
Intelligent Systems with Applications 16 (2022) 200150

Contents lists available at ScienceDirect

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

Transferring knowledge between topics in systematic reviews

Alessio Molinari a,∗, Evangelos Kanoulas b

a Institute of Information Science and Technologies “Alessandro Faedo” - ISTI, National Research Council (CNR), Pisa, Italy
b University of Amsterdam, Amsterdam, Netherlands

A R T I C L E I N F O A B S T R A C T

Keywords:

Technology-assisted review

Systematic reviews

Transfer learning

Machine learning

Deep learning

In the medical domain, a systematic review (SR) is a well-structured process aimed to review all available
literature on a research question. This is however a laborious task, both in terms of money and time. As
such, the automation of a SR with the aid of technology has received interest in several research communities,
among which the Information Retrieval community. In this work, we experiment on the possibility of leveraging
previously conducted systematic reviews to train a classifier/ranker which is later applied to a new SR. We also
investigate on the possibility of pre-training Deep Learning models and eventually tuning them in an Active
Learning process. Our results show that the pre-training of these models deliver a good zero-shot (i.e., with no
fine-tuning) ranking, achieving an improvement of 79% for the MAP metric, with respect to a standard classifier
trained on few in-domain documents. However, the pre-trained deep learning algorithms fail to deliver consistent
results when continuously trained in an Active Learning scenario: our analysis shows that using smaller sized
models and employing adapter modules might enable an effective active learning training.
1. Introduction

A systematic review (SR) is a well-structured process that allows sci-

entists to exhaustively and without bias review all available literature
on a research question and it constitutes the cornerstone of evidence-

based medicine. Conducting an SR however is a laborious and expensive
task (Shemilt et al., 2016, Michelson & Reuter, 2019, Tsafnat et al.,
2014), which takes on average 1.72 years to complete (Michelson &
Reuter, 2019), jeopardizing the quality of healthcare. Automating a sys-

tematic review with the use of technology has received the interest of
the Information Retrieval community, among others, which contributes
to the Technology-Assisted Review (TAR) by enhancing the discovery
of articles to include in the review.

Research effort has been mostly directed towards the query formula-

tion stage of an SR to retrieve the initial set of articles (Scells & Zuccon,
2018, Scells et al., 2020) or the priority screening stage to re-rank re-

trieved articles (Cormack & Grossman, 2017, Lee & Sun, 2021, 2018).
Datasets are now freely available1 to further study the problem. In this
work, we focus on the priority screening stage, i.e., we assume to have
a set of unlabeled documents 𝐷 as a result of a query issued on one or
more dedicated scientific article databases and the goal is to prioritize
them for review.

* Corresponding author.

E-mail addresses: alessio.molinari@phd.unipi.it (A. Molinari), e.kanoulas@uva.nl (E. Kanoulas).

Regarding this second stage, much work has focused on improving
the relevance feedback (aka active/online learning) process (Cormack
& Grossman, 2017) that allows to continuously re-rank articles while re-

viewing, or on finding a good stopping criterion (Cormack & Grossman,
2015, Yang, Lewis, et al., 2021, Li & Kanoulas, 2020) to stop review-

ing. However, to the best of our knowledge, little effort has been made
towards transferring knowledge from previous and unrelated SR top-

ics to the current one (Cohen et al., 2009, Lagopoulos & Tsoumakas,
2020). In this work we want to explore the possibility of using previous
Systematic Reviews in order to pre-train a model, which is later used
for a zero/few shot classification or ranking of a new, unseen, review
topic. As a matter of fact, current state-of-the-art TAR frameworks do
not leverage previous systematic reviews: the motivation behind this
work is then that of exploring whether using past reviews can be more
effective than doing no pre-training at all. More specifically, we inves-

tigate two research questions:

RQ1. Can we transfer the knowledge acquired on previous systematic
reviews, and if so, to which extent?

RQ2. Can we keep training our pre-trained models in the active learn-

ing process?
Available online 9 November 2022
2667-3053/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
nc-nd/4.0/).

1 See for instance https://github .com /CLEF -TAR /tar.

https://doi.org/10.1016/j.iswa.2022.200150

Received 19 June 2022; Received in revised form 25 October 2022; Accepted 4 Nov
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ember 2022

http://www.ScienceDirect.com/
http://www.journals.elsevier.com/intelligent-systems-with-applications
mailto:alessio.molinari@phd.unipi.it
mailto:e.kanoulas@uva.nl
https://github.com/CLEF-TAR/tar
https://doi.org/10.1016/j.iswa.2022.200150
https://doi.org/10.1016/j.iswa.2022.200150
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iswa.2022.200150&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Intelligent Systems with Applications 16 (2022) 200150A. Molinari and E. Kanoulas

Fig. 1. Diagram of a technology-assisted systematic review process.
The contributions of this paper are:

1. An extensive analysis and comparison between transformer-based
deep learning models in a zero-shot setup versus traditional ma-

chine learning models with a few-shot setup, demonstrating the
advantages of out-of-domain pre-training;

2. A method to jump-start the active learning process from the zero-

shot ranking obtained from our models that improves the document
retrieval, albeit not consistently;

3. An extensive analysis on continual training via active learning of
deep ranking models, that inform researchers and practitioners on
which scenarios and techniques might enable the training of these
models in an active learning process (Section 6.3).

1.1. TAR for systematic reviews: an overview

In evidence-based medicine, a systematic review is conducted by a
physician in several stages. Given a research question:

1. The physician prepares a query which is issued on one or more
search engines (for medical literature);

2. An initial pool of documents 𝐷 (based on the search engine rank-

ing) is retrieved;

3. The physician reads (i.e., reviews) 𝐷’s abstracts. Only the subset of
documents 𝐷𝑟 which are deemed relevant is kept;

4. The 𝐷𝑟 documents are now read and reviewed in their entirety.
Again, we filter out all the non-relevant documents;

5. Finally, the remaining documents will then form the set of docu-

ments included in the systematic review.

TAR algorithms can assist the physician in step 3 and 4; however, in
this work we will focus exclusively on step 3. More specifically, the
2

TAR process is structured in the following manner:
1. An initial set of labeled documents 𝑆 is provided. This set should
contain at least one positive (and it often consists exclusively of
this single positive) document;

2. A machine learning algorithm is trained on 𝑆 and outputs scores
(or probabilities) on the remaining 𝐷 ⧵ 𝑆 documents;

3. An active learning policy (e.g. Continuous Active Learning, see
Section 2) decides, based on these scores, which and how many
documents to show to the reviewer (i.e., the physician);

4. The reviewer reads the selected documents abstracts, deciding
whether they are relevant or not;

5. The seed set 𝑆 is augmented with the new labeled documents and
the process starts again, until a review budget is exhausted or a
stopping rule condition is met.2

We give a graphical representation of the process in Fig. 1, and a more
detailed algorithm in Algorithm 1.

2. Related work

Technology-Assisted Review (TAR) frameworks for systematic re-

views have received an increasing interest by the IR community in
recent years. Focusing on the article retrieval, prioritization and re-

viewing stage of the SRs, one of the most well-known state of the art
approaches is the Continuous Active Learning (CAL) algorithm (Cor-

mack & Grossman, 2015). The algorithm starts from a seed positive
document, trains a machine learning classifier (logistic regression or
SVM) and iteratively ranks an increasing number of documents; at ev-

ery iteration, it receives assessments on the top ranked documents and
re-trains the model.

2 In this work, we do not focus on budget and/or stopping rules. This means

in our experiments in Section 6 we review the whole dataset.

