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ARTICLE INFO ABSTRACT

MSC: The aim of this paper is to describe a Matlab package for computing the simultaneous Gaussian
33C47 quadrature rules associated with a variety of multiple orthogonal polynomials.
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Multiple orthogonal polynomials can be considered as a generalization of classical orthogo-
nal polynomials, satisfying orthogonality constraints with respect to r different measures, with
Keywords: r > 1. Moreover, they satisfy (r + 2)-term recurrence relations. In this manuscript, without loss
Multiple orthogonal polynomials of generality, r is considered equal to 2. The so-called simultaneous Gaussian quadrature rules
Simultaneous Gausmfn quadrature rules associated with multiple orthogonal polynomials can be computed by solving a banded lower
Banded Hessenberg eigenvalue problem . . X -

Hessenberg eigenvalue problem. Unfortunately, computing the eigendecomposition of such a
matrix turns out to be strongly ill-conditioned and the Matlab function balance.m does not
improve the condition of the eigenvalue problem. Therefore, most procedures for computing
simultaneous Gaussian quadrature rules are implemented with variable precision arithmetic.
Here, we propose a Matlab package that allows to reliably compute the simultaneous Gaussian
quadrature rules in floating point arithmetic. It makes use of a variant of a new balancing
procedure, recently developed by the authors of the present manuscript, that drastically reduces
the condition of the Hessenberg eigenvalue problem.

65F15

1. Introduction

In this paper, we consider the computation of simultaneous Gaussian quadrature rules associated with a variety of multiple
orthogonal polynomials (MOPs). MOPs originally appeared in Hermite-Padé approximation (simultaneous rational approximation)
and number theory. Recently, they turned out to be very useful in random matrix theory [1], combinatorics [2] and Markov
chains [3]. Simultaneous Gaussian quadrature was introduced in [4] to model computer graphics illumination, where the com-
putation of different weighted integrals with the same integrand function was needed. The aim was to minimize the evaluations
of the integrand function and maximize the order of the quadrature rules based on the same set of nodes. Simultaneous Gaussian
quadrature rules associated with MOPs related to the modified Bessel functions of the first and second kind were proposed in [5].
Gaussian quadrature with these special weight functions (and also with hypergeometric or confluent hypergeometric weights and
the exponential integral) requires the computation of the recurrence coefficients of the corresponding orthogonal polynomials from
the moments, which is an ill-conditioned numerical problem (see, e.g., [6,7]). Surprisingly, the recurrence coefficients of MOPs for
such weights are explicitly known, so that their numerical computation is avoided and the quadrature formula can be computed by

* Corresponding author.
E-mail address: teresa.laudadio@cnr.it (T. Laudadio).

https://doi.org/10.1016/j.cam.2024.116109
Received 20 March 2024; Received in revised form 18 June 2024

Available online 28 June 2024
0377-0427/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/cam
https://www.elsevier.com/locate/cam
mailto:teresa.laudadio@cnr.it
https://doi.org/10.1016/j.cam.2024.116109
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2024.116109&domain=pdf
https://doi.org/10.1016/j.cam.2024.116109
http://creativecommons.org/licenses/by/4.0/

T. Laudadio et al. Journal of Computational and Applied Mathematics 451 (2024) 116109

solving an eigenvalue problem obtained by properly arranging these recurrence coefficients into an Hessenberg matrix, as proposed
in [5,8].

MOPs are a generalization of orthogonal polynomials and can be divided into two classes: type I and type II [8]. In this paper
we focus on MOPs of type II. Suppose r weight functions w®(x) > 0, with support A®, i =1, ..., r, on the real line are given. Then,
the sequence of MOPs { pn(x)}:o:() of type II satisfy the following orthogonality conditions [8]:

/(,) paOxkw(x)dx =0, 0<k<nm -1, )
Al

with n= 37 n;.
Let 4 = |J7_, 49. Two different systems of MOPs of type II can be considered [9,10]:

1. Angelesco system, where the open intervals A”, i = 1,...,r, are disjoint, i.e., 4O () 4Y) = @, for i # j, and the closed intervals
AY are allowed to touch.
2. algebraic Chebyshev system (AT system), where A9 =4, i=1,...,r.

Then, p,(x) of type II has exactly n zeros in 4 [9, Th. 2].
A set of MOPs satisfies an (r + 2)-term recurrence relation. Without loss of generality, in this paper we focus on the case r = 2.
Therefore, the set of MOPs satisfies a 4-term recurrence relation'

xp;i(x) = a;p; 1 (x) + b;p;(x) + ¢;p;_1(x) +d;p;_r(x), i=0,...,n—1, 2)

with p_,(x) = p_;(x) = 0. Writing (2) in matrix form, we obtain

Po(x) 0 Po(x)
H, Plfx) +a, O Plfx) )
Dn—1 (X) Pn(X) Pp-1 (X)

where H,, is the n x n banded lower Hessenberg matrix with 2 sub-diagonals and one upper-diagonal :

by a O 0 0 0
g b a 0 0 0
dy ¢ b a 0 0
Hy:=| 0 d5 ¢ by a 0 3
. . . . -, 0
0 0 dn—Z Cp—2 bn—2 ap_2
0o ... O 0 sy o by |

The Gaussian quadrature rule associated with classical orthogonal polynomials can be retrieved from the eigenvalue decomposition
of a symmetric tridiagonal matrix, and it is exact for polynomials of degree 2n — 1 [11]. The theory of simultaneous Gaussian
quadrature rules for the general case r > 2 is described in [8].

For r = 2, the simultaneous Gaussian quadrature rule associated with MOPs [8],

Yol fx)) = / FOwPxdx + EV(f), j=1.2,
=1 A

with E,Y)( f) =0, if f is a polynomial of degree n+n; — 1, can be retrieved from the eigenvalue decomposition of the matrix H, [8,
Th. 3.2],[5, Th. 2]. Therefore, the degree of exactness of the simultaneous Gaussian quadrature rule is maximal if all n i J =12, in
(1) are equal [12]. The following theorem holds:

Theorem 1. Thenodes x;, j = 1,...,n, of the simultaneous Gaussian quadrature rule are given by the eigenvalues of the banded Hessenberg
matrix . Moreover, let us denote by u"Y) = [u’,u)’, ..., 0’1", and vV = [0}, VY, ... v e left and right eigenvectors o

ix H, (3). M let us denote by u¥) = [, u, ... .u1", and v9 = [0\, 0}, ..., 01" the left and right eig H,
associated with x;, respectively. Then,

i i () ) )
o U(lj)fl,luij) (2) o (fz,l”lj +f2,2u2])
COJ- = Q7 CUJ- = T . s j=1,---,n, ()]
ud’ p) u?’ p)
where
fia= / Po(wV (x)dx,
A
(5)
far = / poWPX)dx,  frn= / ()W (x)dx.
4@ A2
1 All the MOPS considered in the literature are monic, ie., a=1i=01,...,n—1.
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Remark 1. For r > 2, the simultaneous Gaussian quadrature rule
! R
Yol fix) = / S u@dx+ BN, =1,
k=1 4%

has degrees of exactness equal to n + n—1,j=1..r [4, Th. 1], [8, Th. 3.1].

