𝑖

2 26𝑖3
(

280
81

)
𝑖
2 𝑖!

√

280
81

𝑖 1
35
3−3

1+(−1)𝑖

2 23𝑖

Then

𝑠𝑖 = 𝜃
𝑖
2
𝑐 𝑖!

𝜌𝑐
2 .

oreover, by (8),

𝑐𝑖≫0 = 𝑐𝑖
𝑠𝑖−1
𝑠𝑖

= 𝜃𝑐 𝑖
𝜌𝑐
𝜃

𝑖−1
2

𝑐 (𝑖 − 1)!
𝜌𝑐
2

𝜃
𝑖
2
𝑐 𝑖!

𝜌𝑐
2

=
√

𝜃𝑐 𝑖𝜌𝑐 =
√

𝑐𝑖≫0,

and, by (9),

𝑑𝑖≫0 = 𝑑𝑖
𝑠𝑖−2
𝑠𝑖

= 𝜃𝑑 𝑖
𝜌𝑑

𝜃
𝑖−2
2

𝑐 (𝑖 − 2)!
𝜌𝑐
2

𝜃
𝑖
2
𝑐 𝑖!

𝜌𝑐
2

=
𝜃𝑑
𝜃𝑐

𝑖𝜌𝑑−𝜌𝑐 =
𝑑𝑖≫0
𝑐𝑖≫0

. □

The asymptotic behavior of the coefficients 𝑐𝑖, 𝑑𝑖, 𝑐𝑖, 𝑑𝑖, 𝑖 = 0, 1,… , 𝑛 − 1, and 𝑠𝑖, 𝑖 = 1,… , 𝑛, are displayed in Table 3 for all the
onsidered MOPs. We observe that, except for 𝐌𝐎𝐏1 and 𝐌𝐎𝐏8, whose coefficients 𝑐𝑖≫0, 𝑑𝑖≫0, 𝑐𝑖≫0 and 𝑑𝑖≫0 are independent of 𝑖,

lim
𝑖→∞

𝑐𝑖≫0
𝑐𝑖≫0

= 0, lim
𝑖→∞

𝑑𝑖≫0
𝑑𝑖≫0

= 0,

and

𝑐𝑖≫0 < |𝑑𝑖≫0|, 𝑐𝑖≫0 > |𝑑𝑖≫0|.

Therefore, the new balancing technique has the effect of reducing the size of the entries of the second lower subdiagonal of the
Hessenberg matrix �̂�𝑛. As a consequence, the condition numbers of the eigenvalues of �̂�𝑛 are drastically reduced with respect to
those of 𝐻𝑛 (see Fig. 1).

7. Computation of the simultaneous Gaussian quadrature rule

By Theorem 1, the eigenvalues of 𝐻𝑛 and the associated left and right eigenvectors are needed for computing the simultaneous
Gaussian quadrature rule associated with MOPs. Let �̂�𝑗 , �̂�(𝑗), and �̂�(𝑗), 𝑗 = 1,… , 𝑛, be the eigenvalues and corresponding left and
right eigenvectors of �̂�𝑛, i.e.,

�̂�𝑛𝑉𝑛 = 𝑉𝑛�̂�𝑛, �̂�𝑇
𝑛 �̂�𝑛 = �̂�𝑛�̂�

𝑇
𝑛 ,

with

�̂�𝑛 = diag(�̂�1,… , �̂�𝑛), 𝑉𝑛 = [�̂�(1),… , �̂�(𝑛)], and �̂�𝑛 = [�̂�(1),… , �̂�(𝑛)].

All the eigenvalues and corresponding left and right eigenvectors of 𝐻𝑛 can be computed applying the Matlab function eig.m to
the better conditioned matrix �̂�𝑛, with (𝑛3) computational complexity and (𝑛2) memory. Since �̂�𝑛 = 𝑆−1

𝑛 𝐻𝑛𝑆𝑛, then 𝑈𝑛 = 𝑆−1
𝑛 �̂�𝑛,

̂

12

and 𝑉𝑛 = 𝑆𝑛𝑉𝑛.

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

e

c

w
𝐻

T

w

S

By (4), for 𝑗 = 1,… , 𝑛,

𝜔(1)
𝑗 =

𝑣(𝑗)1 𝑓1,1𝑢
(𝑗)
1

𝒖(𝑗)𝑇 𝒗(𝑗)
=

�̂�(𝑗)1 𝑓1,1�̂�
(𝑗)
1

�̂�(𝑗)
𝑇
�̂�(𝑗)

,

𝜔(2)
𝑗 =

𝑣(𝑗)1

(

𝑓2,1𝑢
(𝑗)
1 + 𝑓2,2𝑢

(𝑗)
2

)

𝒖(𝑗)𝑇 𝒗(𝑗)
=

𝑠1�̂�
(𝑗)
1

(

𝑓2,1𝑠
−1
1 �̂�(𝑗)1 + 𝑓2,2𝑠

−1
2 �̂�(𝑗)2

)

�̂�(𝑗)
𝑇
�̂�(𝑗)

.

