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Abstract-In this paper we investigate the possibility of
processing the tactile perception by using a novel biomimetic
approach for the pattern recognition module. The goal is to
enhance the perception in complex virtual environments deriving
from haptic displays mimicking human tactile discrimination. To
do this we explored a Minimally Invasive Surgery application
where the tactile information are strictly limited. In fact, this
promising technique suffers from some evident limitations due to
the surgeon loss of tactile perception during palpation of internal
organs. This is basically due to the mechanical transmission of the
elongated tools used during operation. We propose to integrate
an Artificial Neural Network in an electronic board capable of
processing data provided by a sensorized laparoscopic tool.

The capabilities of several pattern recognition techniques
present in literature, the Principal Component Analysis (PCA),
a Multilayer Perceptron (MLP) and a Kohonen Self-Organising
Map (KSOM) are investigated. The results are compared with
that obtained psychophysically on five viscoelastic materials.

Index Terms-Minimally Invasive Surgery, tactile perception,
haptic display, artificial neural networks.

I. INTRODUCTION

T HE ability of humans to detect softness of different
objects by tactual exploration is intimately related to

both kinesthetic and cutaneous perception, and haptic displays
should be designed so as to address such multimodal percep-
tual channel.

Kinesthetic information can be referred to geometric, ki-
netic and force data of the limbs, such as position, velocity
and acceleration of joints, actuation forces, etc., which is
mainly mediated by sensory receptors in the muscles, articular
capsulae, and tendons. Cutaneous information is provided
by pressure and indentation distributions, both in space (on
the skin) and in time, and is mediated by mechanoreceptors
innervating the derma and epidermis of the fingerpads.

Information synergistically conveyed by the kinesthetic and
tactile channels, and elicited by the central nervous systems,
forms the object of 'haptic', or touch-related, sciences and
technologies [18].
On the other terms, the high degree of dexterity which

characterizes grasping and manipulative functions in humans,
and the sophisticated capability of recognizing the features of
an object are the result of a powerful sensory-motor integration
which fully exploits the wealth of information provided by the
cutaneous and kinaesthetic neural afferent systems.

Moreover an unconstrained hand during manipulation al-
lows for better softness discrimination and removes percep-
tual artifacts generated by wearing heavy and/or cumbersome
exoskeletons or by dealing with rigid constraints.
New generation of haptic interfaces are playing an important

role in improving performance and extend functionalities
of Tele-surgery, virtual surgery, Minimally Invasive Surgery
(MIS).

In MIS the role of advanced technology for providing tactile
feedback is perhaps more important than in other field.

In a laparoscopic operation, the surgeon operates through
small openings in the abdominal wall of the patient. One of the
openings is used to introduce a miniature camera, including a
light source. Camera images are shown on a monitor while the
camera is guided by an expert operator. The haptic transmis-
sion from the handle to the tip is actuated by means of levers.
Nevertheless this promising technique still suffers from some
important limitations. The most important one is the surgeon
loosing of both tactile and kinesthetic sensibility due to friction
and backlash present in the transmission mechanism of the
elongated tools. The surgeon may manipulate patient viscera
only using long tools, observing actions and movements on
a monitor visualizing abdominal environment [2]. He can
not either touch or see viscera directly and that restricts the
application of this technique only to some specific fields, such
as resection and removal of organs. Diminished tactile sensi-
bility causes a loss of surgeon palpation evaluation capability,
in particular with regard to tissue compliance and viscosity.
These effects are so important that it becomes very difficult to
discriminate the anatomical nature of the manipulated tissue.
In particular this is constrincting if the camera images are not
sufficient or absent. In such cases, losses on perception may
cause important lesions.
A better sensibility may diminish the incidence of these

events and optimize grasping force during manipulation.
Moreover, at the present state of the art and technology

most remote haptic systems implement only visual feedback
[21] and stimulate kinesthetic channel. Indeed, the parts of a
haptic system that refer to cutaneous tactile information are
the most difficult to realize.
On the other hand, in the psychophysical literature, it has

been firmly established by the fundamental work of [14], [17]
that loss of the tactile channel reduces human capability of
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Fig. 1. Sensorized laparoscopic tool

haptic discrimination dramatically.
In a previous work authors designed and implemented

miniaturized force and position sensing devices in a laparo-
scopic surgery tool, whose measurements are used to elicit
information about the rheological properties of manipulated
tissues [1], [9].

The system allows a deterministic recognition of different
materials having different stress-strain characteristics.