Hence, simultaneous Gaussian quadrature rules associated with MOPs reduces to the computation of the eigendecomposition of
the Hessenberg matrix H,, which, unfortunately, turns out to be strongly ill-conditioned [5]. Furthermore, the Matlab function
balance.m applied to the Hessenberg matrix H, does not improve the condition of the eigenvalue problem [13] and, then, the
Matlab function eig.m yields unreliable results. Therefore, procedures for computing simultaneous Gaussian quadrature rules are
implemented with variable precision arithmetic [5].

Recently, simultaneous Gaussian quadrature rules have been proposed for MOPs associated with modified Bessel functions of
the first and second kind [5,13], where the banded lower Hessenberg matrix H, is totally nonnegative. In particular, in [13], a
new balancing procedure has been proposed that drastically reduces the condition of the aforementioned Hessenberg eigenvalue
problem, thereby allowing to compute the associated simultaneous Gaussian quadrature rule in floating point arithmetic in a reliable
way.

Based on the results described in [13], we develop here an algorithm for computing simultaneous Gaussian quadrature rules
associated with different kinds of MOPs, for which the banded lower Hessenberg matrix was not totally nonnegative, and we describe
the associated Matlab package, which requires only ©(»n?) computational complexity and O(n) memory.

The paper is organized as follows. Notations are introduced in Section 2. The handled classes of MOPs are listed in Section 3.
Moreover, the use of the Matlab function ClassMOP.m, generating the coefficients of the recurrence relations of the associated
MOPs, is described in Section 4. The use of the function GaussMOP . m, computing the nodes and the weights of the chosen class of
MOPs, is reported in Section 5, followed by the description of the proposed numerical method in Sections 6 and 7. Numerical tests
are reported in Section 8, followed by the concluding remarks. Finally, the Mat1lab codes can be found in the Appendix.

2. Notations

Upper-case letters A, B, ..., denote matrices and A, ,, or simply A, if m = n, denotes matrices of size (m,n). The entry (i, /) of a
matrix A is denoted by a; ;. Submatrices are denoted by the colon notation of Matlab, i e., A(i : j,k : I) is the submatrix of A
obtained by the intersection of rows i to j and columns & to /, and A(i : j,:) and A(:,k : I) are the rows of A from i to j and the
columns of A from k to I, respectively.

Given A € R™" and k € Z, —n+ 1 < k < n—1, triu(A4, k) denotes the matrix with elements on and above the kth diagonal of A.
Bold lower-case letters x,y, ..., ®, ..., denote vectors, and x; denotes the ith element of the vector x.

Lower-case letters x,y, ..., 4,0, ..., denote scalars.

The identity matrix of order n is denoted by I,, and its ith column, i = 1, ...,n, i.e., the ith vector of the canonical basis of R”, is
denoted by e;.

The zero vector of length n is denoted by o,,.

The i-th subdiagonal of a matrix H € R is denoted by diag(H, —i).

The diagonal matrix with entries d, ..., d, is denoted by diag(d,,...,d,).

The notation |y] stands for the largest integer not exceeding y € R,.

The notation k > 0 stands for k € N, with k very large.

If x € C, R(x) denotes the real part of x.

Numbers in scientific notation a x 10°, with a, b € R, are represented as a(b) in Section 8.

A flop denotes a floating point operation (sum, subtraction, multiplication, division). The square root is considered a flop as well.

3. Classes of the multiple orthogonal polynomials

The considered classes of MOPs are listed below. For each of them, the corresponding weights w((x) and w®(x), the integration
intervals, the recurrence relations, and the coefficients (5), involved in the computation of the vectors of weights »") and ©®, are
reported.

MOP, : Multiple Jacobi-Pifieiro polynomials
Weights:

(W), w?(x)) 1= (x*1 (1= x)%, x2(1 = x)™),

a; > -1, j=,0,1,2, oy —a, € Z.
Interval: AO =[0,1], i =1,2.
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Recurrence relation coefficients:
by = +a)/Q2+ay+ay);
fori=1,2,...

by;

; =( 36i* + (48a + 28a; + 20w, + 38)i% + (2102 + 8a? + 4a2 + 300y,
+ 18aga; + 151 @, + 390 + 19a; + 19a; +9)i* + (3a7 + 10a3a;
+4a(2)a2 + 6a0a12 + 2a0a§ + laga o, + Sa%az + 3 (xg + 120% + 3(112
+ 3(1% + 3agay + 13aga; + 8aya; + 60y + ey + 3ay)i + ag + apa;

+ aQaf + Zazafa() + 20:3051 + a%ag + a%ao + a%al + agal + aéa%

+ a%aoal + agalz + Zazagal +3ma oy + Zazag +aja, + ag + aya, )

-1
x((Si +ap+ )G+ ag+a)Gi+ag+ay + DGi+ag+ay + 2)) :

for i=0,1,...

byisi =( 36i* + (48ay + 20a; + 28a, + 106)i° + (21aZ + 447 + 8a3 + 18aga;.
+30aga + 1500, + 1050 + 41ay + 65, + 111)i% + (3a] + 4a2a
+ 10(15012 + Zaoalz + GaOag + Heyaa, + 301120(2 + Salag + 30(13 + 5(1?
+ l3a§ + 23aga; + 4T7apay + 220y + 720 + 2501 + 49a, + 48)i
+ 18apa, + 80:20:5 +4a; + 4a§a1 +8aja, + 20((3) + 5a§a0 + 8y o
+12ay + 7+ 15a + a%alz + 10(13 + 6apa; + 2(120(% + 2a(2)a1 + a%ao

+ 501% + azag + a;aé + af + azafao + 2(12(15(11 + 2(1%010(11 )

-1
X((3i+ao+a2+l)(3i+a0+al +2)3i + g + @y + 3)3i + g + +3)) :

e =U+a)d+a)B+ay+a) ' Q+ay+a)?;

for i=1,2,...

e =iQi+ a)2i+ag + a2+ ag + ay) ( 54i* + (63ay + 45a; + 45¢,)i3
+ (402 + 80 + 8a2 + 420a; + R2aga; + 44ajay — 8)i% + (3a] + o]
+a§ + 12a3a1 + 12(130:2 + 3a0a|2 + 30(001% + 33y, + 801]20(2 + 80(101%

=3ay —4a; —4ay)i + aéal + ag(xz + 6(1(2)0110(2 + a?az + ala; + SaOa%az

-1
2 — gy — aga, — 2aya, ) ((31' +ayg+a; + DGEi+ag+ap + 1))