A. Molinari and E. Kanoulas

Algorithm 1: TAR process for a systematic review.

Input : Pool of documents 𝐷 to be reviewed; Active learning policy 𝑎;

Initial seed set 𝑆; Batch size 𝑏; Budget 𝑡; threshold value 𝛼;

Output : Relevant labeled documents 𝐷𝑟

1 𝑖 ← 0;

2 𝐿 ← 𝑆;

3 𝜙𝑖 ← train_clf(𝐿);

4 /* We review a batch 𝐵𝑖 of documents and add it to
the labeled (training) set 𝐿 */

5 𝐵𝑖 ← select_via_policy(𝜙𝑖, 𝑎,𝐷, 𝑏);

6 𝐿 ←𝐿 ∪ 𝐵𝑖;

7 while |𝐿| < 𝑡 do

8 𝑖 ← 𝑖 + 1;

9 𝑈 ←𝐷 ⧵𝐿;

10 𝜙𝑖 ← train_clf(𝐿);

11 𝐵𝑖 ← select_via_policy(𝜙𝑖, 𝑎,𝐷, 𝑏);

12 𝐿 ←𝐿 ∪ 𝐵𝑖 ;

13 end

14 // Gather the relevant documents
15 𝐷𝑟 ← ⟨⟩;
16 foreach 𝑑 ∈𝐷𝑟 do

17 // 𝑦𝑑 is a binary variable which equals 1 when 𝑑
is relevant

18 if 𝑦𝑑 = 1 then

19 append(𝐷𝑟, 𝑑);

20 end

21 end

22 return 𝐷𝑟

Regarding the usage of pre-existing systematic reviews to pretrain
a model which is later applied to a new SR topic, an interesting work
(as well as the first one attempting such an experiment, to the best of
our knowledge) is Cohen et al. (2009). In this study, the authors train
an SVM algorithm on 23 previously conducted SRs and later apply it
to one unseen topic, using a Leave-One-Out setup; the experimental
results show how such an approach is able to consistently deliver bet-

ter results than the baseline. That said, they assume the availability of
topic-specific training data, which we do not in this work (shifting the
context to a real zero-shot scenario).

A more recent work where a transfer learning approach is leveraged
is Lagopoulos and Tsoumakas (2020). Here the pre-training of a model
on previous SRs is part of a larger framework, which deals with all the
stages of a systematic review. The experiments conducted are focused
on the whole pipeline rather than the effectiveness of the training pro-

cedure. Nonetheless, their results show that pre-training can indeed be
useful and that knowledge can be transferred between different top-

ics. Pickens (2021) conducts several experiments to measure whether
“portable” models can be trusted (and whether they are effective) in
TAR applications; however, their experimentation mostly focuses on in-

topic training (i.e., the training set (source) is coming from the same
distribution of the test (target) set).

Most of these approaches experiment with machine learning algo-

rithms such as SVM or logistic regression: Deep Learning (DL) models
are usually not considered fit for such a task, as they depend on too
many parameters (and data is usually scarce) and are easily outper-

formed by classic ML algorithms (Yang, MacAvaney, et al., 2021). That
said, there has been some work on testing DL models for TAR applica-

tions: Yang, MacAvaney, et al. (2021) tried to use a just-right fine-tuned
BERT (Devlin et al., 2018) in the active learning process for e-Discovery.
BERT is first fine-tuned with the masked language task on the avail-

able documents, and later continuously trained for a fixed number of
epochs during the active learning review process. Their results show
how in some cases BERT can actually achieve slightly better results than
linear models, but postpone further experimentation to future works.
3

Similarly, Zhao et al. (2021) explored whether several models (BERT,
Intelligent Systems with Applications 16 (2022) 200150

Table 1

Size, number of positives and prevalence of the positive class for the test dataset.
Topic “CD011686” was originally present in the 2019 CLEF-TAR testing collec-

tion, but was removed since it is also present among the training topics.

Topic Size # Positives Prevalence

CD012567 6736 12 0.0018

CD012768 132 46 0.3484

CD011686 9730 65 0.0067

CD012080 6644 78 0.0117

CD012669 1261 72 0.0571

CD012233 473 44 0.0930

CD008874 2383 119 0.0499

CD009044 3170 12 0.0038

Avg. 3816.12 56 0.07155

logistic regression) trained (or fine-tuned) on a given training set can
perform well on new data not seen during training: they showed how
pre-training can usually bring to good performances, but the results are
not consistent across all tested datasets (i.e., the pre-trained models can
completely fail to transfer knowledge in some cases).

While the different learning architectures that we test (see Sec-

tion 4.1) are first trained/fine-tuned on a set of previous systematic
reviews topics for which we have the reviewers’ final decisions, they
are later tested on a previously unseen SR topic. We assume not to have
any kind of training data for this latter test topic; the reviewer’s opin-

ion is elicited via an active learning approach. As previously mentioned,
Cormack and Grossman’s Continuous Active Learning (CAL) algorithm
(Cormack & Grossman, 2015) is the de-facto standard in TAR applica-

tions (both for e-discovery and systematic reviews). Hence, we use the
CAL algorithm as the main and only active learning approach to emu-

late data annotation in our experiments. As we will see in more details
in Section 6, the CAL algorithm will be both used as a baseline (using
a classical logistic regression as its classifier) and as the active learn-

ing methodology to continuously train our transfer-learning models.
Regarding its implementation, we follow the configuration described
in Cormack and Grossman (2015) (unless differently stated), where we
use an exponentially increasing batch size 𝑏, starting from 𝑏 = 1, and
using the title of the topic as the seed (and only known) positive docu-

ment.

3. The dataset

For our experiments, we use the 2019 CLEF-TAR collection.3 We
keep the training/testing splitting as given in the GitHub repository for
Task 2. More precisely, we have 53 topics (i.e., systematic reviews) for
training and 8 topics for testing. However, one of the testing topics,
more specifically topic “CD011686” is also present in the training sets,
and as a result we remove it from our test set, reducing it to 7 topics. In
order to retrieve documents’ abstracts we used the HTTP API available
at https://eutils .ncbi .nlm .nih .gov /entrez /eutils /efetch .fcgi, download-

ing abstracts via PUBMED.4 Due to issues with the API or the availabil-

ity of the documents, we were able to retrieve most but not all of the
documents. For each topic in the training data, the minimum amount of
documents we have is 65 (123 for testing data), whereas the maximum
is 79, 783 (9, 730 for testing data). On average, we have a prevalence of
the positive class of 0.04 (0.07 for testing data): that is, the dataset is
strongly unbalanced in favor of the negative class, as it is often the case
in TAR tasks. We present more in-detail information about the test top-

ics in Table 1. Moreover, we show a few examples from our dataset in
Tables 2 and 3 (for training and testing topics, respectively).

3 Available at https://github .com /CLEF -TAR /tar /tree /master /2019 -TAR.

4 https://pubmed .ncbi .nlm .nih .gov/.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi
https://github.com/CLEF-TAR/tar/tree/master/2019-TAR
https://pubmed.ncbi.nlm.nih.gov/

Intelligent Systems with Applications 16 (2022) 200150A. Molinari and E. Kanoulas

Table 2

Three samples from our training data. We can see the research question (i.e. what we are looking for) on the left, and parts of a
random picked abstract on the right.

Training data

RQ Abstract

Rapid diagnostic tests for diagnosing uncomplicated non-

falciparum or Plasmodium vivax malaria in endemic coun-

tries

To determine the competence of community health workers (CHWs)
to correctly assess, classify and treat malaria and pneumonia among
under-five children after training [...]