(11)

Hence, the computation of the nodes and the set of weights of the simultaneous Gaussian quadrature rule relies only on the
igenvalues of �̂�𝑛 and corresponding left and right normalized eigenvectors, on 𝑓1,1, 𝑓2,1 and 𝑓2,2 (5), and on the first two diagonal

entries of 𝑆𝑛.
Here, we propose a more efficient approach to compute the eigenvalues and corresponding left and right eigenvectors of �̂�𝑛,

with (𝑛2) computational complexity and (𝑛) memory, based on the Ehrlich–Aberth method [24–26].
Given an initial guess �̂�(0)

𝑇
=

[

�̂�(0)1 , �̂�(0)2 , ⋯ , �̂�(0)𝑛−1, �̂�(0)𝑛

]𝑇
of all the eigenvalues of �̂�𝑛, they can be simultaneously

omputed by the Ehrlich–Aberth iteration [24–26],

�̂�(𝓁+1)𝑗 = �̂�(𝓁)𝑗 −

�̂�𝑛(�̂�
(𝓁)
𝑗)

�̂�′𝑛(�̂�
(𝓁)
𝑗)

1 −
�̂�𝑛(�̂�

(𝓁)
𝑗)

�̂�′𝑛(�̂�
(𝓁)
𝑗)

𝑛
∑

𝑘=1
𝑘≠𝑗

1
�̂�(𝓁)𝑗 − �̂�(𝓁)𝑘

, 𝑗 = 1,… , 𝑛,

here �̂�𝑖(𝑥), 𝑖 = 0, 1… , 𝑛, are non-monic MOPs satisfying the recurrence relation whose coefficients are those of the balanced matrix
̂ 𝑛,𝑛+1,

⎧

⎪

⎨

⎪

⎩

�̂�−2(𝑥) = 0,
�̂�−1(𝑥) = 0,
𝑐𝑖−1�̂�𝑖+1(𝑥) = (𝑥 − �̂�𝑖)�̂�𝑖(𝑥) − 𝑐𝑖�̂�𝑖−1(𝑥) − 𝑑𝑖�̂�𝑖−2(𝑥),

𝑖 = 0,… , 𝑛 − 1, (12)

with 𝑐𝑖 = �̂�𝑖−1, 𝑖 = 1,… , 𝑛 − 1. Hence, �̂�𝑛(�̂�
(𝑖)
𝑗) and �̂�′𝑛(�̂�

(𝑖)
𝑗) need to be computed at iteration 𝓁 + 1 of the Ehrlich–Aberth method.

To this end, (12) is written in matrix form, obtaining

𝐹𝑛(𝑥)�̂�𝑛(𝑥) ∶=
(

�̂�𝑛,𝑛+1 − 𝑥[𝐼𝑛|𝒐𝑛]
)

�̂�𝑛(𝑥)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̂�0 − 𝑥 �̂�0 0 0 0 … 0 0
𝑐1 �̂�1 − 𝑥 �̂�1 0 0 … 0 0
𝑑2 𝑐2 �̂�2 − 𝑥 �̂�2 0 … 0 0
0 𝑑3 𝑐3 �̂�3 − 𝑥 �̂�3 … 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮

0 … 0 𝑑𝑛−2 𝑐𝑛−2 �̂�𝑛−2 − 𝑥 �̂�𝑛−2 0
0 … 0 0 𝑑𝑛−1 𝑐𝑛−1 �̂�𝑛−1 − 𝑥 �̂�𝑛−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̂�0(𝑥)
�̂�1(𝑥)
�̂�2(𝑥)
�̂�3(𝑥)
⋮

�̂�𝑛−1(𝑥)
�̂�𝑛(𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝒐𝑛.

herefore, �̂�𝑛(𝑥) belongs to the null-space of 𝐹𝑛(𝑥), a full row rank matrix. Such a vector is computed by applying a sequence of 𝑛
Givens rotations, 𝐺𝑖 ∈ R(𝑛+1)×(𝑛+1), 𝑖 = 1,… , 𝑛, to the right of 𝐹𝑛(𝑥) [13],

𝐹𝑛(𝑥)𝑄𝑛 = [𝐿𝑛, 𝒐𝑛],

ith 𝐿𝑛 ∈ R𝑛×𝑛 lower triangular, and 𝑄𝑛 = 𝐺𝑇
1 𝐺

𝑇
2 ⋯𝐺𝑇

𝑛 . Then, the last column of 𝑄𝑛 spans the null-space of 𝐹𝑛(𝑥).
In order to compute �̂�′𝑛(�̃�), we differentiate (13), obtaining

𝐹𝑛(𝑥)�̂�
′
𝑛(𝑥) + 𝐹 ′(𝑥)�̂�𝑛(𝑥) = 𝒐𝑛. (13)

ince 𝐹 ′(𝑥) =
[

−𝐼𝑛 𝒐𝑛
]

and �̂�′0(𝑥) = 0, then [�̂�′1(𝑥), �̂�
′
2(𝑥),… , �̂�′𝑛−1(𝑥), �̂�

′
𝑛(𝑥)]

