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Abstract. FeedForward Deep Neural Networks (DNNs) robustness is
a relevant property to study, since it allows to establish whether the
classification performed by DNNs is vulnerable to small perturbations in
the provided input, and several verification approaches have been devel-
oped to assess such robustness degree. Recently, an approach has been
introduced to evaluate forward robustness, based on symbolic compu-
tations and designed for the ReLU activation function. In this paper,
a generalization of such a symbolic approach for the widely adopted
LeakyReLU activation function is developed. A preliminary numerical
campaign, briefly discussed in the paper, shows interesting results.

1 Introduction

Deep Neural Networks are increasingly exploited in a number of AI applications,
ranging from traditional speech recognition and image recognition to innovative
modern sectors such as self-driving cars [8]. However, in addition to great per-
formance capability, employment of DNNs in dependability critical applications,
such as autonomous vehicles, requires the satisfaction of high degrees of accu-
racy/robustness. Therefore, it is paramount to analyze DNNs to verify whether
their robustness degree is satisfactory for the application contexts where they are
going to be employed. Among the others, abstract interpretation has been pro-
posed in [2] for verifying DNNs. Unfortunately, as recently pointed out in [11],
abstract interpretation can result too imprecisely, due to the non-linearity in
DNNs.

To mitigate this problem, in [11] a novel symbolic propagation technique
has been proposed with the aim of improving the precision of DNNs verification
through abstract interpretation. Their idea consists in symbolically representing,
for each neuron, how its value can be determined by the values of some neurons
at the previous levels. They developed symbolic computations for the ReLU
activation function, and proved improvements in the evaluation of DNNs, such
as a better lower bound on the robustness property.
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As a further contribution in this stream, which showed promising to advance
on the robustness evaluation aspects, this paper offers a generalization of the
symbolic computation technique to the LeakyReLU activation function case.

LeakyReLU was introduced as one of the strategies to mitigate the “dead
neuron” problem that affects DNNs with the ReLU activation function: when
a neuron outputs zero, it is quite unlikely that a relatively small change of the
input can produce an output different from zero. It gained rather high popularity
within the community. Actually, ReLU is a special case of LeakyReLU and the
common features are exploited to adapt the reasoning of [11] to the one presented
in this paper. A preliminary numerical campaign, briefly discussed in the paper,
shows interesting results.

Given the narrowed scope of this paper, that focuses on extending the recently
proposed approach in [11], we limit the review of the state of the art on DNN
robustness verification through symbolic computations to [11], and rely on the
positioning of the contribution already addressed there, after verification that
there isn’t (at the best of our knowledge) other advancements appeared in the
literature in the meanwhile.

Enlarging the view on the notion of robustness, it can be observed that,
although the formulation as in Definition 3 has been conceived in the context
of adversarial training of DNNs, recently it has started to be enlisted under
the eXplainable Artificial Intelligence (XAI) umbrella concept. In fact, it can
be considered also as a prerequisite for a DNN to be “interpretable”, because
otherwise the interpretation has to comprise the sensitivity of the DNN to small
input changes, resulting in a tedious description of too low level features of the
DNN. Even further, the explanation approach itself has to be robust to small
changes in the input, and many well-known approaches were proven not robust
enough [9]. Robustness is a key feature of linear (regression) models, so one
way to impose a certain level of robustness to DNN-based classifiers, designed
having in mind interpretability, is to modify the learning process addressing
locally difference boundness [7]. Here, instead of imposing “from the outside”
some property to the DNN, the focus is on those activation functions for which,
given any point other than zero, there exists a neighbourhood where the function
is linear, in particular (Leaky)ReLU. This paper has a narrower scope than [7],
where higher level features instead of pixels are considered. However, here an
explicit dependency of the output from the input is provided.