Combination of the non-invasive tests for the diagnosis of en-

dometriosis

It has been suggested that histologic subtype of ovarian cancer is a
factor that determines the chemoresponsiveness of tumor. In this study,
we wanted to clarify the prognostic significance of histologic subtype
and its correlation to expression of chemoresistance-related proteins
(CRPs) in ovarian cancer. [...]

Molecular assays for the diagnosis of sepsis in neonates One of the leading causes of severe childhood gastroenteritis are group
A rotaviruses, and they have been found to be associated with ∼40% of
the annual gastroenteritis-associated hospitalizations in young Danish
children < 5 years of age (Fischer et al., 2011) [...]

Table 3

Three samples from our testing data. We can see the research question (i.e. what we are looking for) on the left, and parts of a
random picked abstract on the right.

Testing data

RQ Abstract

Non-invasive diagnostic tests for Helicobacter pylori infection To describe and explore the natural history of Helicobacter pylori in-

fection and chronic gastritis in terms of gastric mucosal atrophy and
ulcer development over time in a population-based cohort. [...]

Point-of-care ultrasonography for diagnosing thoracoabdominal
injuries in patients with blunt trauma

Bedside lung ultrasound (LUS) is useful in detecting radio-occult
pleural-pulmonary lesions. The aim of our study is to compare the
value of LUS with other conventional routine diagnostic tools in the
emergency department (ED) evaluation of patients with pleuritic pain
and silent chest radiography (CXR). [...]

Triage tools for detecting cervical spine injury in pediatric trauma
patients

We reviewed published radiographic and cadaver series describing the
incidence of the anatomical anomaly ponticulus posticus and discuss
its relevance to C1 lateral mass screw (C1LMS) insertion. [...]
4. Methodology and experimental design

4.1. Learning algorithms

With the goal of understanding whether we can transfer information
between different systematic review topics, we explore and employ dif-

ferent learning architectures:

• a classical Logistic Regression (LR) classifier, which is one of the
well-established standard learning models used in TAR for system-

atic reviews literature;

• the BioBERT architecture (Lee et al., 2020), a BERT (Devlin et al.,
2018) based model specifically trained on scientific and medical
data which could thus be expected to achieve good performances
on our task. We fine-tune it with a pairwise loss;

• a deep learning model based on the transformer architecture
(Vaswani et al., 2017) where the self-attention mechanism is ac-

tually computed between documents and not between tokens. This
model was first proposed in Pobrotyn et al. (2020); we refer the
reader to the original work for a more thorough and in-depth expla-

nation of this model. We test the model by maximizing the NDCG
metric, more specifically we implement the deterministic Neural-

NDCG (Pobrotyn & Białobrzeski, 2021). We call this model the DL
Ranker or Ranker;

• we also test the same architecture with a cross-entropy loss; we call
this model the DL Classifier or Classifier;

The reasons behind our choice to test another deep learning architec-

ture other than BioBERT are strongly tied to the learning setting we are
4

confronted with in systematic reviews: firstly, despite having a decently
sized training set when we merge together past systematic reviews, the
testing and fine-tuning of our models is done on single topics, whose
sizes may be very small (i.e., few hundreds of documents, with a very
low positive prevalence); we believe that having less parameters to
learn might ease the learning/fine-tuning of models when continuously
trained in an active learning process. The second reason that motivates
us in using the ranker model of Pobrotyn et al. (2020) is that we would
also like to compare the more traditional classification and/or pairwise
approaches (i.e., the logistic regression and BioBERT) to a list-wise ca-

pable architecture.

4.2. Data preprocessing

As explained in Section 4.1 we experiment with different architec-

tures, which require different data representation and organization:

• The Logistic Regression, the DL Ranker and the DL Classifier are
trained with the same data representation. We see this in detail in
Section 4.2.1;

• We train the BioBERT model with a pairwise loss, where the aim
of the model is that of correctly prioritizing one of the documents
in the pair. For this reason we merge together pairs of documents
as explained in Section 4.2.2;

• Since we compare with the CAL baseline (as implemented in Cor-

mack and Grossman (2015)), we also need a representation suited
to its logistic regression; we simply default to a standard TF-IDF

representation.

We will now look more in details to the different techniques we use to

preprocess our data before feeding it to the models.

A. Molinari and E. Kanoulas

4.2.1. Document embeddings and list-wise structure

For the LR, the DL Ranker and DL Classifier models, we preprocess
data by tokenizing each document and transforming it into a fixed-

dimensional vector of features. The title of the topic (i.e., the research
question of the SR) is prepended to the text of each document. More
precisely, for each document we have a feature vector 𝑣 of size 𝐸 = 768.
This vector 𝑣 is the average of the non-finetuned BioBERT embeddings
for the tokens of a document 𝑑 ∈𝐷.

The architecture used for the DL Ranker and Classifier requires a
matrix 𝑠 × 𝐸 of document embeddings as input (where 𝑠 stands for se-

quence). Ideally, 𝑠 should be equal to the number of documents we need
to rank (i.e., |𝐷{tr,te}|, where with overscript “tr” or “te” we indicate the
training or test split of 𝐷) but the computational costs would be unsus-

tainable when we have thousands of documents to rank. We have thus
to pick a value of 𝑠 < |𝐷{tr,te}|. Due to hardware constraints, we choose
𝑠 = 1000 in our experiments. Moreover, we also fix a batch size 𝑏 = 512
such that the DL Ranker and Classifier are finally fed a 𝑏 × 𝑠 ×𝐸 matrix
as input, and return a 𝑏 × 𝑠 × 𝑜 matrix as output, where 𝑜 is the number
of neurons in the output layer (this is always 2 for the Classifier and we
set it at 100 for the Ranker, see also Pobrotyn et al. (2020), Pobrotyn
and Białobrzeski (2021) for the original implementation). For the DL
Ranker, we then take the average on the third dimension, such that we
have a matrix 𝑏 × 𝑠 of scores for each document. For the DL Classifier,
we also “augment” the training set 𝐷tr with a pre-defined number of
documents randomly sampled from other topics (we sample a number
equal to 20% of |𝐷tr | size): this should help the classifier to generalize
better over the different topics; clearly, this cannot be done with the
DL Ranker, as it would not make sense to rank documents for a topic 𝑡𝑖
higher than a topic 𝑡𝑗 or vice versa.

Finally, each sequence 𝑠 is built by randomly sampling 𝑠 examples
from the dataset without replacement. Notice that since we only elab-

orate a sequence 𝑠 of documents for every batch, when applying the
model to the test topics we first classify/rank all batches and then ag-

gregate the scores together to obtain the ranking/classification output
for each 𝑑te ∈𝐷te.

4.2.2. Pairwise document representation

We use this pairwise representation for the BioBERT fine-tuning. For
𝑛 times, we randomly pick a relevant and an irrelevant example and we
combine them together: a “new” document is then formed, where we
have the title of the SR topic separated by a [SEP] token from the text of
the first document, which is in turn separated by another [SEP] token
from the text of the second document. Whether the relevant document
is first or last is decided by a fair coin flip. Since BioBERT needs many
data points to be fine-tuned, for any 𝐷tr , we set 𝑛 = 1.2 ⋅ |𝐷tr |, creating
a training set which is 20% larger than the original size of 𝐷tr .

4.2.3. TF-IDF

The classical TF-IDF representation is only used for the logistic re-

gression trained in the CAL algorithm used as a baseline. This repre-

sentation is built using the TFIDFVECTORIZER class exposed by SCIKIT-

LEARN5 API.