𝑇 is the solution of the lower triangular linear system

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̂�0 0 0 0 0 … 0
�̂�1 − 𝑥 �̂�1 0 0 0 … 0
𝑐2 �̂�2 − 𝑥 �̂�2 0 0 … 0
𝑑3 𝑐3 �̂�3 − 𝑥 �̂�3 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮

0 … 𝑑𝑛−2 𝑐𝑛−2 �̂�𝑛−2 − 𝑥 �̂�𝑛−2 0
0 … 0 𝑑𝑛−1 𝑐𝑛−1 �̂�𝑛−1 − 𝑥 �̂�𝑛−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̂�′1(𝑥)
�̂�′2(𝑥)
�̂�′3(𝑥)
�̂�′4(𝑥)
⋮

�̂�′𝑛−1(𝑥)
�̂�′𝑛(𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̂�0(𝑥)
�̂�1(𝑥)
�̂�2(𝑥)
�̂�3(𝑥)
⋮

�̂�𝑛−2(𝑥)
�̂�𝑛−1(𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The Matlab function one_step_Newton.m computing �̂�𝑛(𝑥) and �̂�′𝑛(𝑥) with 35𝑛 flops, making use of the Matlab function
givens.m, is displayed in Table 12 of the Appendix.
13

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

W
o

t
T
n
𝑇

𝑇

(

t

h

i

e

The sequence of approximations generated by the Ehrlich–Aberth method converges cubically to the eigenvalues of �̂�𝑛, or
even faster if the implementation is in the Gauss–Seidel style, since the eigenvalues are simple. In practice, as noticed in [25],
the Ehrlich–Aberth iteration exhibits good global convergence properties, though no theoretical results seem to be known about
global convergence.

The main requirements for the success of the Ehrlich–Aberth method are a fast, robust, and stable computation of the Newton
correction �̂�𝑛(𝑥)∕�̂�′𝑛(𝑥), and a good set of initial approximations for the zeros, �̂�(0), so that the number of iterations needed for
convergence is not too large.

Since the eigenvalues of �̂�𝑛 are real, different approaches can be taken into account to compute the initial guess of the vector
�̂�(0). Here, we consider two algorithms requiring (𝑛2) floating point operations and (𝑛) memory:2

1. �̂�(0)=gausq2(𝚍𝚒𝚊𝚐(�̂�𝑛), 𝚍𝚒𝚊𝚐(�̂�𝑛,−1)), i.e., �̂�(0) is the vector of the eigenvalues of the symmetric tridiagonal matrix obtained
setting 𝑑𝑖 = 0, 𝑖 = 2,… , 𝑛 − 1, in �̂�𝑛. Computational complexity: (𝑛2), memory: (𝑛);

2. a. reduction of �̂�𝑛 to a similar nonsymmetric tridiagonal matrix �̂�𝑛, by using elementary transformations. Computational
complexity: 7

2 𝑛
2 flops;

b. reduction of �̂�𝑛 to a similar symmetric tridiagonal matrix 𝑇𝑛 = �̂�−1
𝑛 �̂�𝑛�̂�𝑛, with �̂�𝑛 a diagonal matrix. Computational

complexity: 5𝑛 flops;
c. �̂�(0)=gausq2(𝚍𝚒𝚊𝚐(𝑇𝑛), 𝚍𝚒𝚊𝚐(𝑇𝑛,−1)). Computational complexity: (𝑛2), memory: (𝑛).

hile the first approach yields an approximation of the eigenvalues of �̂�𝑛, and then of 𝐻𝑛, the second one provides the eigenvalues
f �̂�𝑛 as �̂�(0), if computed in exact arithmetic.

The analysis of the implementation of the second approach in floating point arithmetic has been described in [13]. In practice,
his approach works in a stable way for all the MOPs listed in Section 3 and the Ehrlich–Aberth method converges in one iteration.
herefore, approach (2) is adopted in order to compute the initial vector �̂�(0). We observed that, even though 𝚍𝚒𝚊𝚐(�̂�𝑛,−2) has
egative entries, the entries of the subdiagonal and superdiagonal of �̂�𝑛 are always positive. Therefore, the similar symmetric matrix
𝑛 can be computed without requiring complex arithmetic.

The Matlab function tridEHbackwardV.m, implementing the reduction of �̂�𝑛 into a similar nonsymmetric tridiagonal matrix
̂𝑛 (step (2) (a)), is displayed in Table 10 of the Appendix.

The Matlab function DScaleSV2.m, implementing the reduction of �̂�𝑛 into a similar symmetric tridiagonal matrix 𝑇𝑛 (step
2) (a)), is a simplification of the function DScaleSV2.m and it is displayed in the Appendix, Table 9.