Another example of training process that can take into consideration the ro-
bustness of the DNN is [4], while [5] refers to text classification under adversarial
symbol substitutions. Both are originated in the context of robustness to adver-
sarial perturbations of the input, but the reasoning is applicable in the context
of XAI. Checking robustness can be formalized as solving a constrained opti-
mization, where the constraints encode the DNN, followed by testing whether
the result is less than zero. This computation can be easily integrated within
the DNN training process, promoting the definition of robust neural networks.
The only requirement on the activation function is that it must be monotonic
so that, when propagating a box enclosing the given input through the DNN for
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solving the optimization, only the intervals’ bounds are relevant for the compu-
tations. Being designed to work for all the monotonic activation functions, this
approach does not exploit a peculiar feature of (Leaky)ReLU: definitely activa-
tion/deactivation, as detailed in Section 3. In [4,5] all the bounds are propagated
through all the layers of the DNN, instead here (following [11]) the bounds are
propagated only when strictly necessary, promoting the tightness of the output
layer’s bounds.

The rest of the paper is structured as follows. Section 2 recalls some prelim-
inaries, in particular Section 2.2 justifies the choice of the LeakyReLU activa-
tion function. Section 3 extends the work of [11] to the LeakyReLU activation
function. Section 4 presents the experimental evaluation. Section 5 draws the
conclusions and discusses future work.

2 Preliminaries

We work with deep feedforward neural networks (DNNs), represented as the
evaluation of functions F : Rm → Rn, where there are m input neurons and n
output neurons.

As widely known, a DNN is structured as a sequence of layers: the input
layer, comprising all the m input neurons, followed by nhl hidden layers, and
an output layer, comprising all the n output neurons, in the end. The output
of a layer is the input of the next layer. To ease the notation, in this1 paper
only fully connected layers are considered, meaning that the output of each
neuron of a layer is connected to the input of each neuron in the next layer.
The DNN is then represented as the composition of transformations between
layers. In particular, calling mk the number of neurons within the k-th layer,
the transformation between the (k − 1)-th and the k-th layer is indicated as
F (k) : Rmk−1 → Rmk . Here m0 = m and mnhl+1 = n, so that in total there are
m+m1 +m2 + · · ·+mnl

+ n neurons.
Typically, in each layer, a linear transformation is followed by a non-linear

activation function, so the application of F (k) requires two intermediate steps:

F (k− 1
2 ) = W (k)F (k−1) + b(k), (1)

F (k) = map f over F (k− 1
2 ), (2)

where Equation (1) is the weighted sum (plus bias) of the neurons of the (k−1)-
th layer, Equation (2) is the application of the non-linear activation function

y = f(x) over each component of the vector F (k− 1
2 ). With a minor notation

abuse, we will indicate with F (k) both the function and the vector

F (k)(F (k−1)(F (k−2)(· · ·F (0)(in) · · · ))),

where in is the input vector. Here we focus on classification DNNs, i.e., the aim
of the considered DNNs is to find c(x), the class assigned to x ∈ Rm, where
c(x) = arg maxi Fi(x).

1 A discussion about convolutional layers and max pooling layer can be the subject of
further studies.
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2.1 Formal verification

A neural network is said to be robust at an input x if it does not change its
predicted class on adding some small adversarial noise. Several techniques for
verifying DNNs robustness have been proposed; here we focus on abstract inter-
pretation. The literature on this subject is vast, but for the aims of this paper
it is sufficient to recall that the central idea is: instead of working with a single
point x, to work with a set of points X 3 x that have a special “shape” and
then to formally verify that a particular property holds.

More formally, we first define the forward verification problem for DNN and
then local forward robustness.

Definition 1 (forward verification problem). Given F , a domain X ⊆ Rm

of the inputs and a property C ⊆ Rn, we want to establish whether F (X) ⊆ C,
where F (X) = {F (x) s.t. x ∈ X}.

Definition 2 (local forward robustness). Fixed a norm ||·||p, given in ∈ Rm

and a fixed tolerance δ > 0, we want to investigate the verification problem
defined by X = B(in, δ) = {x ∈ Rm s.t. ||x − in||p ≤ δ} and CL = {y ∈
Rn s.t. arg maxi yi = L}, where L = arg maxi Fi(in).

Usually δ is considered constant across all the analysis, so in the literature is
often employed the δ-robustness:

Definition 3 (δ-robustness). A given DNN is said δ-robust if, fixed a norm
|| · ||p and given in ∈ Rm, the local forward robustness is verified.