4.3. Rankings and evaluation measures

As explained in Section 2, we use the CAL algorithm as a baseline
in our experiments. We use a standard non-pretrained logistic regres-

sion (which we call NP Logistic) as the CAL’s learner. Notice that,
clearly, comparing CAL’s performances with the zero-shot rankings is
not a fair comparison since the NP Logistic has access to and is contin-

uously trained on in-topic data.

Furthermore, throughout our experiments, we will report metrics
and results on two different types of ranking:

5 https://scikit -learn .org /stable /modules /generated /sklearn .feature _
5

extraction .text .TfidfVectorizer .html.
Intelligent Systems with Applications 16 (2022) 200150

• A ranking which is the output of a model (be it a set of probabilities
or a vector of scores) on the set of all documents to be ranked. We
call this full reranking;

• The ordering of the documents resulting from the CAL process, that
we call the CAL ordering. More precisely: at every iteration of CAL,
we take the top 𝑘 documents and have a reviewer annotating them.
What we call CAL ordering is then the order in which the reviewer
annotates the documents throughout the process.

4.3.1. Evaluation metrics

In order to evaluate the models rankings or the CAL ordering, we
use two of the most well-known metrics in TAR literature: Mean Aver-

age Precision (MAP) and Work Saved Over Sampling (WSS). Average
Precision (AP) is computed as:

AP = 1
𝑟𝑒𝑙

∑
𝑗

Precision(𝑗), (1)

where 𝑟𝑒𝑙 is the number of relevant documents and Precision(𝑗) is the
precision at the 𝑗th item. We take the average of this metric over all the
testing topics, calling it MAP.

On the other hand, with WSS we want to measure how beneficial is
our ranking with respect to a random ordering of the documents. More
precisely, WSS at a threshold 𝑡 is computed as:

WSS@t = (TN+ FN)∕𝑁(1 − 𝑡) (2)

In our experiments we show WSS at the 85%, 95% and 100% thresholds
(WSS@{85, 95, 100}%).

5. Implementation details

The aim of our experimentation is to answer research questions
RQ1 and RQ2 (see Section 1). Unless otherwise stated, we train our
DL Ranker and DL Classifier models for 500 epochs, using the Adam
optimizer (Kingma & Ba, 2014). BioBERT6 is instead fine-tuned with
a classification head with two output neurons for a maximum of 10
epochs. However, we employ a typical early stopping strategy with pa-

tience on the loss set to 10 update steps, which in practice usually stops
the training set before reaching 10 epochs. The DL models (except for
BioBERT) are implemented using the PyTorch Python library,7 whereas
for the Logistic Regression we use the standard scikit-learn library8 im-

plementation (code will be made available in the near future).

As anticipated, for the DL Ranker and Classifier we experiment with
two different losses: we use (i) a Cross-Entropy loss for the DL Classi-

fier model; given the extremely unbalanced datasets (see Section 3), we
also use fixed class weights of 0.2 and 0.8 for the negative and posi-

tive class respectively. Furthermore, for all of our experiments with the
DL models, we use only one transformer encoder layer; we leave exper-

imentation with different number of encoders and attention heads to
future works. (ii) For the ranking loss function, we directly maximize
an approximation of the NDCG metric, more precisely the determinis-

tic Neural-NDCG (Pobrotyn & Białobrzeski, 2021). While we refer the
reader to Pobrotyn and Białobrzeski (2021) for implementation details,
we notice that in order to approximate the permutation matrix that
would sort the input, we have a temperature parameter 𝜏 which we can
use to control the degree of approximation (when 𝜏 = 0 we get the exact
permutation matrix): we found this parameter to be highly susceptible
to the size of the data fed to the model, but we postpone any precise
analysis on this to future works.

For the fine-tuning of the BioBERT model, we use a pairwise loss
function usually known as the Margin (or Margin Ranking) loss. That

6 The pre-trained model is downloaded from the HuggingFace Hub, available
at https://huggingface .co /models.

7 https://pytorch .org/.

8 https://scikit -learn .org /stable/.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://huggingface.co/models
https://pytorch.org/
https://scikit-learn.org/stable/

Intelligent Systems with Applications 16 (2022) 200150A. Molinari and E. Kanoulas

Table 4

MAP for the zero-shot rankings. We show the CAL ordering and CAL’s NP Logistic full reranking after
10 documents have been annotated for comparison. Best result overall is in bold, whereas the best
result among the zero-shot rankings is underlined.

CAL ordering NP Logistic Zero-shot rankings

(no pre-training) DL Rank. DL Class. BioBERT LR

MAP 0.240 ±0.178 0.126 ± 0.132 0.211 ± 0.168 0.185 ± 0.163 0.226 ±0.162 0.219 ± 0.166

Table 5

Recall@10 (R@10) for the different pre-trained models and the NP Logistic baseline after
annotating 10 documents. Notice the recall is measured on what we called the full reranking
and not on the CAL ordering. All the pre-trained zero-shot models obtain a higher Recall@10.

NP Logistic DL Rank. DL Class. BioBERT LR

R@10 0.012 ± 0.017 0.028 ± 0.022 0.029 ± 0.040 0.069 ±0.055 0.046 ± 0.032
is, given two scores 𝑥𝑖 and 𝑥𝑗 , and a label 𝑦 = 1 when 𝑥𝑖 should be
higher than 𝑥𝑗 and 𝑦 = −1 vice versa, the loss is computed as:

𝐿(𝑥𝑖, 𝑥𝑗 , 𝑦) = max(0,−𝑦 ⋅ (𝑥𝑖 − 𝑥𝑗) +𝑚) (3)

where 𝑚 is the margin, which we actually set to 0, following the Py-

Torch implementation default9 as of version 1.10.1.

All of our experiments are run on a maximum of two NVIDIA Tesla
T4 GPU (with 16 GB of RAM each) on a multi-processor machine (kindly
made available by the Computer Science department of the University
of Pisa). Training times are not particularly demanding, as the BioBERT
fine-tuning took around 36 hours, whereas 20 minutes were enough for
the DL models and as little as 28 seconds for the logistic regression.

6. Results

We show in this section the experiment results both for our first
and second research questions (RQ1 and RQ2, see Section 1). We also
present the results of a hyperparameter search for the DL models (Sec-

tion 6.3): this last section should serve as a basis for further research,
in order to understand how and where future works might focus to suc-

cessfully continuously train DL models in active learning scenarios.

6.1. RQ1: Can we transfer knowledge?

In order to answer this first question, we train our models on our
training topics and apply them to the testing topics without any further
training, to see whether we can actually obtain a good zero-shot ranking
of the documents.

Evaluating the zero-shot ranking As stated in Section 4.3, we compare
our results (full reranking) with the document ordering coming from
Cormack’s CAL classical implementation (what we called the CAL or-

dering). We show the Mean Average Precision (MAP) of the zero-shot
rankings in Table 4; we also show the MAP for the CAL ordering and
the CAL’s NP Logistic ranking after 10 documents have been annotated
(which we might call a few-shots NP Logistic). Notice how all the zero-

shot models achieve rather good performances, obtaining a better MAP
than the few-shots NP Logistic. BioBERT seems to be the best model,
closely followed by the Logistic Regression (LR). As expected, the CAL
baseline is able to achieve a stronger MAP than the zero-shot rankings’
(since its logistic regression is being trained on in-topic data). Nonethe-

less, this shows that the pre-trained models are able to successfully
transfer knowledge between topics.