At iteration 𝓁 + 1, we consider

�̂�(𝓁+1)𝑗 and �̂�(𝑗) =
[

�̂�0(𝑥), �̂�1(𝑥), �̂�2(𝑥),⋯ , �̂�𝑛−2(𝑥), �̂�𝑛−1(𝑥)
]𝑇 ,

respectively, as an eigenvalue and corresponding right eigenvector of �̂�𝑛 if

|�̂�𝑛(�̂�
(𝓁+1)
𝑗)| ≤ 𝑡𝑜𝑙1.

The corresponding left eigenvector is computed applying a sequence of 𝑛 − 1 Givens rotations

𝐺𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑖−1
𝛾𝑖 𝜎𝑖
− 𝜎𝑖 𝛾𝑖

𝐼𝑛−𝑖−1

⎤

⎥

⎥

⎥

⎥

⎦

o the left of �̂�𝑛 − �̂�(𝓁+1)𝑗 𝐼𝑛, a numerically singular matrix, such that

𝐺𝑇
1 𝐺

𝑇
2 ⋯𝐺𝑇

𝑛−1

(

�̃�𝑛 − �̂�(𝓁+1)𝑗 𝐼𝑛
)

as the upper diagonal and the (1, 1) entry annihilated. Therefore,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛾1
−𝜎1𝛾2
𝜎1𝜎2𝛾3

⋮

(−1)𝑛−2
𝑛−2
∏

𝑘=1
𝜎𝑘𝛾𝑛−1

(−1)𝑛−1
𝑛−1
∏

𝑘=1
𝜎𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

.e., the first column of 𝐺𝑛−1𝐺𝑛−2 ⋯𝐺2𝐺1, is the normalized left eigenvector �̂�(𝑗). The Matlab function left_eigvect.m,
computing the normalized left eigenvector of �̂�𝑛, is displayed in the Appendix, Table 13.

2 We have written the Matlab function gausq2.m, a modified version of the fortran routine imtql2.f from eispack [27,28], to compute the
14

igenvalues of a symmetric tridiagonal matrix 𝑇𝑛, given only its main diagonal 𝚍𝚒𝚊𝚐(𝑇𝑛) and the subdiagonal 𝚍𝚒𝚊𝚐(𝑇𝑛 ,−1): [𝑥]=gausq2(𝚍𝚒𝚊𝚐(𝑇𝑛), 𝚍𝚒𝚊𝚐(𝑇𝑛 ,−1)).

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.
The Matlab function EA_method.m, implementing the Ehrlich–Aberth method, is described in the Appendix, Table 11.
The Matlab implementation of the simultaneous Gaussian quadrature rules, called GaussMOP.m, is described in the Appendix,

Table 7.

Remark 2. In case 𝑟 ≥ 2, the system of monic MOPs satisfies a (𝑟 + 2)-term recurrence relation

𝑥𝑝𝑛(𝑥) = 𝑝𝑛+1(𝑥) +
𝑟
∑

𝑗=0
𝑎𝑛,𝑗𝑝𝑛−𝑗 (𝑥), 𝑛 ≥ 0. (14)

Writing (14) in matrix form, we obtain

𝐻𝑛

⎡

⎢

⎢

⎢

⎢

⎣

𝑝0(𝑥)
𝑝1(𝑥)
⋮

𝑝𝑛−1(𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0

𝑝𝑛(𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑥

⎡

⎢

⎢

⎢

⎢

⎣

𝑝0(𝑥)
𝑝1(𝑥)
⋮

𝑝𝑛−1(𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

,

with

𝐻𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎0,0 1
𝑎1,1 𝑎1,0 1
𝑎2,2 𝑎2,1 𝑎2,0 1
⋮ ⋱ ⋱ ⋱ ⋱
𝑎𝑟,𝑟 𝑎𝑟,𝑟−1 ⋯ 𝑎𝑟,1 𝑎𝑟,0 1

𝑎𝑟+1,𝑟 𝑎𝑟+1,𝑟−1 ⋯ 𝑎𝑟+1,1 𝑎𝑟+1,0 ⋱
⋱ ⋱ ⋱ ⋱ ⋱ 1

𝑎𝑛−1,𝑟 𝑎𝑛−1,𝑟−1 ⋯ 𝑎𝑛−1,1 𝑎𝑛−1,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Hence, similarly to the case 𝑟 = 2, the simultaneous Gaussian quadrature rule for 𝑟 > 2 can be retrieved from the eigenvalues and
corresponding left and right eigenvectors of 𝐻𝑛 [8].

A sketch of an algorithm for computing the simultaneous Gaussian quadrature rule for 𝑟 > 2 can be summarized in the following
steps:

1. construct the Hessenberg matrix 𝐻𝑛;
2. compute �̂�𝑛 = 𝑆−1

𝑛 𝐻𝑛𝑆𝑛, with 𝑆𝑛 a diagonal matrix such that 𝚝𝚛𝚒𝚞(�̂�𝑛,−1) is symmetric;
3. compute the left and right eigendecompsition of �̂�𝑛 ∶ �̂�𝑇

𝑛 �̂�𝑛 = �̂�𝑛�̂�𝑇
𝑛 and �̂�𝑛𝑉𝑛 = 𝑉𝑛�̂�𝑛;

4. retrieve the nodes and the weights of the simultaneous Gaussian quadrature rule from �̂�𝑛, �̂�𝑛, 𝑉𝑛 and 𝑆𝑛.