+3apay )

<(3i +ap+ a2 G+ ag + )2 Gi+ag +ay — DG+ ap+ay — 1))71;
i =QRi+ay+ DQ2i+ay+ay + DQ2i+ag+ay + 1) ( 541 + (63aq + 45,
+45a, + 135)i* + (2402 + 8a? + 802 + 42apa; + 420, + 44a oy + 1260
+76a; + 1040, + 120)° + Ba) + & + a3 + 12a2a; + 1202, + 3apa?
+ 3a0a§ + 33y, + 8(1120(2 + 8 ag + 360{% + 5(1% + 19(15 + 54aga;
+72a0a, + 660, @, + 87ag + 39a; + 8lay +45)i% + (aja; + o,
+6a§ala2 + a?az + ala; + 3a0a%a2 + 3(10(11(1; + Sag + 2a; + 12a§(x1
+ 120{50{2 + 601()0:% + 33y, + 5a12a2 + llalag + ISaS + 20aha;
+38aga, + 1402 + 26, @ + 24ag + 6a; +24a; + 6)i + aja; +3aja @,
+3a0a1a§ + a]a; + aS + a;’ + 3a§a] + 3a(2)a2 + 6aga;ar + 30:00:%
+3a a% + 30:5 + 3(1; + 2aga; + 6agay + 20 o) + 20y + 2a, )
X@i+ag+a; +3)7'Git+ag+a, +2)7'Gi+ag+a; +2)72

X@i+ag+ay+D2@i+ayg+a; + D7IGi+ag + )7
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for i=1,2,...

dyy =02+ ap)2i +ay — DQ2i + ay + a))2i + ag +a; — D2i + oy + ay)
XQi+ag+a— Dii+a)i+a —a)3i+ayg+a; +1)7!
X (3i + ag + ) 2GBi+ ag + @) Gi — 1+ ap + a)) 2
X@itag+a,—D'Gitag+a =)' Gitag+a, —2)7,

dyi1 = 120 + g + 1)(2i + a)(2i + ay + a)(2i + ag +a; + 1)
XQi+ag+ay+1)Q2i+ay+ar)i + )i +ay —ay)
XBitag+a +2)7 'Gitayg+a+2)7 Gi+ay+ap+ 17!

XBi+ 1+ag+a)2Gi+ag +a) ' Gi+ oy + ) 2@i + g+, — 1)~
Coefficients (5), involved in the computation of the weights:

I'(1+ag)I(1+a;y)
fli= 2Utag)l Ctay)

I'2+ap+ay)
_ I(+ag)l(I+ay) _ _ I(1+ag)F(1+ay)
far= T Q+ag+tay) fr2= (L + @) = 2 +ag +a)by) I'Gtagtay)

where I' is the Gamma function [14, p. 255] defined as
I'(z) = / #letdr, R(z) > 0,
0

and computed by the Matlab function gamma.m.

References: [9,15].

MOP, : Multiple Laguerre polynomials of first kind
Weights:

(w(l)(x), w(z)(x)) = (xM e, xR e

a; > -1, j=1,2.
Interval: A®) = [0, ), i = 1,2.

Recurrence relation coefficients:

fori=0,1,2,...
by =3i+a) +1,
by =3i+ay+2,
¢y =i(Gi+ay + ay),
Coip1 =32+ () vy +3)i+a + 1,
dy = i(i + )i+ o) — ay),
dyip =i+ )i+ ay —ap).

Coefficients (5), involved in the computation of the weights:

fii=T0+ap),
fo1=T0+a), [fro=T10+a)a —ap).

References: [9,16,17].

MOP; : Multiple Laguerre polynomials of second kind
Weights:

(w(l)(x), w(x)) 1= (x%0e"M¥, xH0e0X)

ay > -1, aj>0, j=L2, o) #a,.

Interval: A9 = [0, ), i = 1,2.
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Recurrence relation coefficients:

fori=0,1,2,...

b = i(a; +3a) + (1 + ap)ay

2i = o, ’
_iQBa; + @)+ 2+ ag)ag + ay

b2i+1 - a 4
Y 2,2
i(2i + ap)(a] + a3)

Qi 373

apa

2i2(af + a%) +i (0{% + 30:% + ao(a% + a%)) +(1+ ao)ag

Ciy1 = 3 2
%
i2i + ap)(2i + ag — 1)@y — ay)
dy; = 3 >
aja,
i2i + ag)2i + ag + D(a; —ay)
dyip1 = 3 .
ajay

Coefficients (5), involved in the computation of the weights:

fiy =] 7O + ag),

—1- S R,
fr=a Or(1+ay), fro= o 10:22 “ay = a2+ ap).

References:[9,18].

MOP, : Multiple Hermite polynomials
Weights:

(w(l)(x), w(Z)(x)) = (e—xz+a]x,e—x2+a2x) ,

a, a0 ER, a) #a,.
Intervals: A®) = (o0, ), i = 1,2.

Recurrence relation coefficients:

fori=0,1,2,...
by =0, /2,
byip1 = a3/2,
¢ =if2,
dy = i(a) — ap) /4,
dyiy1 = i@y — ap)/4.

Coefficients (5), involved in the computation of the weights:

o
fri=e* /7,

3 3
fa=ed\m,  fry= e /.

References: [9].

MOP;s : Multiple Laguerre-Hermite polynomials

Weights:
(w(l)(x), w(z)(x)) = (e_"zlxlﬁ,e_xzxﬁ> ,

p>-—1.

Intervals: AV = (—o0,0], 4@ = [0, c0).
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Recurrence relation coefficients:

fori=0,1,2,...

2i+f+1 ®)
Coigl = % -y
dy; = éX,(f)l

i (B
st =—%X;ﬂ

i+ﬁ+2
. 2 . i R
with Xl.(m = —%. Moreover, for large i, Xl.(ﬂ) =—4/ % + 0(\/;) [91.
2

Coefficients (5), involved in the computation of the weights:
fia= %F (%ﬂ) ,
(s —1(_ 157 245
=30 (58). fa=5(-tor (152) + 1 (38)).
References: [9,17].

MOP, : MOPs Associated with the Modified Bessel function of the second kind (Macdonald function) K, (x)
Weights:

(D00, wP(x)) 1= (267K, 2y, 26 HPK 2y

a> -1, v>0, with K (x) the modified Bessel function of the second kind given by

_lxy [ X2\ v
K, (x) —5(5)/0 exp<t Z)t dt.

Interval: AD = [0, c0),i = 1,2.
Recurrence relation coefficients:

fori=0,1,2,...
by =iGBi+a+2v)+(a+ D@Bi+a+v+1),
¢ =i(i+a)i+a+v)3i+2a+v),
di=ii—Di+a)i+a-Di+a+v)(i+ta+v-1).