Unfortunately the system cannot identify materials having
similar compliance. Moreover the operator, during tactile
tasks, imposes an uncertain deformation on the specimen.

The approach have been improved by equipping the la-
paroscopic system with a new embedded electronic system
capable to process and to acquire the tactile signals (force
and/or displacement) in real time. The signals acquired can
be suitably conditioned and processed from a proper Neural
Network.

This application is one of the most promising for the new
technologies [4].

The raw signals obtained from the tool are pre-processed in
order to extract relevant features, such as force applied on the
specimens.

Features vectors constitute the dataset for the pattern recog-
nition processes. The pattern recognition was performed by an
Artificial Neural Network. The results were processed with the
performances of the Principal Component Analysis (PCA), a
Multilayer Perceptron (MLP) and a Kohonen Self-Organising
Map (KSOM) [3], [14], [15], [17], [5]. Each network was
tested with the same datasets coming from laparoscopic sen-
sors. Data were acquired during the analysis of five different
samples.

II. HARDWARE AND SOFTWARE

A. Hardware display
In order to overcome the limitation of loss of tactile per-

ception in Minimally Invasive Surgery and provide surgeons
with the flexibility of traditional open surgery while operating
through tiny apertures, the elongated tool can be suitably
sensorized and actuated. The sensorization was implemented
by using the approach previously proposed [22].
The commercial tool, laparoscopic pliers, has a very simple

mechanical structure: a rigid beam is actuated by the handle

fig. 1. Its forward-backward movement closes and opens the
jaws. Module sensor was positioned near the handle, to respect
the simplicity of the original mechanism. The sensors were
able to measure the applied force and the jaws position. The
force sensor was realized applying two strain gauges to an
aluminium ring: the ring deformation causes gauge resistance
variation. The position sensor is realized using an optical
position sensing device (PSD). It is a semiconductor optical
device on which a light emitting diode (LED) is placed. Light
injection causes the generation of two currents: the difference
of these currents is a linear function of the LED position
above the PSD. The LED is integral with the rigid beam
which actuates the opening and closure of the jaws, hence its
position is an indirect measure ofthe jaws angles (fig. 1). These
signals can be used to identify the rheology of the biological
tissues manipulated by the sensorized laparoscopic tool and
convey them to a suitable display which has to be controlled
to replicate the rheology.

1) Embedded electronic system: In order to implement such
system we equipped the laparoscopic sensorized tool with a
customized electronic system based on microcontroller (,uP)
architecture. The prototypal electronic board is shown in fig.2.
The data were gathered concerning the contact force measured
by a strain gauges shown in fig. 1 and the displacement
measured by an optoelectronic sensor.
Specifically, the ,uP provided is a PSoC processor, CY27443
produced by Cypress MicroSystems. It is a controller pro-
grammed at 24 MHz. It is endowed with 16 kb Rom and 256
bytes Ram for code and data storage. This microcontroller
architecture guarantees limited computational power being part
of a portable and compact system.
The flexibility of the PSoC, programmable arrays mixed

analog and digital components, allows to realize a simple
embedded system capable to acquire and to process, "in real
time", the low-level signals derived from transducers and
sensors of the sensorized laparoscopic system.

It provides a series of analog signals conditioning for the
strain gauges and the resistive PSD sensors in our system.

These signals typically have wide dynamic range and low
frequency. The proposed implementation provides two ana-
log input channels of a low-level differential amplifier and
a single-ended high-level programmable gain amplifier. Its
analog output, externally provided, is also processed by an on-
chip low-pass filter, which can be programmed and customized
to allow adjustment of the filter cutoff and output update rate.

At the same time an ADC converter process all the available
data to plot and to transmit through a standard serial RS-
232 protocol. The low-level differential inputs ranges ap-
proximately from 0 to 100lmV depending on the selected
gain, can process signals designed to interface single-supply
5 V or more. This solution allows to reduce a large part of
supplementary hardware necessary for the signal conditioning.

In fig.3 is shown the sensorized laparoscopic equipped with
the electronic board.

B. Software architecture
The software architecture has been designed as a hierar-

chical structure whose root is a manager module. Several
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Fig. 2. Embedded electronic board

Fig. 3. Sensorized laparoscopic tool equipped with electronic board

application processes runs inside the core acting on dataset
available into the framework I/0 buffer. The framework is able
to control all the modules of the elaboration chain, including
analysis protocol management and interfaces. During a signal
preprocessing stage various purposes are served, including
baseline manipulation, compression, normalization and drift
compensation. After, data are sent to a dimensionality reduc-
tion module in order to perform a feature extraction. Selected
features are ready for analysis, classification and clustering
tasks. A process devoted to data normalisation gets sensory
data from the framework I/0 interface. Normalised data are
sent to a process devoted to feature extraction in order to build
the dataset. Different pattern recognition processes described
in the following sections performs the dataset classification
task. A process devoted to the evaluation of the pattern recog-
nition by means of cross-validation shows the classification
results.