9 https://pytorch .org /docs /stable /generated /torch .nn .MarginRankingLoss .
6

html.
Jump-starting the CAL algorithm To test if our zero-shot rankings are
beneficial to the reviewing process (i.e., if we can achieve a higher
recall earlier), we propose to jump-start the CAL algorithm from the
top-10 documents coming from our zero-shot rankings. With “jump-

starting” CAL we mean:

1. we pre-train a model on the training topics;

2. we rank the current new (and unseen) topic and take the model
top-10 documents;

3. we obtain the labels for these 10 documents;

4. we train CAL’s logistic regression on these 10 documents (using

TF-IDF features) and start the CAL algorithm from there, following
Cormack and Grossman (2015) thereafter.

Notice that, for some topics, the pre-trained models failed to retrieve
any positive instance in the top-10 documents: the DL Classifier failed
on 3 topics out of 7, of which the DL Ranker failed on 2 and BioBERT
and the LR failed on 1; hence, we show results averaged on 4 topics
out of 7. We first show the Recall@10 (on the full reranking) in Ta-

ble 5: notice how the zero-shot rankings effectively jump-start the CAL
process from a higher recall; BioBERT proves to be the most effective
algorithm to jump-start with. We show the WSS@{85, 95, 100}% and
the MAP averaged across the topics in Table 6. Notice that the “rank-

ing” here is actually the ordering of the documents collected at the end
of the CAL process (CAL ordering). The results show how the higher ini-

tial recall translates to better performances on the average WSS scores
with respect to the NP Logistic baseline, even though they are not con-

sistently in line with the metrics taken on the zero-shot setup and the
Recall@10: i.e., the top-10 documents coming from the DL Classifier or
the pre-trained LR seem to be able to better jump-start the CAL process,
despite BioBERT was the best model in terms of MAP (Table 4) and Re-

call@10 (Table 5). Furthermore, the DL Classifier was the worst of the
three pre-trained models in both Tables 4 and 5, but the CAL process
jumpstarted from its top-10 documents shows better WSS performances
at the 95% thresholds than the other models. Regarding the MAP, the
pre-trained models can effectively jump-start the CAL algorithm as seen
for the WSS; notice that the top-10 documents from BioBERT manage to
keep the advantage we saw in Table 4 for the MAP metric. From these
results, overall, we conclude that the pre-training can actually improve
on the baseline performances both in terms of MAP and WSS; however,
as reported by Zhao et al. (2021) as well, knowledge transfer can fail in
some cases.

6.2. RQ2: Can we keep training our DL models in the active learning
process?

In our experiments so far, we have showed results on the zero-shot
rankings from our models, or when using them to jump-start the CAL

process. We did not, however, leverage the pre-trained DL models in the

https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html

Intelligent Systems with Applications 16 (2022) 200150A. Molinari and E. Kanoulas

Table 6

WSS@{85, 95, 100}% and MAP for the jump-started CAL. The NP Logistic is the classical
CAL implementation, starting from a seed document. The other columns indicate from which
ranking we take the top-10 documents that jump-start the CAL algorithm. Average is on 4
out of 7 topics.

CAL ordering

NP Logistic DL Rank. DL Class. BioBERT LR

WSS@85% 0.494 ± 0.241 0.501 ± 0.245 0.499 ± 0.243 0.501 ± 0.243 0.508 ±0.254
WSS@95% 0.475 ± 0.304 0.466 ± 0.205 0.480 ±0.159 0.457 ± 0.328 0.460 ± 0.334
WSS@100% 0.372 ± 0.306 0.371 ± 0.297 0.373 ± 0.304 0.369 ± 0.307 0.378 ±0.304
MAP 0.357 ± 0.134 0.378 ± 0.151 0.387 ± 0.136 0.468 ±0.124 0.399 ± 0.133
Table 7

WSS@{85, 95, 100}% and MAP for the CAL orderings where we keep training
the DL models inside the CAL process. Notice that the LR is not continuously
trained and results are the same as reported in Table 6. Average is still on 4
topics out of 7.

CAL ordering

NP Logistic DL Rank. DL Class. LR

WSS@85% 0.494 ± 0.241 0.504 ± 0.242 0.468 ± 0.234 0.508 ±0.254
WSS@95% 0.475 ±0.304 0.460 ± 0.321 0.475 ±0.204 0.460 ± 0.334
WSS@100% 0.372 ± 0.306 0.249 ± 0.207 0.297 ± 0.131 0.378 ±0.304
MAP 0.357 ± 0.134 0.351 ± 0.120 0.368 ± 0.138 0.399 ±0.133

active learning process: can these models actually be trained in such a
scenario? To understand this, we run another set of experiments with
the same setup as before, but where we actually keep training our DL
models during the active learning review process. Training a DL model
in such a scenario is not a trivial task, since many hyperparameters
have to be taken into account: epochs, cross-entropy class weights (to
counteract class imbalance) and learning rate are just some of the hy-

perparameters we deal with. Regarding epochs, Yang, MacAvaney, et al.
(2021) fine-tune BERT in the AL process for 10 and 30 epochs (based
on the dataset), albeit with no clear rationale behind the choice of the
number of epochs; however, they also point out how crucial it is to have
“just-right” tuning of the model.

Lacking a validation set, however, we run a first batch of experi-

ments where we arbitrarily set these hyperparameters. Due to the high
computational costs of fine-tuning BioBERT at every iteration, we de-

cided against using it in this part of the experiments for RQ2; moreover,
we argue that these very large language models are impractical to fine-

tune in such a scenario, both due to their computational costs and to
the disproportion between the high number of parameters to fine-tune
and the size of training data. Regarding the DL Ranker and Classifier,
we:

• train the models for 50 epochs at each CAL iteration;

• keep the class weights in the Cross-entropy loss at 0.2 and 0.8 for
the negative and positive class respectively;

• use a learning rate of 0.001.

We show the results of such experiments in terms of WSS and MAP on
the CAL ordering (Table 7). As we can clearly see from the table, con-

tinuously training these models during the CAL process has inconsistent
effects on the metrics: with respect to the jump-started CAL results (Ta-

ble 6), the DL Ranker only improves for the WSS@85% metric, showing
slight to substantial decrease in performances for all other metrics. The
DL Classifier is no different and exhibits a consistent loss of perfor-

mances for all metrics. In summary, fine-tuning these models in an
active learning process seems unadvisable: we think this might be due to
(i) the small number of documents we usually have for fine-tuning (es-

pecially in the first CAL iterations), (ii) the training set size constantly
changing (possibly too slowly), (iii) a number of parameters to update
which is too large with respect to the training data, (iv) many hyperpa-
7

rameters which might need better adjustment in such a scenario.
We believe that a much better solution in this case might be to em-

ploy Adapter modules (Houlsby et al., 2019), freezing the rest of the
network. This also allows us, in terms of computational costs, to fine-

tune BioBERT.

Notice Given the amount of hyperparameters involved, the absence of
a validation set, and the small set of training topics, we have decided
to show the impact of different hyperparameters directly on the testing
topics, when using (and not using) adapter layers. These results should
serve as a basis for further research on the matter and as a mean to
better understand whether it is possible at all to properly train such big
models (especially in BioBERT case) in a CAL setting, where the overall
number of documents span from a few hundreds to a few thousands.

6.3. Hyperparameter search

As mentioned, we conduct a hyperparameter search study where we
analyze the variation in Mean Average Precision due to the learning
rate, the number of epochs and the percentage of documents assessed
at every CAL iteration. We conduct this hyperparameter search directly
on the testing topics: these experiments should be taken as an effort to
understand why the DL models failed when continuously trained (see
Section 6.2) and, possibly, where to look for a solution in future works;
in other words, the aim of these experiments is not to compete with a
baseline (which would not be fair, since we are testing hyperparameters
directly on the test set), but rather to show the most promising direc-

tions to take in order to enable DL models to be actively trained. For
this reason, we sometimes omit results when they are not particularly
interesting (i.e., not exhibiting a pattern that we might exploit in the
future) as to avoid cluttering the paper with too many figures.