Coefficients (5), involved in the computation of the weights:

fia=T@+ DI (@+v+]1),
for=Ta+DIM@+v+2), fi,=T@+2)I(a+v+2).

References: [5,19,20].

MOP; : MOPs associated with the Modified Bessel functions of the first kind I,(x)
Weights:

(D0, w@(x) 1= (¥ 1L,@vxe P xR 2 xe ),
p >0, v>—1 where I (x) is the modified Bessel function of the first kind [21],

()"

z Ve
10=(3) Zamsrey <R

Interval: AD = [0, c0),i = 1,2.
Recurrence relation coefficients:

fori=0,1,2,...
by =1+ Bv+2i+ 1)/,
¢ =i+ pv+i)/p,
d,=i(i—1)/p*
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Coefficients (5), involved in the computation of the weights:

fii=p""e
o =F"e
References: [5,21].

5

1
. faa =BTl

== ==

MOP; : MOPs associated with the Gauss’ hypergeometric function

Weights:
W (x) 1= —LOLD a1y -1 p ([€7P] 54
T T@I 6 270\ g —p|"™ ’
@y o LD a1y _ o1 c—b _
w9 (x) 1= —r(a)r(b+1)r(5)x (1 —-x) 2 F <[d b1 0,1 —x ),

with a,b,c,d € R*, c+1,d >a, c,d >b, 5=c+d—b—a >0, and

. ([Z . z) _y @0

= ) on
is the Gauss’ hypergeometric function, computed by the Mat1lab function hypergeom.m, and (x); denotes the Pochhammer symbol
defined by

(u)y =0,
(W) = pu+ D (u+i-1), i€Z".

Interval: A® =[0,1],i = 1,2.
Recurrence relation coefficients:

Let
ila+i—1)(c—b-1)
Wi +i- D, +i-2)
i(b+i)(c‘.’+1 —a-1)
Rt = G D, +i-2)(, +i-1)
(a+i)b+i)c, - 1)
i = T I e, i D)
with
C_,={ c+k, if i=2k-1,
i d+k if i=2k
Then

fori=0,1,2,...
b; = A3 A3i11 431425
¢ = A3ip1A3igs + Aipadaigs + A3 daings
d; = /13i+2}”3i+4/13i+6~

Coefficients (5), involved in the computation of the weights:

fin=1
— _ alc=b)
fa=L fo=go5

References: [22].

MOP, : MOPs associated with the confluent hypergeometric function

Weights:
I'(c) _x_a—
(1) o xa—1 _ _ 1
w(x) —(a) (b)e x7U(c—b,a—b+1,x),
I'c+1) _, ,_
(2) o xya=lyree — —
w(x) : —(a) (b)e X (c—=b+1,a—b+1,x),

where U(a, b, z) is the confluent hypergeometric function [14, p.504-505], computed by the Matlab function kummerU.m,
o
Ula,b.2) = —— / e 1+ b, R(z) > 0,R(a) > 0,
I'(a) Jo

a,b,c € RT, ¢ > max{a, b}.
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Interval: A9 = [0,00),i =1,2.
Recurrence relation coefficients:

fori=0,1,2,...
b _ Qi+ Da+2ib+2i) 2i@a+2i—D(b+2i-1)
2= c+3i c+3i—1 ’
b o QiE2)(@+2i+ Db+2i+1) Qi+ D+ 2i)b+20)
2i+1 = c+3i+2 c+3i ’
_ 2i@+2i— D(b+2i—1) ( Qi—1)(a+2i—2)(b+2i—2)
= c+3i—1 2(c+3i-2)
_2ia+2i— D(b+2i—1) | Qi+ 1)a+20)b+20) )
c+3i—1 2(c + 3i) ’
Qi+ 1)a+2)b+20) ( i(a+2i— D(b+2i—1)
Qi1 = c+3i c+3i—1)
_ Qi+ D(@+2)b+20) i+ D(a+2i+D(b+2i+1) )
(c + 3i) c+3i+1 ?
4o = 202+ D(@+2i = D(@+20)(b+2i = D(b+2i)c+i—1)
2 T e+3i-2(c+3i-D(c+3)(c+3i—Dc+3)(c+3i+1)
X(c—a+i)c—b+1i)
g = Qi+ DQi+2)(a+2i)a+ 2+ 1)(b+2i)b+2i+ 1)
2i+1 = (c+3i)(c+3i+1)(c+3i+2) :
Coefficients (5), involved in the computation of the weights:
fia=1

foaa=1 fap= —c(f—f,)~
References: [23].
In the sequel, we denote the k-th MOP by MOP,, for k € {1,2,...,9}.
4. Matlab function ClassMOP.m

Here, the Matlab function ClassMOP.m for computing the coefficients of the recurrence relation associated with different
classes of MOPs is described.
The Matlab command is

[b,c,d, F]1=ClassMOP(IC, n, a)
The input parameters of ClassMOP.m are:

+ IC: kind of MOPs.
+ n: number of nodes of the simultaneous Gaussian quadrature rule.
» a: vector of parameters characterizing the weights.

The output parameters of ClassMOP are:

+ b: the main diagonal of H,.

+ c: the first subdiagonal of H,,.

+ d: the second subdiagonal of H,,.

» F : the 2 x 2 lower triangular matrix in (5).

The list of input parameters for the considered classes of MOPs is summarized in Table 1.

5. Matlab function GaussMOP.m

Here, the Matlab function GaussMOP .m for computing the simultaneous Gaussian quadrature rule associated with different
kinds of weights, is reported.
The Matlab command for computing the simultaneous Gaussian quadrature rule is

[x, 0, ®?, ier]=GaussMOP(b,c,d, n, F)
The input parameters of GaussMOP .m are:

+ b: the main diagonal of H,,.

+ c: the first subdiagonal of H,,.

+ d: the second subdiagonal of H,,.

+ n: number of nodes of the simultaneous Gaussian quadrature rule.
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Table 1
Input parameters of the Matlab function ClassMOP.m.
MOP # nodes a
1 n lag, @, )7, @, >—1,j=01,2, aj-a, &7
2 n [ay, a]7, aj>—],j=],2
3 n [, al,az]T, ay > —1, aj>0,j=],2, a # a,.
4 n [ay, o], a0 €ER, a #a,
5 n e, p>-1
6 n [a, vIT, a>—1, v>0
7 " 8. v, f>0, v>-I
8 n la, b, ¢, dI", a,b,c,d €R*, c+1,d>a, ¢,d>b.
9 n [a, b, c]", a,b,c € R*, ¢ > max{a,b}.

» F : the 2 x 2 lower triangular matrix in (5).
The output parameters of GaussMOP .m are:

+ x: vector of nodes of the simultaneous Gauss quadrature rule.

+ o1: vector of weights of the simultaneous Gaussian quadrature rule corresponding to w("(x).