8. Numerical tests

In this section we report some numerical tests performed in Matlab R2022a, with machine precision 𝜀 ≈ 2.22 × 10−16. For all
considered MOPs, the results of GaussMOP.m with 𝑛 nodes, for 𝑛 = 10, 20,… , 90, 100, are compared to those obtained by using the
Matlab function integral.m applied in two ways: without setting the absolute error, denoted by 𝐼1, and imposing the absolute
error equal to 10−13, denoted by 𝐼2. The same integrals were also computed by the Mathematica 13.0 function Integrate,
setting the precision to 80 digits. These values, rounded to floating point numbers by means of the matlab function double.m,
are assumed to be the exact ones and compared with the results of GaussMOP.m, 𝐼1, and 𝐼2.

Example 1. In this example, GaussMOP.m is used to simultaneously compute the integrals

∫𝛥(𝑖)
𝑓 (𝑥)𝑤(1)(𝑥)𝑑𝑥, ∫𝛥(𝑖)

𝑓 (𝑥)𝑤(2)(𝑥)𝑑𝑥,

where the integrand function is 𝑓 (𝑥) = 𝑥𝑒−𝑥, the same function considered in [5], and the input parameters for all MOPs are those
displayed in Table 2.

The absolute errors of the integrals computed by GaussMOP.m are displayed in Table 4 and Table 5 for 𝑤(1) and 𝑤(2),
respectively. Moreover, in the last two rows of these tables, the results obtained applying the Matlab function integral.m
(𝐼1 and 𝐼2), are reported.

Observe that, in some cases, the functions 𝐼1 and 𝐼2 yield NaN as results, displaying the message ‘‘Warning: Inf or NaN
value encountered’’.

In Table 6 the execution times (in seconds) required by GaussMOP.m, for different values of 𝑛, and by the Matlab functions 𝐼1
and 𝐼2, applied for computing both integrals with weights 𝑤(1) and 𝑤(2), are reported. Although the code GaussMOP.m is interpreted
by Matlab, GaussMOP.m, 𝐼1 and 𝐼2, exhibit comparable execution times, except for 𝐌𝐎𝐏8 and 𝐌𝐎𝐏9, for which GaussMOP.m
15

is significantly faster than 𝐼1 and 𝐼2.

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.

d
H
e
u

M

Table 4
Absolute errors of the integrals, with weight 𝑤(1), computed by GaussMOP.m, for 𝑛 = 10, 20,… , 100, and by 𝐼1 and 𝐼2.

∫𝛥(𝑖) 𝑓 (𝑥)𝑤(1)(𝑥)𝑑𝑥, 𝑓 (𝑥) = 𝑥𝑒−𝑥

𝑛 𝐌𝐎𝐏1 𝐌𝐎𝐏2 𝐌𝐎𝐏3 𝐌𝐎𝐏4 𝐌𝐎𝐏5 𝐌𝐎𝐏6 𝐌𝐎𝐏7 𝐌𝐎𝐏8 𝐌𝐎𝐏9

10 0 3.23(−9) 7.17(−4) 5.23(−13) 1.23(−10) 3.88(−4) 3.75(−5) 4.16(−17) 5.79(−10)
20 1.99(−15) 2.10(−15) 4.59(−8) 1.34(−13) 2.22(−15) 6.86(−6) 1.47(−10) 1.94(−16) 4.99(−16)
30 1.77(−15) 2.05(−15) 2.18(−12) 5.45(−14) 5.61(−14) 7.47(−7) 3.33(−15) 1.80(−16) 5.55(−17)
40 5.10(−15) 1.24(−14) 2.54(−14) 2.92(−13) 3.78(−13) 5.97(−8) 1.99(−15) 1.80(−16) 3.88(−16)
50 4.32(−15) 2.58(−14) 6.98(−13) 3.35(−14) 2.49(−13) 6.07(−10) 4.21(−15) 6.93(−17) 0
60 7.32(−15) 1.66(−16) 4.18(−14) 5.99(−15) 4.19(−13) 5.86(−10) 7.32(−15) 4.16(−17) 9.21(−15)
70 7.21(−15) 1.08(−14) 1.01(−14) 6.70(−13) 9.43(−13) 3.50(−11) 7.32(−15) 3.46(−16) 3.49(−15)
80 1.11(−16) 9.38(−15) 8.10(−13) 2.25(−13) 9.39(−13) 1.12(−11) 4.88(−15) 5.13(−16) 5.55(−17)
90 1.22(−15) 3.36(−14) 2.44(−14) 4.53(−13) 9.39(−13) 8.46(−13) 2.37(−14) 1.38(−17) 3.74(−14)
100 2.33(−15) 3.68(−14) 1.27(−13) 4.10(−13) 1.27(−13) 1.18(−12) 2.66(−15) 0 2.83(−14)

𝐼2 2.17(−13) 1.11(−16) 0 𝙽𝚊𝙽 𝙽𝚊𝙽 0 𝙽𝚊𝙽 5.96(−13) 5.55(−17)

𝐼1 8.74(−10) 0 1.11(−16) 𝙽𝚊𝙽 𝙽𝚊𝙽 2.77(−17) 𝙽𝚊𝙽 1.38(−17) 0

Table 5
Absolute errors of the integrals, with weight 𝑤(2), computed by GaussMOP.m, for 𝑛 = 10, 20,… , 100, and by 𝐼1 and 𝐼2.