That said, we evaluate the effect of these hyperparameters both
when training the whole neural network and when using adapter lay-

ers. For the former case, we show results for the DL Ranker only, as it
was the best DL zero-shot model (not considering BioBERT). For the lat-

ter case, we also show BioBERT results where we vary the learning rate.
We test with different configurations:

• the learning rate values range from the default value used in train-

ing of 1 × 10−3, to 1 × 10−5. Being BioBERT a completely different
model, we test here with the default learning rate10 of 5 × 10−5
and the value suggested by the AdapterHub library11 of 1 × 10−4.
Epochs are fixed at 60 for the Ranker and at 5 for BioBERT;

• for the DL Ranker only, we also test the model by training for 10,
30, 60 and an adaptive number of epochs (see below) at every CAL
iteration. Learning rate is fixed at 1 × 10−4;

• finally, we also train the DL Ranker annotating 5% and 20% of
the documents at every CAL iteration. We indicate the percentage
of documents we take at every iteration with Δ𝑑 . BioBERT is fine-

tuned with Δ𝑑 = 5% only.

10 This was one of the learning rates used in Devlin et al. (2018) and is the
default in the HuggingFace library.

11 https://docs .adapterhub .ml /training .html.

https://docs.adapterhub.ml/training.html

Intelligent Systems with Applications 16 (2022) 200150A. Molinari and E. Kanoulas

Fig. 2. Variation of Mean Average Precision with different learning rates, annotating 5% (left) and 20% (right) of the documents at each iteration.
By “adaptive number of epochs” we mean that the number of epochs
change at every active learning iteration, as a function of the number
of training documents we have collected so far. For these experiments,
we have empirically defined this as:

epochs = min(|𝑖| ⋅ 0.3,500) (4)

where with |𝑖| we indicate the size of the available training documents
at a given iteration 𝑖. That is, the number of epochs is equal to 30% of
the training documents, with an upper bound set at 500 (the number of
epochs used during the pre-training of the models).

For the DL Ranker without adapter layers, we show the MAP for
the different learning rate setups; we also show the NP Logistic as a
baseline. The average is on all testing topics (as opposed to results in
Section 6.1 and 6.2). More precisely, we continuously train and evaluate
the models with the following procedure:

1. At iteration 𝑖 = 0 (i.e., no document has been reviewed yet), all
documents are ranked according to the pre-trained model zero-shot
ranking;

2. We compute the AP of this ranking;

3. We review the top Δ𝑑 documents and re-train the model;

4. We re-rank the whole pool of documents again and re-compute AP;

5. We repeat this process until all documents have been reviewed.

Clearly, the NP logistic is an exception, using the systematic review
topic query as the initial seed document and following Cormack and
Grossman (2015) procedure (as it did so far in our experiments, un-

less otherwise stated). In other words, at each iteration we take the full
reranking (not the CAL ordering) and evaluate it. This is useful to un-

derstand whether the models under examination can indeed learn and
improve on the previous iteration. Since we cannot exactly take 5% or
20% of the documents for all topics, we bin the results by number of
annotated documents and plot the average of the bins. The results are
plotted in Fig. 2. When Δ𝑑 = 5%, we notice how the default learning
rate of 1 × 10−3 causes instability for the Mean Average Precision as the
training set grows. The other two learning rates seem to be much more
stable across CAL iterations, and a learning rate of 1 × 10−4 is capable
of achieving MAP values close to the baseline’s at later stages of the
reviewing process. That said, the NP Logistic baseline is clearly the bet-

ter algorithm, achieving and keeping a higher MAP across all iterations.
Moreover, Fig. 2b shows that reviewing 20% of the documents at every
iteration is suboptimal, leading to much lower values of MAP across all
iterations.

Regarding adapter layers, we show the results in Fig. 3 for the DL
Ranker. The plots show how, when using adapters and Δ𝑑 = 5%, a
8

higher learning rate is able to achieve better performances. As a matter
of fact, a learning rate of 1 × 10−3 obtains greater values of MAP than
the baseline, at later stages of the CAL process. Overall, adapter layers
seem to bring greater stability to the learning capability of the model
(which is expected, having less parameters to learn). Finally, we notice
once again how using Δ𝑑 = 20% brings to overall worse performances
than with Δ𝑑 = 5%.

We will now analyze the effect of the number of epochs on the per-

formances of the DL Ranker. As mentioned before, we test with 10, 30,
60 and an empirically defined adaptive strategy (see Equation (4)), that
we call “Adaptive” in the plots. Since results for the DL Ranker with-

out adapters were, similarly to the learning rate ones, not particularly
interesting, we show the variation of MAP when using adapters only
(Fig. 4). As we have seen for the learning rate figures, using adapter
layers can indeed bring to a substantial improvement on the average
precision metric. As a matter of fact, the adaptive number of epochs
can, at later stages, achieve a better MAP than the NP Logistic baseline;
again, we notice that overall the gain in performance is much more
consistent with the growth in training set size when using adapters.12

In conclusion, we could say that, especially when using adapters, the
number of epochs is a particularly sensitive hyperparameter (with re-

spect to learning rate) which must be correctly adapted to the growing
size of the training set; we believe future research on this topic might
give new and interesting prospectives on the trainability of DL models
in active learning scenarios.

Regarding the fine-tuning with adapters of the BioBERT algorithm,
we only experimented with two different learning rates: (i) the default
BioBERT learning rate in the HuggingFace library, i.e. 5e-5; (ii) the
default learning rate in the AdapterHub library, i.e. 1e-4. The num-

ber of epochs, on the other hand, is fixed at 5 and Δ𝑑 = 5%. This was
done mainly for computational reasons, since, even with adapter lay-

ers, fine-tuning BioBERT can be a very expensive operation. Moreover,
the results we were seeing from this initial set of experiments were
not promising enough, and we decided against running further experi-

mentation. As a matter of fact, looking at BioBERT results in Fig. 5 we
notice very poor performances, raising the question whether it is actu-

ally possible at all to train large language models when the dataset is
relatively small and the update is done in a continual fashion: indeed,
despite testing with two very different learning rates, the results seem
to be just slightly affected, with 5 × 10−5 being the better of the two,
even though not significantly. That said, further experimentation with
different number of epochs might give more promising results.

Finally, so far we have shown metrics on the full reranking, but we
have not shown their CAL’s ordering (which is what a reviewer would

12 We also point out that this setup can achieve WSS@95% close to the base-
line, albeit not as consistently as the baseline can.

Intelligent Systems with Applications 16 (2022) 200150A. Molinari and E. Kanoulas

Fig. 3. Variation of the Average Precision with different learning rates, annotating 5% (left) and 20% (right) of the documents at each iteration. We only train
Adapter layers and freeze the rest of the network.

Fig. 4. Variation of the Average Precision with different epochs, annotating 5% (left) and 20% (right) of the documents at each iteration. We only train Adapter
layers and freeze the rest of the network.
Fig. 5. Variation of the Mean Average Precision with different learning rates
for BioBERT, annotating 5% of the documents at each iteration. We only train
Adapter layers and freeze the rest of the network.

actually see). We plot how these orderings change as a function of the
number of epochs (or learning rate, in BioBERT case) when Δ𝑑 = 5%
and using adapter layers, to keep the number of plots to a minimum.
We can see these orderings in Fig. 6. Unsurprisingly, these plots show
similar results to the previous ones, with the adaptive epochs obtaining
9

the best results. That said, differences between the several epoch values
tested are much smaller.13 Furthermore, as we were seeing for the plots
on BioBERT rankings, its CAL’s ordering is also showing rather poor
performances.