+ ®?: vector of weights of the simultaneous Gaussian quadrature rule corresponding to w®(x).

» ier: is set to zero for normal return, otherwise ier is set to j if the j-th node has not been determined after 30 iterations.

The algorithm is summarized in the following steps, described in detail in Sections 6 and 7, respectively:

+ Transformation of H,, to the similar matrix A, := S;'H,S,,.
» Computation of the simultaneous Gaussian quadrature rule.

6. Transformation of H, to the similar matrix H, := S;'H,S,

As described in Section 1, the computation of simultaneous Gaussian quadrature rules associated with MOPs relies on that of
the eigenvalues x; and corresponding left and right eigenvectors u¥ and vV, j = 1,...,n, respectively, of H,. As noticed in [5],
the latter eigenvalue problem is very ill-conditioned for all classes of MOPs listed in Section 3. Furthermore, the Matlab function
balance.m, commonly applied to reduce the eigenvalue condition number, does not improve the condition of the considered
eigenvalue problem, and, therefore, the Matlab function eig.m does not yield reliable results [5,13]. Indeed, in most cases, the
eigenvalues computed by eig.m are complex conjugate, while the MOPs have only real zeros.

To reduce the eigenvalue condition number of the Hessenberg matrix H,, a new diagonal balancing procedure has been recently

introduced in [13], whose main idea consists of transforming H,, into a similar matrix

H,:=S"H,S, (6)
having the same Hessenberg structure, with S, = diag(s;,...,s,) a diagonal matrix, such that triu(H", —1) is symmetric.

After this similarity transformation, the condition of the eigenvalue problem for H, is drastically reduced with respect to that
of H,, as shown in Fig. 1, where the condition numbers of the eigenvalues of H, and ﬂﬂ, with n = 20 and parameters listed in
Table 2 for all the considered MOPs, are displayed. Observe that the entries of the diagonal balancing matrix S, = diag(s,,...,s,)
in (6), introduced in [13], grow as the factorial function, i.e., s; ~ i! (see Table 3, fourth column), for most MOPs. Hence, for i large
enough, e.g., i > 170, s; > (2—2732)21023  the largest finite floating-point number in IEEE® double precision. Therefore, in such cases,
the computation of s; yields Inf in Matlab.

To overcome this drawback, we consider here the same balancing technique applied to the matrix H,, but without explicitly
computing the matrix S,. Observe that we need to compute only s, and s,, i.e., the first two entries in the main diagonal of .S,
since they are involved in the computation of the weights of the simultaneous Gaussian quadrature rules (11). The Matlab function
DscaleS2.m, implementing the new balancing technique, is displayed in Table 8 in the Appendix.

Since the considered MOPs are monic, i.e., a; =1,i =0,1,...,n— 1, then [13]

s =fcjey e, i=1,.,n. 7)

Furthermore, denoted by

>
|
=

il i=L..,n—1,

>

>

itLi-1s = 2,...,n—1,

defined s, = 1, it turns out [13],

é‘.:c.si—f1 i=1,....,n—1, ®

10
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Table 2

MOPs parameters used for com-

puting the eigenvalue condition

number of H,, and H,,, shown

in Fig. 1.
IC a
1 [-0.5, —0.2, 0.4]"
2 [-0.5, 0.5]"
3 [-0.5, 0.2, 0.4]7
4 (02, 0.5]"
5 [0.57
6 [-0.5, 0.5]7
7 (0.5, —0.5]"
8 [1, 1, 3, 21"
9 [3, 2.5, 7.5]"
1035 . condej:g(Hzo) . : 105 . condelig(Hzg)
i ——k— MOP1 | 1 g —— MOP1 | -
I ——k— MOP2 | ] i ——k—— MOP2 | |
1039 MOP3 | - 1039 MOP3 | -
i ——k—— MOP4 | | [ ——k—— MOP4 | |
s ———— MOPS5 | 3 ——— MOPS5 | {
10250 MOPS6 | | 10250 MOPS6 |
r ———— MOP7 | 1 3 ——— MOP7 | -
[ ——«— moPs [ ] [ ——— MOPS |
- — K — MOP9 | 1 - ——k—— MOP9 |
1 020 L 2N 1 020 L -
K () | 1 w™@) [ ]
1015 L ] NE L ]
1010 L 1010 L b
10°1 10%T 7
10° . - : S
o 5 10 15 20 10 15 20

2

©)]

For each MOP in Section 3, the asymptotic behavior of ¢; and d,, respectively denoted by ¢, and d,, can be represented as the

product of a constant times a power of i, i.e.,

Cisg = 0.0 and diso =041, 0,04, p..04 ER,

except for MOP;, MOP,, MOP;, where the even and odd cases need to be distinguished. Moreover, ¢, and d,,, depend on «; and

a, for MOP; and MOP,, and on p for MOP;.
The following Lemma holds.

Lemma 1. Letc, d;, &, d, i=0,1,...
first and second subdiagonal of H, = S;'H,S,. Then

Cis0 = \/E

Proof. By (7),

S[ = s’._] \/a = S[—l \/Hcipc.

11

,n— 1, be, respectively, the entries of the first and second subdiagonal of H, and the entries of the

(10)
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Table 3
Asymptotic behavior of the coefficients c;, d;, ¢, di-, i=0,1,....n—1,and s;, i =1,...,n.
MOp Ci0 diso Si»0 Ciso A:>>0
2 3 i
4 4 i/2 (4 4 14
MoP, 3(27) (z7> 3 <27> \/5(27> 327
MOP, 3(;)2 (;)3 (%)zv Ny i
2 ava (1) (@—a;) ata; )’ | ata; Di(a,—a))
MOF, 2 oo 2« ) (hfui ! X a™ T (@)
i (Dita —ay) o B D@ -ay)
MOP, 2 8 2 \/; 4
MOP; ﬁ (_1)1+]€ ;7: \/; (_1):+1\/§
MOP; 37 it 3332 V3i2 1
2 > o
MOP, 2 2 L i L
7 7 » 7
2 3 i
4 4\ 4 4 14
MOPy 3(5) (E) (\/55) V3 3w
280 .0 —3-g el g g 280 \ 2 280 | -3 5
MOP, @ 373355 96, (ST) il @ L3
Then
i
i
s;=02i172.
Moreover, by (8),
-1 e
2 . -
Si_1 0. (i—1!2
~ — —_ P, c — . —
Cis0 = cis_ =0,i" - i ,. Vv 0 it = \V Ci05
i L ope
! 02il?
and, by (9),
2 se
2 (i =
A Si_n 0.7 (i—-2)!2 0, _ diso
disg=d;==2 = g,itd ~——— = A ipa—pe = J20 M
S Hii'% 0, Ci0
c

The asymptotic behavior of the coefficients ¢;, d;, ¢;, J,-, i=0,1,..