The most commonly adopted “shapes” include boxes, zonotopes and polyhe-
dra. In this paper we address only boxes, for which it is convenient to consider the
infinity norm ||x||∞ = maxi |xi|. This eases the notation and allows us to focus
on the core ideas, observing that our reasoning can be applied almost straight-
forwardly to polyhedra, whereas polytopes require more care. For a brief, but
complete, description of abstract interpretation please refer to [11].

Being X a box, we can represent it as [l(0), u(0)], i.e., for each i, we keep track

of the lower (l
(0)
i ) and upper (u

(0)
i ) bounds of xi, and propagate these bounds

through F , recording in [l(k), u(k)] the bounds of the box in the k-th layer.
It is well-known that, just considering the propagation of a box through

F (k− 1
2 ), the first computational step of the k-th neuron as defined in Equa-

tion (1), can lead to precision loss due to the very nature of interval arithmetic
(see Example 1). Thus, to mitigate this issue we follow [11] in resorting to a sym-
bolic computation approach. In addition, also the second computational step,
defined in Equation (2), can lead to precision loss (see Example 2) and then the
activation function has to be selected with great care.

2.2 Activation function

In the literature, the activation function at the basis of neurons computation
f : R→ R is usually chosen among the following: sigmoid(x), tanh(x), ReLU(x),
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LeakyReLU(x), eLU(x). Different characteristics of f guide not only the choice
of the most appropriate2 learning algorithm, taking into account the problem at
hand and its context of application, but also the kind of robustness analysis we
can perform. A summary of the properties for the above mentioned activation
functions is reported in Table 1.

sigmoid tanh ReLU LeakyReLU eLU

bounded X X
invertible X X X X

differentiable X X
differentiable for x 6= 0 X X X X X

test + operation X X X
test + linear X X

Table 1. Classification of activation functions.

For the purpose of our study that focuses on symbolic expressions, it is
required the property to test “is x greater than zero?”, that is a “definitely be-
havior”, as better explained in Section 3. This property is shown by ReLU(x),
LeakyReLU(x), eLU(x). However, for the last activation function, the transfor-
mation following the test is not linear, which is a necessary condition to apply
symbolic computation, as we are interested in this work. Therefore, the only two
activation functions that are amenable to be treated through symbolic compu-
tation are ReLU(x), LeakyReLU(x), whose equations are as follows:

ReLU(x) = max{0, x} (3)

LeakyReLU(x) = max{0, x}+ α ·min{0, x} (4)

Since ReLU’s robustness through symbolic computation has been already
analyzed, in this paper we focus on Equation (4). Notice that we can also train
the parameter α of LeakyReLU, instead of considering it as a constant, obtaining
the so called PReLU. However, this has no impact on the reasoning of this paper,
so in the following we refer to LeakyReLU only.

3 Symbolic Forward Propagation for DNNs

As already said, we adapt the symbolic computation approach developed in [11]
for the ReLU activation function to the case where the activation function is
LeakyReLU. Therefore, as in [11], we consider vectors of expressions E(k− 1

2 )

2 A large body of knowledge is available on this subject, here we just mention [3] as a
general overview and [10] for experimental comparisons among ReLU and some of
its variants in the context of image recognition (convolutional DNNs are considered,
as in [11]).
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and E(k) together with the functions’ min, max : Expr → R for evaluating
the minimum and maximum value of an expression, given that the symbols it
comprises belong to known intervals.

case I case III case II

Fig. 1. Relative positions of [l
(k)
i , u

(k)
i ] with respect to 0, considering the LeakyReLU,

i.e., Equation (4). Case I results in a definitely-deactivated neuron, Case II results in
a definitely-activated neuron, Case III cannot be resolved in the k-th layer.