Finally, one critical aspect to consider when further studying the
applicability of large language models to TAR is also the unavoidable
increase in training times: at each active learning iteration we need to
re-train the model, whose cost, when dealing with so many parame-

ters, can be non-negligible. Indeed, even when only training adapters
as we did here, training times can substantially increase: for complet-

ing the experiments (on all the testing topics), BioBERT with adapters
took about 20 hours; the DL ranker with adapters needed less than 7
minutes and the LR just 20 seconds.

In conclusion, this hyperparameter search can help us give a first
tentative picture of what works and what does not, as well as finding
directions for future works:

1. deep learning models, be them very large models or tinier ones,
cannot be simply updated in an active learning process. Despite
starting from a more or less good zero-shot capability, their perfor-

mances quickly deteriorate when trained in these scenarios;

13 This is somehow expected, since, at every iteration, the updated model can
only have an impact on the top-k documents reviewed in the next batch, and

not on the previous ones.

Intelligent Systems with Applications 16 (2022) 200150A. Molinari and E. Kanoulas

Fig. 6. Variation on recall vs percentage of assessed documents due to different learning rates. Models have been trained with Δ𝑑 = 5%. We show the CAL ordering
of the different continuously trained models.
2. adapter layers can be a good solution for fine-tuning, except when
the underlying frozen model is excessively large (especially com-

pared to the size of the dataset). Indeed, models such as BioBERT
are rather good at transfer learning, but cannot seemingly be fine-

tuned in the CAL process;

3. some of the hyperparameters can be of key importance to the
success of the models fine-tuning. Understanding how to adapt hy-

perparameters such as the learning rate and the number of epochs
to the increasing training set size, as well as being able to assess
how many documents are reviewed at each iteration, can make the
difference between a decent model that can compete with current
state of the art and a rather poor one.

Regarding our bullet point 2, it would be interesting to explore, in fu-

ture works, which type of adapter layers (e.g., Houlsby et al. (2019),
Pfeiffer et al. (2020), He et al. (2021)) can bring about the most promis-

ing increase in performances and if the peculiar active learning scenario
might require further adaptations or modifications of these techniques
to fully leverage the zero-shot knowledge that we were seeing in Ta-

bles 4 and 5.

Finally, for bullet point 3, the correct choice of hyperparameters
can be truly problematic since we lack a validation set. It could in-

deed be possible to extract a validation set before starting the review
process, but this seems to make sense only when the dataset is large
enough, and should be compared to a baseline which is also taking into
account the presence of such a validation set. That said, it would be in-

teresting to explore whether a more or less empirical solution can be
found, which could allow selecting and/or adapting the hyperparame-

ters without necessarily looking at a validation set; to this end, adapting
the number of epochs to the size of the current training set seems to be
particularly effective and should be further explored.

7. Conclusion

In this work, we explored whether using previous Systematic Re-

views (SR) to pre-train machine learning models can actually bring
better performances for a new SR topic, compared to doing no pre-

training at all. Specifically, we also investigated whether deep learning
models such as BioBERT or other transformer-like architectures can be
effective, and to which extent. We conducted experiments on the CLEF
TAR 2019 Task 2 dataset, and the results clearly show that pre-trained
models can obtain good zero-shot rankings on both the Mean Average
Precision and Work Saved over Sampling metrics (Section 6.1). When
used with the CAL algorithm, we also see that jump-starting the active
learning process from these zero-shot rankings can actually bring to a
higher recall earlier in the assessment process (Section 6.2). Finally,
10

we also noticed how continuously training our deep learning models
brings to inconsistent performances (usually, with a detrimental effects
on the evaluation metrics): we then conducted an extensive analysis on
a hyperparameter search (Section 6.3). The aim of this latter experi-

mentation was to understand how and what we would need to change
(or further research) to effectively train deep learning models in an ac-

tive learning process. Our results show that future works should focus
on finding and (at least empirically) define a set of rules to adapt hy-

perparameters (e.g. epochs and learning rate) to the growing training
set size; more specifically, we believe that using smaller models and im-

plementing adapter modules can bring substantial improvements over
the standard non-pre trained logistic regression, if paired with a proper
adaptation of the number of epochs to the training set size.

CRediT authorship contribution statement

Alessio Molinari: Formal analysis, Funding acquisition, Investiga-

tion, Methodology, Resources, Software, Supervision, Validation, Visu-

alization, Writing – original draft, Writing – review & editing. Evan-

gelos Kanoulas: Formal analysis, Funding acquisition, Investigation,
Methodology, Project administration, Resources, Supervision, Valida-

tion, Visualization, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Cohen, A. M., Ambert, K., & McDonagh, M. (2009). Cross-topic learning for work prioriti-

zation in systematic review creation and update. Journal of the American Medical Infor-

matics Association, 16(5), 690–704. https://doi .org /10 .1197 /jamia .M3162. Retrieved
from https://www .sciencedirect .com /science /article /pii /S1067502709001224.

Cormack, G. V., & Grossman, M. R. (2015). Autonomy and reliability of continuous active
learning for technology-assisted review. arXiv preprint. Retrieved from arXiv :1504 .
06868.

Cormack, G. V., & Grossman, M. R. (2017). Technology-assisted review in empirical
medicine: Waterloo participation in CLEF eHealth 2017. In CLEF (working notes)

(p. 11).

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint. Retrieved from
arXiv :1810 .04805.

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., & Neubig, G. (2021). Towards a unified
view of parameter-efficient transfer learning. arXiv preprint. Retrieved from arXiv :
2110 .04366.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A.,
Attariyan, M., & Gelly, S. (2019). Parameter-efficient transfer learning for NLP. In

International conference on machine learning, PMLR (pp. 2790–2799).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint. Retrieved from arXiv :1412 .6980.

https://doi.org/10.1197/jamia.M3162
https://www.sciencedirect.com/science/article/pii/S1067502709001224
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib4500461D21ED5F94D9B48D4DD7BF983Fs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib4500461D21ED5F94D9B48D4DD7BF983Fs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib4500461D21ED5F94D9B48D4DD7BF983Fs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib1CC56D69297180A519F4556C81A3B878s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib1CC56D69297180A519F4556C81A3B878s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib1CC56D69297180A519F4556C81A3B878s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib3AAF9F78273D48FFB87EBB486F1D1D9Ds1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib3AAF9F78273D48FFB87EBB486F1D1D9Ds1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib3AAF9F78273D48FFB87EBB486F1D1D9Ds1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib78C6A5687A4EAB12A7055588BBF0EB16s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib78C6A5687A4EAB12A7055588BBF0EB16s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib78C6A5687A4EAB12A7055588BBF0EB16s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib20651E2C151B060456B796DD2741845As1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib20651E2C151B060456B796DD2741845As1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib20651E2C151B060456B796DD2741845As1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bibB88B8F9E9C5AF9DF750A673227029C8Fs1

Intelligent Systems with Applications 16 (2022) 200150A. Molinari and E. Kanoulas

Lagopoulos, A., & Tsoumakas, G. (2020). From protocol to screening: A hybrid learning
approach for technology-assisted systematic literature reviews. arXiv preprint. Re-

trieved from arXiv :2011 .09752.