.,n—1,and s;, i = 1,...,n, are displayed in Table 3 for all the

considered MOPs. We observe that, except for MOP, and MOPg, whose coefficients ¢;s, disq, ¢ and dy are independent of i,

lim di>>0

=00 Cisg imeo disg

G20 _ o im =0
and

€0 <ldisols G50 > |disol-

Therefore, the new balancing technique has the effect of reducing the size of the entries of the second lower subdiagonal of the
Hessenberg matrix H,. As a consequence, the condition numbers of the eigenvalues of H, are drastically reduced with respect to

those of H, (see Fig. 1).

7. Computation of the simultaneous Gaussian quadrature rule

By Theorem 1, the eigenvalues of H,, and the associated left and right eigenvectors are needed for computing the simultaneous
Gaussian quadrature rule associated with MOPs. Let % i aY, and o9 Jj=

right eigenvectors of H,, ie.,

A9, =V,X, 0TA,=X07,

n

with

X, = diag(#,.....%,). V, =", ....o"], and 0, = [aV, ..., a"].

1,...,n, be the eigenvalues and corresponding left and

All the eigenvalues and corresponding left and right eigenvectors of H, can be computed applying the Matlab function eig.m to
the better conditioned matrix H,, with O(»*) computational complexity and O(»?) memory. Since H, = S;'H,S,, then U, = S;'0,,

and V, = S,V,.

12
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By (4), for j=1,...,n,

j ) AU ~(J)
~ U(lj)fl,lu]j ~ U(lj)fl,lulj

J u’ i) ai" i) an
() ) ) ~() —140() —140()
w@) _ Ulj (f2,1u| +f2,2uzj ) B slv]j (fusl ulj +f2v2s2 i )
i T = T .
i w0 NOUND)

Hence, the computation of the nodes and the set of weights of the simultaneous Gaussian quadrature rule relies only on the
eigenvalues of H, and corresponding left and right normalized eigenvectors, on f ;, f,; and f22 (5), and on the first two diagonal
entries of S,,.

Here, we propose a more efficient approach to compute the eigenvalues and corresponding left and right eigenvectors of H,,
with @(n?) computational complexity and (9(n) memory, based on the Ehrlich-Aberth method [24-26].

T A
Given an initial guess 307 = fc(lo), %(20>, »f‘fgp fcf,o) ] of all the eigenvalues of H,, they can be simultaneously
computed by the Ehrlich-Aberth iteration [24-26],
IS
B
NG
NCES VNG P55 C_
T =10 — , j=1...,n,
J J PN NI
Pn(%; )Z 1
YR G
P:,(x; )) k=1 )?(.f> - )Acgf)
k)
where p;(x), i =0,1...,n, are non-monic MOPs satisfying the recurrence relation whose coefficients are those of the balanced matrix
H nn+1s
pr(x) =0,
p_1(x) =0, i=0,...,n—1, a2
G D1 () = (x = BB (%) = €y (%) = dify_p (),
with é =4,_,, i=1,...,n— 1. Hence, ﬁ,,()?y)) and ﬁ; (fc;.i)) need to be computed at iteration # + 1 of the Ehrlich-Aberth method.

To this end, (12) is written in matrix form, obtaining

Fn(x)j)n(x) = (ﬁn,n+l _X[Inlon])ﬁn(x)

[ by—x 4 0 0 0 0 0 [ Ao T
é b-x 4 0 0 0 0 Pr(x)
dy & by-x a 0 0 0 Pr(x)
= 0 Iy & by—-x 4 0 0 p3(x) |=o,.
0 0 dAn—2 é\n—2 1311—2 - X ﬁn—Z 0 ﬁn—l(x)
L 0 0 Jnfl 5,,,1 i’nfl -X aAnfl JL ﬁn(x) B

Therefore, p,(x) belongs to the null-space of F",,(x), a full row rank matrix. Such a vector is computed by applying a sequence of n
Givens rotations, G; € R+DXt+D) " — 1 n, to the right of F,(x) [13],

F,0)0, =IL,, o,

with L, € R™" lower triangular, and Q, = G| G; - GI. Then, the last column of Q, spans the null-space of E,(x).
In order to compute p/ (%), we differentiate (13), obtaining

F,(0p () + F'(x)p,(x) = o,. 13

Since F'(x) = [—1,, ‘ on] and p)(x) = 0, then [5](x), p5(x), ..., B, (x), P, ()]" is the solution of the lower triangular linear system

a0 0 0 0 o Y #@] [ hw®]
by —x a4 0 0 0 0 Py(x) P
& bhy-x a 0 0 0 py(x) Pr()
d, & bhy—x 0 0 P (=] p

0 dyy bp byp—x G, O P | Baa)

L O 0 dyy oy byy—x d,y | | P00 | Lon-1 ()]

The Matlab function one_step_Newton.m computing j,(x) and ﬁ;(x) with 35n flops, making use of the Matlab function
givens.m, is displayed in Table 12 of the Appendix.

13
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The sequence of approximations generated by the Ehrlich-Aberth method converges cubically to the eigenvalues of H,, or
even faster if the implementation is in the Gauss-Seidel style, since the eigenvalues are simple. In practice, as noticed in [25],
the Ehrlich-Aberth iteration exhibits good global convergence properties, though no theoretical results seem to be known about
global convergence.

The main requirements for the success of the Ehrlich-Aberth method are a fast, robust, and stable computation of the Newton
correction p,(x)/p)(x), and a good set of initial approximations for the zeros, %, so that the number of iterations needed for
convergence is not too large.

Since the eigenvalues of H, are real, different approaches can be taken into account to compute the initial guess of the vector
%9, Here, we consider two algorithms requiring ©(n?) floating point operations and ©(n) memory:2

1. 30=gausq2(diag(H,), diag(H,,—1)), i.e., ? is the vector of the eigenvalues of the symmetric tridiagonal matrix obtained
setting zf, =0,i=2,...,n—1,in H - Computational complexity: O(n?), memory: O(n);
2. a. reduction of H,, to a similar nonsymmetric tridiagonal matrix T,,, by using elementary transformations. Computational
complexity: %nz flops;
b. reduction of 7, to a similar symmetric tridiagonal matrix 7, = D;'T,D,, with D, a diagonal matrix. Computational
complexity: 5n flops;
c. #V=gausq2(diag(T,), diag(T,, —1)). Computational complexity: O(n%), memory: O(x).

While the first approach yields an approximation of the eigenvalues of H,, and then of H,, the second one provides the eigenvalues
of H, as 3, if computed in exact arithmetic.