∫𝛥(𝑖) 𝑓 (𝑥)𝑤(2)(𝑥)𝑑𝑥, 𝑓 (𝑥) = 𝑥𝑒−𝑥

𝑛 𝐌𝐎𝐏1 𝐌𝐎𝐏2 𝐌𝐎𝐏3 𝐌𝐎𝐏4 𝐌𝐎𝐏5 𝐌𝐎𝐏6 𝐌𝐎𝐏7 𝐌𝐎𝐏8 𝐌𝐎𝐏9

10 1.11(−16) 2.35(−8) 2.33(−3) 5.32(−15) 3.103(−11) 1.97(−3) 1.21(−3) 1.11(−16) 2.64(−10)
20 1.99(−15) 1.05(−15) 7.19(−7) 1.37(−13) 1.93(−14) 4.61(−5) 3.90(−9) 2.22(−16) 4.44(−16)
30 2.10(−15) 1.11(−15) 1.64(−10) 8.31(−14) 3.41(−14) 6.85(−7) 2.22(−16) 3.60(−16) 0
40 4.99(−15) 5.19(−15) 5.72(−14) 7.36(−13) 2.76(−14) 1.36(−7) 4.21(−15) 3.05(−16) 2.22(−16)
50 4.32(−15) 1.06(−14) 6.81(−13) 6.02(−13) 9.65(−15) 1.92(−8) 1.37(−14) 1.94(−16) 1.11(−16)
60 7.54(−15) 4.24(−15) 4.28(−14) 3.63(−13) 2.35(−15) 1.58(−10) 1.86(−14) 8.32(−17) 9.38(−15)
70 7.66(−15) 2.35(−15) 6.99(−15) 1.54(−13) 4.79(−14) 3.29(−10) 8.21(−15) 2.22(−16) 3.33(−15)
80 0 1.12(−14) 7.90(−13) 3.07(−13) 1.92(−14) 2.06(−12) 4.66(−15) 4.44(−16) 7.21(−16)
90 1.44(−15) 6.77(−15) 2.22(−14) 1.65(−13) 2.74(−14) 9.16(−12) 3.01(−14) 2.77(−17) 3.98(−14)
100 2.55(−15) 1.29(−14) 1.23(−13) 4.26(−13) 1.82(−13) 1.35(−12) 1.99(−15) 1.66(−16) 2.80(−14)

𝐼2 5.58(−14) 0 0 𝙽𝚊𝙽 5.55(−17) 5.55(−17) 𝙽𝚊𝙽 2.77(−17) 5.55(−17)

𝐼1 1.06(−13) 5.55(−17) 0 𝙽𝚊𝙽 0 0 𝙽𝚊𝙽 2.77(−17) 0

Table 6
Execution times in seconds required for computing both integrals, with weights 𝑤(1) and 𝑤(2) , by GaussMOP.m, for 𝑛 = 10, 20,… , 100,
and by 𝐼1 and 𝐼2.

Execution time in seconds

𝑛 𝐌𝐎𝐏1 𝐌𝐎𝐏2 𝐌𝐎𝐏3 𝐌𝐎𝐏4 𝐌𝐎𝐏5 𝐌𝐎𝐏6 𝐌𝐎𝐏7 𝐌𝐎𝐏8 𝐌𝐎𝐏9

10 5.51(−2) 1.00(−2) 6.21(−3) 4.47(−3) 1.07(−2) 4.11(−3) 2.95(−3) 5.77(−3) 3.37(−2)
20 6.27(−3) 2.00(−3) 2.56(−3) 2.01(−3) 3.49(−3) 1.55(−3) 1.44(−3) 2.38(−3) 2.85(−3)
30 1.94(−3) 1.93(−3) 1.83(−3) 1.89(−3) 2.33(−3) 1.85(−3) 1.94(−3) 2.00(−3) 2.15(−3)
40 3.00(−3) 2.97(−3) 2.93(−3) 3.03(−3) 2.89(−3) 2.91(−3) 2.83(−3) 2.99(−3) 3.00(−3)
50 6.38(−3) 5.95(−3) 6.01(−3) 6.14(−3) 7.02(−3) 6.98(−3) 6.32(−3) 6.65(−3) 7.29(−3)
60 5.78(−3) 5.45(−3) 5.23(−3) 5.53(−3) 5.16(−3) 4.89(−3) 4.96(−3) 5.06(−3) 5.69(−3)
70 6.71(−3) 6.60(−3) 6.61(−3) 6.72(−3) 6.58(−3) 6.52(−3) 6.52(−3) 6.63(−3) 7.44(−3)
80 8.68(−3) 8.31(−3) 8.40(−3) 8.34(−3) 8.34(−3) 8.31(−3) 8.54(−3) 8.55(−3) 9.23(−3)
90 1.08(−2) 1.07(−2) 1.08(−2) 1.06(−2) 1.06(−2) 1.04(−2) 1.05(−2) 1.07(−2) 1.06(−2)
100 1.31(−2) 1.29(−2) 1.28(−2) 1.27(−2) 1.28(−2) 1.26(−2) 1.27(−2) 1.29(−2) 1.29(−2)