Lee, G. E., & Sun, A. (2018). Seed-driven document ranking for systematic reviews in
evidence-based medicine. In The 41st international ACM SIGIR conference on research
& development in information retrieval (pp. 455–464). Ann Arbor, MI, USA: ACM. Re-

trieved from https://dl .acm .org /doi /10 .1145 /3209978 .3209994.

Lee, G. E., & Sun, A. (2021). Mirror matching: Document matching approach in seed-

driven document ranking for medical systematic reviews. Retrieved from arXiv :2112 .
14318.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). Biobert: A
pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics, 36(4), 1234–1240.

Li, D., & Kanoulas, E. (2020). When to stop reviewing in technology-assisted reviews:
Sampling from an adaptive distribution to estimate residual relevant documents. ACM
Transactions on Information Systems, 38(4), 1–36.

Michelson, M., & Reuter, K. (2019). The significant cost of systematic reviews and meta-

analyses: a call for greater involvement of machine learning to assess the promise of
clinical trials. Contemporary Clinical Trials Communications, 16, Article 100443.

Pfeiffer, J., Vulić, I., Gurevych, I., & Ruder, S. (2020). Mad-x: An adapter-based frame-

work for multi-task cross-lingual transfer. arXiv preprint. Retrieved from arXiv :
2005 .00052.

Pickens, J. (2021). On the effectiveness of portable models versus human expertise under
continuous active learning. In 2nd international workshop on AI and intelligent assistance
for legal professionals in the digital workplace (LegalAIIA).

Pobrotyn, P., Bartczak, T., Synowiec, M., Białobrzeski, R., & Bojar, J. (2020). Context-

aware learning to rank with self-attention. Retrieved from arXiv :2005 .10084.

Pobrotyn, P., & Białobrzeski, R. (2021). NeuralNDCG: Direct optimisation of a ranking
metric via differentiable relaxation of sorting. Retrieved from arXiv :2102 .07831.

Scells, H., & Zuccon, G. (2018). Generating better queries for systematic reviews. In The
41st international ACM SIGIR conference on research & development in information re-
trieval (pp. 475–484).

Scells, H., Zuccon, G., Koopman, B., & Clark, J. (2020). Automatic boolean query formula-

tion for systematic review literature search. In Proceedings of the web conference 2020

(pp. 1071–1081). Taipei, Taiwan: ACM. Retrieved from https://dl .acm .org /doi /10 .
1145 /3366423 .3380185.

Shemilt, I., Khan, N., Park, S., & Thomas, J. (2016). Use of cost-effectiveness analysis to
compare the efficiency of study identification methods in systematic reviews. System-

atic Reviews, 5(1), 1–13.

Tsafnat, G., Glasziou, P., Choong, M. K., Dunn, A., Galgani, F., & Coiera, E. (2014). Sys-

tematic review automation technologies. Systematic Reviews, 3(1), 1–15.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
& Polosukhin, I. (2017). Attention is all you need. arXiv preprint. Retrieved from
arXiv :1706 .03762.

Yang, E., Lewis, D. D., & Frieder, O. (2021). Heuristic stopping rules for technology-

assisted review. In Proceedings of the 21st ACM symposium on document engineering

(pp. 1–10).

Yang, E., MacAvaney, S., Lewis, D. D., & Frieder, O. (2021). Goldilocks: Just-right tuning
of BERT for technology-assisted review. arXiv preprint. Retrieved from arXiv :2105 .
01044.

Zhao, H., Ye, S., & Yang, J. (2021). An empirical study on transfer learning for privilege
review. In 2021 IEEE international conference on big data (Big Data) (pp. 2729–2733).
IEEE.
11

http://refhub.elsevier.com/S2667-3053(22)00087-4/bibBE3C132C34C28EC26A398B1A209F5084s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bibBE3C132C34C28EC26A398B1A209F5084s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bibBE3C132C34C28EC26A398B1A209F5084s1
https://dl.acm.org/doi/10.1145/3209978.3209994
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib61FBD3ED51A5B5F5E7D4DC470AB7D938s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib61FBD3ED51A5B5F5E7D4DC470AB7D938s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib61FBD3ED51A5B5F5E7D4DC470AB7D938s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bibFA238A3AD31FBC1D171879B3D3A1E067s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bibFA238A3AD31FBC1D171879B3D3A1E067s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bibFA238A3AD31FBC1D171879B3D3A1E067s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib5EA865D4B26EFB5DEE6C2FBAEFE18769s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib5EA865D4B26EFB5DEE6C2FBAEFE18769s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib5EA865D4B26EFB5DEE6C2FBAEFE18769s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib2DE2E63B1080694F061E16E9286B15D3s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib2DE2E63B1080694F061E16E9286B15D3s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib2DE2E63B1080694F061E16E9286B15D3s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib9CC655C5D8B1266C63BB5D2B6F63ABDFs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib9CC655C5D8B1266C63BB5D2B6F63ABDFs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib9CC655C5D8B1266C63BB5D2B6F63ABDFs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib68D2CA814405A3157B59C0EDE6CCC888s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib68D2CA814405A3157B59C0EDE6CCC888s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib68D2CA814405A3157B59C0EDE6CCC888s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib0BA95ACD194B841978B9C3B0F360107Bs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib0BA95ACD194B841978B9C3B0F360107Bs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib7316D3E88A345D02BB29A51193534633s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib7316D3E88A345D02BB29A51193534633s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib203E2568E1ADF2F29087B0F65F8C0302s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib203E2568E1ADF2F29087B0F65F8C0302s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib203E2568E1ADF2F29087B0F65F8C0302s1
https://dl.acm.org/doi/10.1145/3366423.3380185
https://dl.acm.org/doi/10.1145/3366423.3380185
http://refhub.elsevier.com/S2667-3053(22)00087-4/bibCA2034665623541BE42FF9EE73F5657Ds1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bibCA2034665623541BE42FF9EE73F5657Ds1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bibCA2034665623541BE42FF9EE73F5657Ds1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib2587E3858A0428CEBD5BD85F7B44E0CCs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib2587E3858A0428CEBD5BD85F7B44E0CCs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib9AE976A135532C4A87DE8907EAEB8BE1s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib9AE976A135532C4A87DE8907EAEB8BE1s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib9AE976A135532C4A87DE8907EAEB8BE1s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib7C740A7E6E2F8056340E66547DFF3045s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib7C740A7E6E2F8056340E66547DFF3045s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib7C740A7E6E2F8056340E66547DFF3045s1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib5019C1D2B4FCE07885DDBEB4E76B2F0Bs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib5019C1D2B4FCE07885DDBEB4E76B2F0Bs1
http://refhub.elsevier.com/S2667-3053(22)00087-4/bib5019C1D2B4FCE07885DDBEB4E76B2F0Bs1

	Transferring knowledge between topics in systematic reviews
	1 Introduction
	1.1 TAR for systematic reviews: an overview

	2 Related work
	3 The dataset
	4 Methodology and experimental design
	4.1 Learning algorithms
	4.2 Data preprocessing
	4.2.1 Document embeddings and list-wise structure
	4.2.2 Pairwise document representation
	4.2.3 TF-IDF

	4.3 Rankings and evaluation measures
	4.3.1 Evaluation metrics

	5 Implementation details
	6 Results
	6.1 RQ1: Can we transfer knowledge?
	6.2 RQ2: Can we keep training our DL models in the active learning process?
	6.3 Hyperparameter search

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