The analysis of the implementation of the second approach in floating point arithmetic has been described in [13]. In practice,
this approach works in a stable way for all the MOPs listed in Section 3 and the Ehrlich-Aberth method converges in one iteration.
Therefore, approach (2) is adopted in order to compute the initial vector ). We observed that, even though diag(ﬁ[,,, -2) has
negative entries, the entries of the subdiagonal and superdiagonal of T, are always positive. Therefore, the similar symmetric matrix
T, can be computed without requiring complex arithmetic.

The Matlab function tridEHbackwardV.m, implementing the reduction of H, into a similar nonsymmetric tridiagonal matrix
T,, (step (2) (a)), is displayed in Table 10 of the Appendix.

The Matlab function DScaleSV2.m, implementing the reduction of T, into a similar symmetric tridiagonal matrix T, (step
(2) (a)), is a simplification of the function DScaleSV2.m and it is displayed in the Appendix, Table 9.

At iteration #Z + 1, we consider

£ and 99 = [Py, py (). (0. a0 By (0]

respectively, as an eigenvalue and corresponding right eigenvector of H,, if
NS
15,V < tol.
The corresponding left eigenvector is computed applying a sequence of n — 1 Givens rotations
Iy
I,,,,-,l
to the left of H, — fc;f“) 1,, a numerically singular matrix, such that
T ~T T q o+
GlGl -Gl (A,-%""1,)
has the upper diagonal and the (1, 1) entry annihilated. Therefore,

71
—0172
010273

n—2
o | [
k=1

n—1
i Tex
k=1

ie., the first column of G,_;G,_, - G,G,, is the normalized left eigenvector #). The Matlab function left_eigvect.m,
computing the normalized left eigenvector of H,, is displayed in the Appendix, Table 13.

2 We have written the Matlab function gausq2.m, a modified version of the fortran routine imtql2.f from eispack [27,28], to compute the
eigenvalues of a symmetric tridiagonal matrix 7), given only its main diagonal diag(7,) and the subdiagonal diag(7,,—1): [x]=gausq2(diag(T,), diag(T,,—1)).

14
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The Matlab function EA_method.m, implementing the Ehrlich—-Aberth method, is described in the Appendix, Table 11.
The Matlab implementation of the simultaneous Gaussian quadrature rules, called GaussMOP .m, is described in the Appendix,
Table 7.

Remark 2. In case r > 2, the system of monic MOPs satisfies a (r + 2)-term recurrence relation

Xpp(X) = p,yq(x) + Z @y Pyj(x), n20. (14)
=0

Writing (14) in matrix form, we obtain

Po(x) 0 po(x)
X : X
H, PlF ) + 0 1’1? ) i
Pp—1 (%) Pu(%) Pp1(X)
with
 ano | _
a1 a0 1
an a4y a 1
H =
" a., ay 1 o a, | ar,() 1
L B S W | Ary1l ary10
L Ap_1,r Ap_1r-1 ap_1,1 ap_10

Hence, similarly to the case r = 2, the simultaneous Gaussian quadrature rule for r > 2 can be retrieved from the eigenvalues and
corresponding left and right eigenvectors of H, [8].

A sketch of an algorithm for computing the simultaneous Gaussian quadrature rule for r > 2 can be summarized in the following
steps:

. construct the Hessenberg matrix H,;
. compute H = Sn‘lH .S, with S, a diagonal matrix such that triu(H »»—1) is symmetric;
. compute the left and right eigendecompsition of H, : UT A, = A,0T and H,V, =V, A,;

AW N

. retrieve the nodes and the weights of the simultaneous Gaussian quadrature rule from A,,U,,V, and S,,.

8. Numerical tests

In this section we report some numerical tests performed in Matlab R2022a, with machine precision & ~ 2.22 x 10~!°. For all
considered MOPs, the results of GaussMOP .m with »n nodes, for n = 10,20, ..., 90, 100, are compared to those obtained by using the
Matlab function integral .m applied in two ways: without setting the absolute error, denoted by I;, and imposing the absolute
error equal to 107!3, denoted by I,. The same integrals were also computed by the Mathematica 13.0 function Integrate,
setting the precision to 80 digits. These values, rounded to floating point numbers by means of the matlab function double.m,
are assumed to be the exact ones and compared with the results of GaussMOP.m, I, and I,.

Example 1. In this example, GaussMOP .m is used to simultaneously compute the integrals

/ F@wx)dx, / F@w?x)dx,
A A

where the integrand function is f(x) = xe™, the same function considered in [5], and the input parameters for all MOPs are those
displayed in Table 2.

The absolute errors of the integrals computed by GaussMOP.m are displayed in Table 4 and Table 5 for w and w®,
respectively. Moreover, in the last two rows of these tables, the results obtained applying the Matlab function integral.m
(I, and I,), are reported.

Observe that, in some cases, the functions I; and I, yield NaN as results, displaying the message “Warning: Inf or NaN
value encountered”.

In Table 6 the execution times (in seconds) required by GaussMOP . m, for different values of n, and by the Matlab functions I,
and I,, applied for computing both integrals with weights w" and w'®, are reported. Although the code GaussMOP . m is interpreted
by Matlab, GaussMOP.m, I, and I,, exhibit comparable execution times, except for MOPg and MOP,, for which GaussMOP.m
is significantly faster than I, and I,.

15
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Table 4
Absolute errors of the integrals, with weight w", computed by GaussMOP.m, for n = 10,20, ..., 100, and by I, and I,.

Joo FOWOdx,  f(x) = xe~

n MOP, MOP, MOP, MOP, MOP; MOP, MOP, MOP, MOP,

10 0 3.23(-9) 7.17(-4) 5.23(-13) 1.23(-10) 3.88(-4) 3.75(-5) 4.16(-17) 5.79(-10)
20 1.99(-15) 2.10(-15) 4.59(-8) 1.34(-13) 2.22(-15) 6.86(—6) 1.47(-10) 1.94(-16) 4.99(-16)
30 1.77(-15) 2.05(-15) 2.18(-12) 5.45(-14) 5.61(-14) 7.47(-7) 3.33(-15) 1.80(-16) 5.55(-17)
40 5.10(-15) 1.24(-14) 2.54(-14) 2.92(-13) 3.78(-13) 5.97(-8) 1.99(-15) 1.80(-16) 3.88(-16)
50 4.32(-15) 2.58(-14) 6.98(-13) 3.35(-14) 2.49(-13) 6.07(-10) 4.21(-15) 6.93(-17) 0