Only three cases are possible, according to the relative position of min(E
(k− 1

2 )
i )

and max(E
(k− 1

2 )
i ) with respect to 0, as depicted in Figure 1: case I, where the

behavior is “definitely-deactivated”, meaning that E
(k− 1

2 )
i is always less than 0

because max(E
(k− 1

2 )
i ) < 0; case II, where the behavior is “definitely-activated”,

meaning that E
(k− 1

2 )
i is always greater than 0 because min(E

(k− 1
2 )

i ) ≥ 0; and

case III, where E
(k)
i can be either negative or positive, since min(E

(k− 1
2 )

i ) < 0

and max(E
(k− 1

2 )
i ) > 0. For i = 1, . . . ,mk, the expression E

(k− 1
2 )

i comprises a

linear combination of the expressions E
(k−1)
j , and we can decide how to define

E
(k)
i taking into account the properties of the activation function.

As shown in Equation (3) with respect to Equation (4), ReLU is a special
case of LeakyReLU, where α = 0. Therefore, the novelty of our approach consists
in adapting the previous reasoning, valid for α = 0, to the LeakyReLU, where
α > 0, that is changing the treatment of case I and case III. LeakyReLU is linear

when evaluated on R+ (case II) or R− (case I), so we can define E
(k)
i always to

be linear in the symbol it comprises: if we know for sure that E
(k− 1

2 )
i is either in

R− or R+ then we can define E
(k)
i as E

(k− 1
2 )

i times a constant. Otherwise (case

III) we can introduce a fresh symbol ski , discard the expression E
(k− 1

2 )
i and define

E
(k)
i = ski , so to have again a linear expression in the symbols. More specifically,

the action that corresponds to Equation (1) is E
(k− 1

2 )
i =

∑
j W

(k)
ij E

(k−1)
j − b(k)i

followed by a symbolic simplification. Observing that E
(k)
i is linear in E

(k− 1
2 )

i or



Forward Robustness of DNNs with LeakyReLU 7

ski , E
(k− 1

2 )
i is linear in E

(k−1)
j , and that E

(0)
i = s

(0)
i , we can prove by induction

that E
(k)
i is linear in the symbols. This fact does not only promote the symbolic

computations, but also guarantees that the gradient of E
(k)
i , with respect to the

symbols it comprises, is a constant. Thus, min and max can be easily evaluated.

input

s1

[2, 10]

s2

[2, 10]

E
(1)
1

[4, 20]

E
(1)
2

[−8, 8]

E
(2)
1

[−4, 28]

[4, 20]

1

1

1

-1

1

1

input output

s1

[2, 10]

s2

[2, 10]

E
(1)
1

case II

E
(1)
2

case III

E
(2)
1

case II

E
(2)
2

E
(3)
1

[−20, 24]

[−2, 8]

s
(1)
2

[−8 · α, 8]

1

1

1

-1

1

1

1

1

1

0

Fig. 2. Representation of Example 1 (top) and Example 2 (bottom). In red are reported
the intervals obtained only through interval arithmetic, in blue the intervals obtained
exploiting symbolic computations. The second neuron of the first hidden layer in Ex-
ample 2, being of case III, is replaced by a new neuron with a fresh symbol. Only the
relevant neurons and arcs are depicted.

Evaluating the bounds for each neuron in each layer, just using the inter-
val arithmetic as in [2], can lead to a loss of precision, as illustrated in Ex-
ample 1, because at increasing of the number of hidden layers the chances of
over-approximate the bounds increase due to the very nature of interval arith-
metic. Thus, the bounds are actually evaluated only when we are not sure of

the sign of E
(k− 1

2 )
i , i.e., when we introduce a fresh symbol. This gives us also a

metric to evaluate how often we compute the bounds because it is sufficient to
count the number of new symbols (indicated as ∆count) that are introduced.

The pseudocode of the described procedure is listed in Algorithm 1. The
benefits of evaluating the bounds for each neuron in each layer through sym-
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bolic computations instead of interval arithmetic are essentially related to the
occurrence of cancellation [1] and are illustrated through Example 1. Notice that
the type of symbolic computation we are interested in is also known as “affine
arithmetic”.