𝐼1 2.68(−2) 1.10(−2) 5.64(−3) 5.12(−3) 5.65(−3) 3.28(−3) 3.96(−3) 2.49(−1) 2.61(0)

𝐼2 3.11(−3) 2.31(−3) 9.91(−4) 2.26(−3) 1.79(−3) 7.18(−4) 1.60(−3) 9.82(−2) 1.39(0)

9. Conclusions

A Matlab package called GaussMOP.m is proposed for computing simultaneous Gaussian quadrature rules associated with
ifferent kinds of MOPs. The nodes and weights of such rules are retrieved from the eigendecomposition of a banded lower
essenberg matrix, which turns out to be an ill-conditioned eigenvalue problem. Making use of a novel balancing procedure, the
igenvalue condition of the latter Hessenberg matrix is drastically reduced. Moreover, a variant of the Aberth–Ehrlich method is
sed to compute the eigenvalues and associated left and right eigenvectors with (𝑛) memory and (𝑛2) computational complexity.
GaussMOP.m was applied for simultaneously computing integrals with two different weights associated with the considered
16

OPs, and its performance was compared, in terms of accuracy, robustness and execution time, to that of the Matlab intrinsic

Journal of Computational and Applied Mathematics 451 (2024) 116109T. Laudadio et al.
function integral.m. The values obtained by computing the latter integrals by the Mathematica function Integrate,
requiring a precision of 80 digits, were considered as the exact ones.

The numerical tests show the reliability of the proposed numerical method.

Data availability

No data was used for the research described in the article.

Acknowledgments

Teresa Laudadio and Nicola Mastronardi are members of the Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta
Matematica (GNCS-INdAM). The work of Nicola Mastronardi was partly supported by MIUR, PROGETTO DI RICERCA DI RILEVANTE
INTERESSE NAZIONALE (PRIN) 20227PCCKZ ‘‘Low–rank Structures and Numerical Methods in Matrix and Tensor Computations
and their Application’’, Università degli Studi di BOLOGNA CUP J53D23003620006. The work of Walter Van Assche was supported
by FWO, Belgium grant G0C9819N. The work of Paul Van Dooren was partly supported by Consiglio Nazionale delle Ricerche, Italy,
under the Short Term Mobility program.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cam.2024.116109.
The Matlab functions implementing the simultaneus Gaussian quadrature rules for MOPs can be found in the Appendix at
https://doi.org/10.1016/j.cam.2024.116109. The whole package can be downloaded from
https://users.ba.cnr.it/iac/irmanm21/MOP/
or from the webpage
https://users.ba.cnr.it/iac/irmanm21/MOP/MOP_W.html.

References

[1] A.B.J. Kuijlaars, Multiple orthogonal polynomial ensembles, in: J. Arvesú, F. Marcellán, A. Martínez-Finkelshtein (Eds.), Recent Trends in Orthogonal
Polynomials and Approximation Theory, in: Contemp. Math., vol. 507, Springer, Berlin, 2010, pp. 155–176.

[2] A. Sokal, Multiple orthogonal polynomials, 𝑑-orthogonal polynomials, production matrices, and branched continued fractions, Trans. Amer. Math. Soc.,
Ser. B 11 (2024) 762–797.

[3] A. Branquinho, J.E.F. Díaz, A. Foulquié-Moreno, M. Mañas, Bidiagonal factorization of the recurrence matrix for the hahn multiple orthogonal polynomials,
2023, arXiv:2308.01288.

[4] C.F. Borges, On a class of Gauss–like quadrature rules, Numer. Math. 67 (1994) 271–288.
[5] W. Van Assche, A Golub–Welsch version for simultaneous Gaussian quadrature, Numer. Algorithms (2024) http://dx.doi.org/10.1007/s11075-024-01767-2.
[6] W. Gautschi, G.V. Milovanović, Orthogonal polynomials relative to weight functions of Prudnikov type, Numer. Algorithms 90 (1) (2022) 263–270.
[7] W. Gautschi, Another look at polynomials orthogonal relative to exponential integral weight functions, Numer. Algorithms 91 (4) (2022) 1547–1557.
[8] J. Coussement, W. Van Assche, Gaussian quadrature for multiple orthogonal polynomials, J. Comput. Appl. Math. 178 (2005) 131–145.
[9] W. Van Assche, E. Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001) 317–347.