1) Features extraction: As regards the signals coming from
laparoscopic system, in general let xk (t) the voltage versus
time t of the n-th of N sensors as the response to the k-th
of K samples. xk(t) signals were windowed and normalised
over the time, i.e. the samplings were selected within the
time interval L = (t1, t2), resulting in the function Xk(t)
Xk(t) i n1) , where Xk represents the minimum value
of xk (t) in the time interval L. A set of F features from
the normalized signals was extracted; let fKk1 fk be the
features. The features were: the energy, i.e. Ek Zx(t)2;

iEL

the absolute maximum value; the angular coefficient of the
line connecting xk(t1) and Xk(tmax); the angular coefficient
of the line connecting xk (tmax) and Xk(t2). Thus a dataset,
where each response can be represented as a point in jK,F,
were obtained. Features were normalized in the 0-1 interval.

III. PATTERN RECOGNITION PROCESSES

The concept of Artificial Neural Networks (ANNs) is to
imitate the structure and workings of the human brain by
means of mathematical models. ANNs possess an adaptable
knowledge that is distributed over many neurons which can
communicate (locally) with one another. The structure of the
single neuron model, the network topology and the adaptation
(learning rule) defines the ANN architecture. The neurons
(processing units) are single elements and consist principally
of a connection function, an input function, an activation
(transfer) function, and an output function. A neuron receives
signals via several input connections. These are weighted at
the input to a neuron by the connection function. The weights
define the coupling strength (synapses) of the respective con-
nections and are established via a learning process, in the
course of which they are modified according to given patterns
and a learning rule. In the case of supervised learning, in
addition to the input patterns, the desired corresponding output
patterns are also presented to the network in the training phase.
In the case of unsupervised learning, the network is required to
find classification criteria for the input patterns independently.
Stochastic learning methods employ random processes and
probability distributions to minimize a suitably defined energy
function of the network. A large number of neural models now
exist, and each of these models is available in various forms.
The Integrand-and-Fire (IF) neuron model [14] is often used
in to create ANNs suitable for classification and forecast tasks.
However when dealing with ANNs, as shown by Goodner et
al. [8], the risk of data over-fitting can lead to counterfeit
classifications. According to these authors the ratio between
samples and variables should be greater than six in order to
obtain reliable results.

A. Principal Component Analysis (PCA)

The principal component analysis (PCA) [3] is a mathemat-
ical procedure that transforms a number of possibly correlated
variables into a smaller number of uncorrelated variables,
which are ordered by reducing variability, called principal
components. The first principal component accounts for as
much of the variability in the data as possible, and each
succeeding component accounts for as much of the remaining
variability as possible. The uncorrelated variables are linear
combinations of the original variables, and the last of these
variables can be removed with minimum loss of real data.
Objectives of principal component analysis were to discover or
to reduce the dimensionality of the data set and to identify new
meaningful underlying variables. This mathematical method is
based on the linear transformation of the different variables in
principal components which are assembled in clusters.
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B. Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron (MLP) [14] is a type of neural
network, where the IF neuron model is adopted, allowing
representation ofthe relations between input and output values.
This type of network is trained with the help of a supervised
learning method, i.e. input and output values are specified
and the relations between them learnt. The neural network
approximates every non-linear mapping of the form y = f (x).
Every data record consists of input data and the corresponding
output data. The multilayer perceptron learns the input/output
behavior of the system examined via a training data set.

In the training phase, for each data record, each activation
function of the artificial neurons is calculated. The weight
wij of a generic neuron i at the time T, for the input
vector frk = ff1k fr,, is modified on the basis of a well-
established technique, the propagation of the resulting error
between the input and the output values. The response of
the MLP is a boolean vector; each element represents the
activation function of an output neuron. After the training
process, the performance ofthe classification task is commonly
evaluated using the confusion matrix [15]. The generic element
rij of the confusion matrix indicates how many times in
percentage a pattern belonging to the class i was classified
as belonging to the class j. A more diagonal confusion matrix
corresponds to a higher degree of classification. Since each
pattern may be confused with more than one pattern, the sum
on each row and column may differ from the value of 100%.
In order to check the generalization capability of the neural
network, a cross-validation process is carried out.