Example 1. Consider the DNN, depicted on top of Figure 2, with two two-
dimensional hidden layers and identity activation function defined by (the second
neuron of the second layer is not relevant for the example):

E
(1)
1 = s1 + s2, E

(1)
2 = s1 − s2,

input layer: s1, s2 ∈ [2, 10],

E
(2)
1 = E

(1)
1 + E

(1)
2 = s1 + s2 + s1 − s2 = 2s1,

where evaluating the expressions in layer 1 produces [l
(1)
1 , u

(1)
1 ] = [4, 20] and

[l
(1)
2 , u

(1)
2 ] = [−8, 8], and then in layer 2 we have [l

(2)
1 , u

(2)
1 ] = [−4, 28], whereas

simplifying E(2) and evaluating it only in layer 2 we have [l
(2)
1 , u

(2)
1 ] = [4, 20], a

smaller interval. 4
Adopting LeakyReLU ensures that E

(k)
i is always linear in the symbols it

comprises, in particular: α ·E(k− 1
2 )

i , if in case I; E
(k− 1

2 )
i , if in case II; introduce a

new symbol ski , set E
(k)
i = ski , l

(k)
i = α ·min(E

(k− 1
2 )

i ) and u
(k)
i = max(E

(k− 1
2 )

i ),
if in case III.

To appreciate the impact of the activation function, in Example 2 the identity
activation function of Example 1 is replaced by the LeakyReLU.

Example 2. Consider the same DNN of Example 1 where we replace the linear
activation function with LeakyReLU, setting α = 0.5, as depicted at the bottom
of Figure 2. Calling the symbols of input layer s01, s

0
2 ∈ [2, 10], we have

E
(1)
1 = s01 + s02, E

(1)
2 = s01 − s02.

So min(E
(1)
1 ) ≥ 0, and then the first neuron of the first layer is in case II, whereas

min(E
(1)
2 ) = −8 and max(E

(1)
2 ) = 8, so the second neuron of the first layer is in

case III. Thus, the fresh symbol s12 is introduced, the expression E
(1)
2 is set equal

to s12 and the bounds of s12 are set to [−8 · α, 8]. The first neuron of the second
layer is

E
(2)
1 = E

(1)
1 + E

(1)
2 = s01 + s02 + s12.

Thus, min(E
(2)
1 ) = 0, and then the first neuron in the second layer is in case II.

Define now the second neuron of the second layer as E
(2)
2 = E

(1)
1 and the first

neuron of the output layer as E
(3)
1 = E

(2)
1 − E(2)

2 . Taking into account the fact
that the first neuron in the second layer is in case II we obtain [−2, 8] as bounds

for E
(3)
1 , whereas just propagating the bounds from layer 1 to layer 3 produces

[−20, 24] as bounds for E
(3)
1 . 4

The combined effects illustrated in Examples 1 and 2 show that it is possible to
obtain sharper bounds with symbolic computations than just propagating the
box through the layers.
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4 Experimental Evaluation

The experimental evaluation presented in the following aims at three major ob-
jectives: i) demonstrate the feasibility of the symbolic computation approach,
described through Algorithm 1, to assess the robustness of the LeakyReLU acti-
vation function; ii) analyze the most computationally intensive operations per-
formed by Algorithm 1, as well as evaluate ∆count, that is the number of new
symbols ski introduced during its execution. This last corresponds to the num-
ber of times case III is encountered, which is the most problematic case inducing
precision loss in the computation; and iii) compare the robustness of ReLU and
LeakyReLu.

To this purpose, starting from available educational code3, we have imple-
mented4 Algorithm 1 in MATLAB. As dataset, we adopted the MNIST5 dataset
of handwritten digits, among the most popular ones used in similar studies (in-
cluding [11]). Two DNNs have been developed and trained. The first consists of
nhl = 2 layers, where the first layer is populated by 80 neurons, while the second
one has 60 neurons. Since both LeakyReLU and ReLU are considered in the ex-
periments, we denote with NR

80,60 the one where the neurons in the hidden layers

work with the ReLU activation function, and with NL
80,60 the one where neurons

work with the LeakyReLU activation function. The LeakyReLU’s parameter has
been chosen equal to α = 0.01. The activation function of the output layer of
both NR

80,60 and NL
80,60 is the identity function f(x) = x. The second DNN con-

sists of nhl = 4 hidden layers with 128 neurons each. Similarly, two variants
NR

4×128 and NL
4×128 are exercised, distinguished by the adoption in the hidden

layers of ReLU and LeakyReLU as activation functions, respectively. Again, the
output layer’s activation function is the identity function.