60 7.32(-15) 1.66(-16) 4.18(-14) 5.99(-15) 4.19(-13) 5.86(-10) 7.32(-15) 4.16(-17) 9.21(-15)
70 7.21(-15) 1.08(-14) 1.01(-14) 6.70(-13) 9.43(-13) 3.50(-11) 7.32(-15) 3.46(-16) 3.49(-15)
80 1.11(-16) 9.38(-15) 8.10(-13) 2.25(-13) 9.39(-13) 1.12(-11) 4.88(-15) 5.13(-16) 5.55(-17)
90 1.22(-15) 3.36(-14) 2.44(-14) 4.53(-13) 9.39(-13) 8.46(-13) 2.37(-14) 1.38(-17) 3.74(-14)
100 2.33(-15) 3.68(-14) 1.27(-13) 4.10(-13) 1.27(-13) 1.18(-12) 2.66(-15) 0 2.83(-14)
1, 2.17(-13) 1.11(-16) 0 NaN NaN 0 NaN 5.96(-13) 5.55(-17)
1, 8.74(-10) 0 1.11(-16) NaN NaN 2.77(-17) NaN 1.38(-17) 0

Table 5

Absolute errors of the integrals, with weight w®, computed by GaussMOP.m, for n = 10,20,...,100, and by I, and I,.
Jao FWPx)dx,  f(x) = xe™

n MOP, MOP, MOP, MOP, MOP; MOP MOP, MOP, MOP,
10 1.11(-16) 2.35(-8) 2.33(-3) 5.32(-15) 3.103(-11) 1.97(-3) 1.21(-3) 1.11(-16) 2.64(-10)
20 1.99(-15) 1.05(-15) 7.19(-7) 1.37(-13) 1.93(-14) 4.61(-5) 3.90(-9) 2.22(-16) 4.44(-16)
30 2.10(-15) 1.11(-15) 1.64(-10) 8.31(-14) 3.41(-14) 6.85(-7) 2.22(-16) 3.60(-16) 0
40 4.99(-15) 5.19(-15) 5.72(-14) 7.36(-13) 2.76(-14) 1.36(-7) 4.21(-15) 3.05(-16) 2.22(-16)
50 4.32(-15) 1.06(-14) 6.81(-13) 6.02(-13) 9.65(-15) 1.92(-8) 1.37(-14) 1.94(-16) 1.11(-16)
60 7.54(-15) 4.24(-15) 4.28(-14) 3.63(-13) 2.35(-15) 1.58(-10) 1.86(-14) 8.32(-17) 9.38(-15)
70 7.66(—15) 2.35(-15) 6.99(-15) 1.54(-13) 4.79(-14) 3.29(-10) 8.21(-15) 2.22(-16) 3.33(-15)
80 0 1.12(-14) 7.90(-13) 3.07(-13) 1.92(-14) 2.06(-12) 4.66(—15) 4.44(-16) 7.21(-16)
90 1.44(-15) 6.77(-15) 2.22(-14) 1.65(-13) 2.74(-14) 9.16(-12) 3.01(-14) 2.77(-17) 3.98(-14)
100 2.55(-15) 1.29(-14) 1.23(-13) 4.26(-13) 1.82(-13) 1.35(-12) 1.99(-15) 1.66(-16) 2.80(-14)
I, 5.58(-14) 0 0 NaN 5.55(-17) 5.55(-17) NaN 2.77(-17) 5.55(-17)
I, 1.06(-13) 5.55(-17) 0 NaN 0 0 NaN 2.77(-17) 0

Table 6

Execution times in seconds required for computing both integrals, with weights w® and w®, by GaussMOP.m, for n = 10,20, ..., 100,

and by I, and I,.

Execution time in seconds

n MOP, MOP, MOP, MOP, MOP; MOP; MOP, MOP, MOP,
10 5.51(-2) 1.00(-2) 6.21(-3) 4.47(-3) 1.07(-2) 4.11(-3) 2.95(-3) 5.77(=3) 3.37(-2)
20 6.27(-3) 2.00(-3) 2.56(~3) 2.01(-3) 3.49(-3) 1.55(-3) 1.44(-3) 2.38(-3) 2.85(-3)
30 1.94(-3) 1.93(-3) 1.83(-3) 1.89(-3) 2.33(-3) 1.85(-3) 1.94(-3) 2.00(-3) 2.15(-3)
40 3.00(-3) 2.97(-3) 2.93(-3) 3.03(-3) 2.89(-3) 2.91(-3) 2.83(-3) 2.99(-3) 3.00(-3)
50 6.38(-3) 5.95(-3) 6.01(-3) 6.14(-3) 7.02(-3) 6.98(-3) 6.32(-3) 6.65(-3) 7.29(-3)
60 5.78(-3) 5.45(-3) 5.23(-3) 5.53(-3) 5.16(-3) 4.89(-3) 4.96(-3) 5.06(-3) 5.69(-3)
70 6.71(-3) 6.60(-3) 6.61(-3) 6.72(-3) 6.58(-3) 6.52(-3) 6.52(-3) 6.63(-3) 7.44(=3)
80 8.68(-3) 8.31(-3) 8.40(-3) 8.34(-3) 8.34(-3) 8.31(-3) 8.54(-3) 8.55(-3) 9.23(-3)
20 1.08(-2) 1.07(-2) 1.08(-2) 1.06(-2) 1.06(-2) 1.04(-2) 1.05(-2) 1.07(-2) 1.06(-2)
100 1.31(-2) 1.29(-2) 1.28(-2) 1.27(-2) 1.28(-2) 1.26(-2) 1.27(-2) 1.29(-2) 1.29(-2)
I 2.68(-2) 1.10(-2) 5.64(~3) 5.12(-3) 5.65(-3) 3.28(-3) 3.96(-3) 2.49(-1) 2.61(0)
I, 3.11(-3) 2.31(-3) 9.91(-4) 2.26(-3) 1.79(-3) 7.18(-4) 1.60(-3) 9.82(-2) 1.39(0)

9. Conclusions

A Matlab package called GaussMOP.m is proposed for computing simultaneous Gaussian quadrature rules associated with
different kinds of MOPs. The nodes and weights of such rules are retrieved from the eigendecomposition of a banded lower
Hessenberg matrix, which turns out to be an ill-conditioned eigenvalue problem. Making use of a novel balancing procedure, the
eigenvalue condition of the latter Hessenberg matrix is drastically reduced. Moreover, a variant of the Aberth-Ehrlich method is
used to compute the eigenvalues and associated left and right eigenvectors with @(n) memory and ©O(n?) computational complexity.

GaussMOP .m was applied for simultaneously computing integrals with two different weights associated with the considered
MOPs, and its performance was compared, in terms of accuracy, robustness and execution time, to that of the Matlab intrinsic
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function integral.m. The values obtained by computing the latter integrals by the Mathematica function Integrate,
requiring a precision of 80 digits, were considered as the exact ones.
The numerical tests show the reliability of the proposed numerical method.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cam.2024.116109.
The Matlab functions implementing the simultaneus Gaussian quadrature rules for MOPs can be found in the Appendix at
https://doi.org/10.1016/j.cam.2024.116109. The whole package can be downloaded from
https://users.ba.cnr.it/iac/irmanm21/MOP/
or from the webpage
https://users.ba.cnr.it/iac/irmanm21/MOP/MOP_W.html.
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