C. Kohonen Self-Organizing Maps (KSOM)

A Kohonen Self-Organizing Map (KSOM) [17] maps the
original space into a two-dimensional net of neurons in such
a way that close neurons respond to similar signals, in order to
solve classification tasks and to find structures in data. KSOMs
are unsupervised neural networks, i.e. they exploit similarities
of samples apart from the class which they belong to. In the
unsupervised training process, the synaptic weight vectors of
the artificial neurons of the KSOM are adapted by means of
the training data set examples in such a way that the KSOM
supplies as good a representation as possible of the training
data set. The synaptic weight vector of an artificial neuron of
a KSOM corresponds to the feature vector of an object in the
feature space under study. In a KSOM, a winner-takes-it-all
training algorithm is performed. In this work the IF neuron
model was adopted. It is worth mentioning that the KSOM
learns to discriminate in such environmental conditions; there-
fore, in the case of uncontrolled environmental parameters, a
new data set for each measurement campaign is needed. For
each input vector, the neuron that has the minimum distance
d = mini |f -wi || from the input vector is the winning unit
z. The weight wij of a generic neuron i at the time T, for the
input vector fn fn1, fkF is modified as follows [16]:

wij (T) = wij (T-1) + a(T)riz (T) [hfj (T)-wij (T-1)

Fig. 4. Blinded specimens used for the psychophysical test

* ov(T) faa(T -1), learning rate with a learning rate
factor 2

* ri (T) ee , feedback function of neuron i to the
winning neuron z.

* v(T) =fc7(T -1), learning radius with learning radius
factor fc.

The response of the KSOM is a boolean vector; each element
represents the activation function of a neuron. After the train-
ing process, a supervised labeling step is performed. Cluster
labels are assigned to the individual artificial neurons. This
is done via the interpretation of the content of the synaptic
weight vectors (feature vectors) of the artificial neurons. Here
the same label can be assigned to several artificial neurons so
that cluster can be represented by several artificial neurons.
After validation of the KSOM by examples of a test data set,
performance of the classification task is commonly evaluated
using the above mentioned confusion matrix. In order to check
the generalization capability of the neural network, a cross-
validation process is carried out.

IV. EXPERIMENTAL RESULTS
A. Physchophysical Analysis
We qualitatively performed a psychophysical experiment

with the help of volunteers using the equipment previously
described in our laboratory. The experiment consisted in mea-
suring the capability of 15 volunteers to tactually recognize
5 different items. Recognition rates using direct exploration,
and the laparoscopic tool have been compared.
We selected and collected 5 specimens with different soft-

ness corresponding to the contact of a rigid surface with
surfaces of decreasing compliance (fig.4).

In particular two materials have similar compliance. Volun-
teers were asked to explore the materials directly by manual
exploration with their index finger and with the laparoscopic
tool. Indeed they were asked and to report on their associations
with different items. In order to keep experimental conditions
as constant as possible in experiments with different items
and to focus the recognition task on tactile perception, we
performed a blinded test.

Indeed, volunteers were asked to perform recognition of
different items by exploration of the original items themselves,
presented in random order. The results of the sets of data
concern correct recognition of different levels of softness.

Results concerning correct recognition of different levels of
softness during direct exploration through finger are reported
in fig.5.
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Fig. 5. Direct exploration: Percentage of successfull recognition of 5 different
levels of softness

thue (10i )s

Fig. 7. Response of each specimen to stepwise strain of 10%

Fig. 6. Laparoscopic forceps: Percentage of successfull recognition of 5
different levels of softness

The ability to recognize different object through palpation
by a laparoscopic forceps is more scarce than direct explo-
ration.

Results concerning correct recognition of different levels of
softness through laparoscopic forceps are reported in fig.6.
To experimentally validate the psychophysical results we

performed indentation tests on five specimens by means of
a compressional indentor driven by an electromagnetic mini-
shaker. The experiment consisted in applying on each speci-
men stepwise strains with increasing amplitude and acquiring
relative stress relaxation curves. The strain imposed was 10%,
while the application time (about 3 sec) is similar to the
manual tactile interaction (fig.7).