Considering networks with different numbers of hidden layers allows to in-
vestigate how the evaluation of δ-robustness (Definition 3) is impacted by both
how deep the DNNs are and by the behavior of the activation function.

4.1 Analysis results

The accuracy of NR
80,60 is 96.65%, whereas the accuracy of NL

80,60 is 96.55%.
We adopted two DNNs with almost the same accuracy, since we are interested
in understanding whether LeakyReLU offers advantages from the robustness
evaluation point of view over ReLU.

3 https://it.mathworks.com/matlabcentral/fileexchange/

73010-mnist-neural-network-training-and-testing
4 https://github.com/106ohm/DeepNeuralNetworkForwardRobustness
5 http://yann.lecun.com/exdb/mnist
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Algorithm 1 Forward propagation of boxes for LeakyReLU

Require: a Forward Neural Network
Require: lower and upper bonds l(0), u(0) ∈ Rm of in
Require: α > 0
Ensure: lower and upper bonds l(out), u(out) ∈ Rn

for i = 1, . . . ,m do
E

(0)
i ← s

(0)
i . a fresh symbol for each entry of the input vector

end for
for k = 1, . . . , nhl do

E(k− 1
2
) ←W (k) · E(k−1) + b(k) . symbolic computations

simplify
(
E(k− 1

2
)
)

. symbolic simplifications

for i = 1, . . . ,mk do

if max
(
E

(k− 1
2
)

i

)
≤ 0 then . i-th neuron is definitely-deactivated: case I

E
(k)
i ← α · E(k− 1

2
)

i

continue

else if min
(
E

(k− 1
2
)

i

)
≥ 0 then . i-th neuron is definitely-activated: case II

E(k) ← E(k− 1
2
)

continue
else . case III

l
(k)
i ← α ·min(E

(k− 1
2
)

i )

u
(k)
i ← max(E

(k− 1
2
)

i )

E
(k)
i ← s

(k)
i . introduce a fresh symbol

end if
end for

end for
E(out) ←W (nhl+1) · E(nhl) + b(nhl+1)

for i = 1, . . . ,mnhl+1 do

l
(out)
i ← min

(
E(out)

)
u
(out)
i ← max

(
E(out)

)
end for

Focusing on the 37-th image of the MNIST test suit, both NR
80,60 and NL

80,60

correctly classify it as a “seven”, as can be seen from the out columns of Table 2.

Setting δ = 0.01, we propagate the box of width δ through both NR
80,60

and NL
80,60 obtaining the lower and upper bounds reported in Table 2. On one

hand, both NR
80,60 and NL

80,60 are δ-robust, when tested on the 37-th image, and
several information can be extracted from Table 2. Examining the upper bounds,
particularly relevant for ReLU, of NR

80,60 we can notice that digit “two” presents

a quite large upper bound (0.846 for NR
80,60 and 1.006 for NL

80,60), and also other
digits have upper bounds close to 0.4. This lead us thinking that we can gain
insights about how NR

80,60 judges the similarities among digits 7 and 2, and other
digits, looking at upper bounds.
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NR
80,60 NL

80,60

digit lower out upper lower out upper

0 -0.052 -0.002 0.327 -0.001 −4.2 · 10−5 0.048
1 -0.061 -0.004 0.024 -0.001 −2.9 · 10−6 0.026
2 -0.083 0.183 0.846 -0.005 0.070 1.006
3 -0.665 -0.027 0.380 -0.003 0.032 0.453
4 -0.137 -0.001 0.065 -0.002 −1.6 · 10−4 0.036
5 -0.275 -0.014 0.093 -0.002 −2.2 · 10−4 0.075
6 -0.086 -0.001 0.027 -0.001 −7.9 · 10−5 0.158
7 0.278 0.997 1.699 0.722 1.026 1.047
8 -0.351 -0.020 0.425 -0.001 0.004 0.047
9 -0.925 -0.121 0.462 -0.002 −6.1 · 10−5 0.046

Table 2. NR
80,60 and NL

80,60: lower bound, out layer and upper bound taking as input
the 37-th image of the MNIST test suit.