[10] M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Fifth, in: Encyclopedia of Mathematics and its Applications, vol. 98,
Cambridge University Press, London, 2005.

[11] G.H. Golub, J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969) 221–230.
[12] D. Lubinsky, W. Van Assche, Simultaneous Gaussian quadrature for Angelesco systems, Jaen J. Approx. 8(2) (2016) 113–149 8 (2) (2016) 113–149.
[13] T. Laudadio, N. Mastronardi, P. Van Dooren, Computational aspects of simultaneous Gaussian quadrature, Numer. Algorithms (2024) http://dx.doi.org/

10.1007/s11075-024-01785-0.
[14] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, fifth ed., Dover, New York, 1964.
[15] L.R. Piñeiro, On simultaneous approximations for a collection of Markov functions, Moscow Univ. Math. Bull. 42 (2) (1987) 52–55.
[16] V.N. Sorokin, Generalization of classical orthogonal polynomials and convergence of simultaneous Padé approximants, Trudy Sem. Im. I. G. Petrovsk. 11

(1986) 125–165, translated in J. Soviet Math. 45 (1989) 1461–1499.
[17] V.N. Sorokin, Simultaneous Padé approximation for functions of Stieltjes type, Siber. Mat. Zh. 31 (6) (1990) 128–137, translated in Siber. Math. J. 31(5)

(1990) 809–817.
[18] E.M. Nikishin, V.N. Sorokin, Rational approximations and orthogonality, in: Translations of Mathematical Monographs, vol. 92, Amer. Math. Soc.,

Providence, RI, 1991.
[19] Y. Ben Cheikh, K. Douak, On two-orthogonal polynomials related to the Bateman’s 𝐽 𝑢,𝑣

𝑛 –function, Methods Appl. Anal. 7 (4) (2000) 641–662.
[20] W. Van Assche, S. Yakubovich, Multiple orthogonal polynomials associated with macdonald functions, Integral Transforms Spec. Funct. 9 (3) (2000)

229–244.
[21] E. Coussement, W. Van Assche, Multiple orthogonal polynomials associated with the modified bessel functions of the first kind, Constr. Approx. 19 (2003)

237–263, http://dx.doi.org/10.1007/s00365-002-0499-9.
[22] H. Lima, A. Loureiro, Multiple orthogonal polynomials with respect to Gauss’ hypergeometric function, Stud. Appl. Math. 148 (1) (2022) 154–185.
[23] H. Lima, A. Loureiro, Multiple orthogonal polynomials associated with confluent hypergeometric functions, J. Approx. Theory 260 (2020) 105484.
[24] O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp. 27 (1973) 339–344.
[25] D.A. Bini, L. Gemignani, F. Tisseur, The Ehrlich–Aberth method for the nonsymmetric tridiagonal eigenvalue problem, SIAM J. Matrix Anal. Appl. 27

(2005) 153–175.
[26] L.W. Ehrlich, A modified Newton method for polynomials, Commun. ACM 10 (1967) 107–108.
[27] H. Bowdler, R. Martin, C. Reinsch, J. Wilkinson, The QR and QL algorithms for symmetric matrices: TQL1 and TQL2, Numer. Math. 11 (4) (1968) 293–306.
[28] B.S. Garbow, J.M. Boyle, J.J. Dongarra, C.B. Moler, Matrix eigensystem routines - EISPACK guide extension, in: Lecture Notes in Computer Science, vol.

51, Springer, 1977.
17

https://doi.org/10.1016/j.cam.2024.116109
https://doi.org/10.1016/j.cam.2024.116109
https://users.ba.cnr.it/iac/irmanm21/MOP/
https://users.ba.cnr.it/iac/irmanm21/MOP/MOP_W.html
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb1
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb1
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb1
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb2
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb2
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb2
http://arxiv.org/abs/2308.01288
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb4
http://dx.doi.org/10.1007/s11075-024-01767-2
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb6
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb7
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb8
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb9
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb10
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb10
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb10
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb11
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb12
http://dx.doi.org/10.1007/s11075-024-01785-0
http://dx.doi.org/10.1007/s11075-024-01785-0
http://dx.doi.org/10.1007/s11075-024-01785-0
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb14
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb15
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb16
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb16
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb16
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb17
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb17
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb17
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb18
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb18
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb18
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb19
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb20
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb20
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb20
http://dx.doi.org/10.1007/s00365-002-0499-9
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb22
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb23
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb24
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb25
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb25
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb25
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb26
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb27
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb28
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb28
http://refhub.elsevier.com/S0377-0427(24)00358-3/sb28

	A Matlab package computing simultaneous Gaussian quadrature rules for multiple orthogonal polynomials
	Introduction
	Notations
	Classes of the multiple orthogonal polynomials
	Matlab function ClassMOP.m
	Matlab function GaussMOP.m
	Transformation of Hn to the similar matrix hat Hn :-1mu=Sn-1 Hn Sn
	Computation of the simultaneous Gaussian quadrature rule
	Numerical Tests
	Conclusions
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