TABLE I

CONFUSION MATRIX OBTAINED BY THE MULTI LAYER PERCPETRON

USING THE TEST DATASET

TABLE II
CONFUSION MATRIX OBTAINED BY THE KOHONEN MAP (7x7 NEURONS)

OVER THE TEST DATASET

Ml
M2
M3
M4
M5

Ml
100.0
0.0
0.0
0.0
0.0

M2
0.0

100.0
0.0
0.0
0.0

M3
0.0
0.0
80.0
0.0
0.0

M4
0.0
0.0
20.0
100.0
0.0

M5
0.0
0.0
0.0
0.0

100.0

B. Neural Network analysis
The signals provided by the laparoscopic sensorized system

have been processed according to the block schema showed in
fig.8. During the first stage, a Discrete Fourier Transformation
(DFT) was applied to the input raw data acquired from the
embedded electronic system. The magnitude of the power
spectrum components in the range 1-5 Hz of the frequency
domain were filtered and dispatched to a PCA-based pre-
processing block. The first two principal components are
shown in fig.9 as well as the clustering results.
The PCA analysis shows a high degree of classification with

minor overlapping regions. A dataset containing the first two
principal components was built and dispatched to the artificial
neural network modules realised by means of a MLP and a
KSOM. The dataset was splitted into a Training Set (TS) and
a Validation Set (VS) following a two-folds cross validation
approach. for the MLP, the dimension ofthe input layer is fixed
to 2 neurons according to the size of the input data; the output
layer is composed by 5 neurons according to the number of
the classes to be recognised; the size of the hidden layer was
fixed to 4 neurons; one bias neuron was connected to each
neuron of the hidden and to the output layer. for the KSOM
we fixed the parameters a(T) = 0.8, fc, = 0.85, v(0) = 5,
f, = 0.9. Both the modules were trained for 1500 epochs,
which allows to obtain the best performance of the networks.

Results were summarized by means of the confusion ma-

M2 M3 M4 M5
0.0 0.0 0.0 0.0

100.0 0.0 0.0 0.0
0.0 100.0 0.0 0.0
0.0 33.3 66.6 0.0
0.0 0.0 0.0 100.0

EmbeddeddElectronic
Dit.'splay Stem

..' DFT PCA ANN

Fig. 8. Block schema of the processing architecture

Test #

T18v1oo0. n|

40 II~~~~~~~~~~M3

20.imlM4

Specimlen

Ml
M2
M3
M4
M5

Ml
100.0
0.0
0.0
0.0
0.0
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ferent materials through palpation with the laparoscopic tool
without sensors information and the results were scarse.

To enhance recognition we proposed an innovative solution
where an Artificial Neural Network is implemented in an elec-
tronic device that, integrated on the sensorized tool, process
automatically the data provided from the sensors.
The results, supported by psychophysical test and experi-

mental data, are very encouraging and confirm that the tactile
perception is significantly augmented.

In future work, due the flexibility of the device, a real
time Artificial Network could been implemented in hardware
increasing the number of trials and the numerical resolution.

Fig. 9. Results obtained with PCA analysis

trix which shows the degree of the achieved classification.
The confusion matrix possesses a number of both rows and
columns equal to the number of classes to be recognized. The
generic element r(ij) represents the degree of recognition of
class i as belonging to class j. A more diagonal confusion
matrix corresponds to a higher degree of classification.

The results reported in TABLE I and TABLE II are in
agreement with the stress-strain data and the psychophysical
test. The MI and M5 materials appear really comparable in
softness but both Networks approaches discriminate M2, M3
and M4 materials.

Indeed the artificial neural network approach allows to
discriminate differences in compliance more finely than the
laparoscopic forceps display in agreement with psychophysical
predictions when the operator manipulates directly the objets
hand.

The analysis of the variance of these data considered two
treatments, manual and kinesthetic displays exploration,shows
that the Neural Network approach increases the haptic
perception in comparison with a simple kinaesthetic display.

V. CONCLUSIONS

In this paper we proposed a new approach of neural
networks for tactile applications. As described in addition
to kinaesthetic channels cutaneous information should be
conveyed to the operator and we proposed a solution where
force-position feedback is enriched by additional cutaneous
sensing cues to augment haptic perception. Indeed, it has been
described in the psychophysical literature that the ability to
discriminate softness by touch is intimately related to both
kinesthetic and cutaneous tactile information in humans. In
replicating touch with remote haptic devices, there are serious
technological difficulties in building devices for sensing and
displaying fine tactile information.
The experiments aimed at assessing the capability of sub-

jects to discriminate between different virtual objects in terms
of softness using a laparoscopic sensorized tool in comparison
with direct exploration.
We selected five specimens having similar softness in order

to thoroughly test the ability of subjects of recognizing dif-
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