On the other hand, the bounds of NL
80,60 are much tighter than those of

NR
80,60, demonstrating that, for the 37-th image, NL

80,60 is much more robust

than NR
80,60.

Concerning the evaluation of ∆count, that is the number of fresh symbols
added when in case III. For NR

80,60 at the end of the output layer there are in
total 813 symbols, meaning that the new symbols are 29, since the computation
started with 28·28 = 784 symbols. Instead, forNL

80,60 we∆count = 816−784 = 31.
The better bounds shown by LeakyReLU are obtained despite the slightly higher
value of ∆count with respect to ReLU.

NR
4×128 NL

4×128

digit lower out upper lower out upper

0 -12.251 0.025 11.638 -0.233 0.003 21.637
1 -12.195 -0.039 13.346 -0.240 -0.001 25.460
2 -15.166 0.014 17.023 -0.294 0.017 24.191
3 -15.546 0.008 17.404 -0.159 0.046 17.880
4 -12.302 -0.006 12.466 -0.124 -0.006 24.270
5 -15.717 -0.028 14.635 -0.272 0.041 22.845
6 -13.579 0.007 15.936 -0.224 0.014 28.455
7 -21.041 0.024 13.046 -0.164 0.024 34.517
8 -13.160 0.052 15.740 -0.248 -0.034 29.613
9 -11.768 -0.014 15.475 -0.259 -0.003 25.208

Table 3. NR
4×128 and NL

4×128: lower bound, out layer and upper bound taking as input
the 37-th image of the MNIST test suit.
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At increasing of nhl the chances of hitting a case III increase, and this is
expected to produce a domino effect, leading to a higher number of fresh symbols,
and then negatively affecting the tightness of the bounds. In order to study this
phenomenon we train and test NR

4×128 and NL
4×128, the former with an accuracy

of 97.78% and the latter of 97.60%, and then we propagate the box of width δ
through them to obtain upper and lower bounds, reported in Table 3. NR

4×128
results not δ-robust because the digit with the greatest upper bound is “three”
instead of “seven”. Instead, NL

4×128 is δ-robust. This shows that, even though the
bounds of NR

4×128 are tighter than those of NL
4×128, NL

4×128 is more resilient to
slightly changes in the input. In addition, the lower bounds of NL

4×128 are much
smaller than those of NR

4×128, so demonstrating that LeakyReLU maintains more
information than ReLU. For NR

4×128, ∆count results to be equal to 1020− 784 =
236, an increment of about 30%, whereas for NL

4×128 is ∆count = 1064 − 784 =
280. So, as before, NL

4×128 has slightly more fresh symbols than NR
4×128.

Focusing on a single neuron, though, we can observe that the amount of new
symbols that affect its behavior are quite limited. For instance, the 67-th neuron
of the fourth layer of NR

4×128 comprises: the 784 symbols defined within the input
layer, 18 symbols defined in layer 1, 28 in layer 2 and 63 in layer 3. In total, this
accounts to a 14% increment in the number of symbols.

4.2 Considerations on computational performance

Although the current implementation of Algorithm 1 is still preliminary, and
does not exploit the inherent parallelism, we can observe a couple of interesting
behaviors.

First, even though the overall computation of the bounds can be quite slow
(it can take about two hours and a half for NR

80,60 and NL
80,60, and about five days

for NR
4×128 and NL

4×128 on a low-performing laptop6) a clear pattern emerges:
the computation time is linear in the number of symbols. In fact, in MATLAB
the performance of all the expressions’ manipulations is highly sensitive to the
number of symbols they comprise and then, if ∆count is small compared with
the number of symbols within the input layer, then the computation time is
linear in nhl. In particular, for neurons in case I and II the expressions are
just manipulated through the application of linear functions and the MATLAB
function isAlways.

Second, when a fresh symbol is needed we also need to compute the bounds
of the symbol, and this is the single most expensive atomic computation the
algorithm needs to perform. There are several ways to accomplish this task;
at the moment we employ the MATLAB funmincon function exploiting the
fact, pointed out in Section 3, that the grading of an expression with respect
to the symbols it comprises is a constant. Thus, if the vast majority of the
neurons is in case I and II, the longer computations needed for case III are not

6 CPU Intel(R) Core(TM) i3-6100U at 2.30GHz, 4Gb RAM at 2133MHz, running
Ubuntu 20.04, MATLAB 2019b.
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prevalent. Otherwise, as for NR
4×128 and NL

4×128, the computations related to
case III overwhelm those related to the other cases.

5 From forward to backward propagation: initial thoughts

Inspired by [6], we realize that the symbolic computation techniques described in
this paper can also impact other areas of Explainable Neural Networks research,
in particular those focused on determining which characteristics of a given DNN
primarily influence a specific result. The idea is to symbolically propagate back
through the DNN a box enclosing a given output, to determine the box enclosing
those inputs that are mapped to the selected output. Not being able to classify
this kind of reasoning according to already established nomenclature, such as
the one discussed in [9], we can refer to it as “backward behavior”. So far, this
kind of analysis couldn’t be considered feasible mainly because of two obstacles
related to the activation function: on one side, among the most widely adopted
activation functions, those that are invertible (a necessary condition for backward
behavior investigations) do not fit well with exact symbolic computations; and,
on the other side, the one that is perfect for symbolic computation, i.e. ReLU,
is not invertible. Now, the generalization of the work in [11] to the LeakyReLU,
that is invertible (Table 1), paves the way to new possibility of explaining the
behavior of DNNs.

However, although the premises are encouraging, the research is still at an
initial stage. The main challenge about backward behavior of DNNs seems to be
related to the inversion of the symbolic expression manipulation that corresponds
to Equation (1). DNNs are often characterized by having hidden layers with
different numbers of neurons, so W (k) is rectangular, and it can also happen that
W (k) is square but not full rank. Maintaining a symbolic approach, but trading
on the abstract interpretation’s shape, we could resort to use the Moore-Penrose
pseudoinverse, that is the best approximant for || · ||2, in particular considering
that almost alwaysW (k) is full rank. Alternatively, maintaining ||·||∞ but trading
on symbolic computations we can define an optimization problem to find one of
the F (k−1) such that W (k)F (k−1) + b(k) = F (k+ 1

2 ) given F (k+ 1
2 ). Both solutions

are not satisfactory: the first, according to our preliminary experiments, produce
boxes that are too large to have some meaning; the second because a single
point cannot be representative of an interval, so the entire concept of abstract
interpretation is not maintained.

It is expected that from these initial thoughts new ideas will be triggered, to
possibly find the way to advance in this research direction.

6 Conclusions and future work

This paper presented an approach to assess forward robustness of DNNs, where
the adopted activation function is LeakyReLU. The approach exploits symbolic
computation, as recently proposed in [11] for the case of the ReLU activation
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function. A preliminary campaign of experiments has demonstrated the feasi-
bility of the approach and the better robustness obtained by DNNs employing
LeakyReLU with respect to those employing ReLU. This is mainly due to the
dying problem affecting ReLU, that is actually alleviated by LeakyReLu, thus
confirming the value of developing our symbolic computation technique for an
activation function that has good popularity within the community.

From the initial investigations presented in this paper, several research lines
are foreseen as interesting advancements. The most natural ones are to apply
the approach to deeper DNNs and to extend the abstract elements to shapes
other than boxes. In particular, zonotopes and polyhedra are planned to be in-
vestigated. Another direction is testing Algorithm 1 on real-world scenarios to
understand whether there are significant limitations to the application of the
approach in concrete contexts. Of interest for a niche within the community, we
can try to extend the concept of definitely-activated and definitely-deactivated
to those complex activation functions defined after ReLU, for which several au-
thors have proposed different ways to trade between holomorphicity and troubles
related to the Liouville’s theorem.

Of course, extending investigations on the backward behavior as discussed
in Section 5 is a further study where we see interesting potentialities, although
indirectly connected to the forward robustness this paper focuses on.
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