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Abstract—In this article, we develop a general open multiagent
systems (OMAS) framework over undirected graphs where the
agents’ interaction is, in general, nonlinear, time-varying, and het-
erogeneous, in that the agents interact with different pairwise in-
teraction rules for each link, possibly nonlinear, which may change
over time. In particular, assuming the agents interact by exchang-
ing flows, which modify their states, our framework guarantees
that the sum of the states of agents participating in the network
is preserved. To this end, agents maintain a state variable for each
of their neighbors. Upon the disconnection of a neighbor, such a
variable is used to completely eliminate the effect of previous inter-
action with disconnected agents from the overall system. In order
to demonstrate the effectiveness of the proposed OMAS frame-
work, we provide a case study focused on average consensus, and,
specifically, we develop a sufficient condition on the structure of
the agents’ interaction guaranteeing asymptotic convergence un-
der the assumption that the network becomes fixed. The article is
complemented by simulation results that numerically demonstrate
the effectiveness of the proposed method.

Index Terms—Distributed average consensus, nonlinear sys-
tems, open multiagent systems (OMAS).

I. INTRODUCTION

Open multiagent systems (OMAS) represent a generalization of
multiagent systems (MAS) where agents may join or leave the net-
work. Sensor networks, in which nodes’ batteries may run out (e.g.,
see [1], where a protocol aimed at maximizing the lifetime of a
wireless sensor network is presented), and mobile robot networks,
in which agents could be temporarily collaborating to achieve an
objective during their exploration of an environment (e.g., see [2],
where mobile robots form temporary chains of agents to find a path), are
examples of such systems. Other interesting examples include precision
farming applications, where autonomous intelligent drones, which are
capable of actively monitoring a field in order to identify and map
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features of interest (e.g., weeds or pests) that could be distributed
heterogeneously within the field, may join and leave the network
over time due to their limited battery autonomy or vehicular ad hoc
networks (VANETs), where cars may participate in the network only
for a limited amount of time (e.g., see [3], where a clustering and
cluster head selection algorithm is provided for open intervehicular
networks).

In this article, we propose an OMAS framework for undirected
networks, where the pairwise interaction among agents is modeled
by a nonlinear function that may change over time. Our approach, in
particular, ensures that the sum of the states of the agents currently
participating in the network is preserved. In this view, the cornerstone of
the proposed framework is represented by state augmentation, in which
agents maintain an additional “storage” state variable for each of their
neighbors. Such a variable is used to cancel out the effect of the previous
interactions with neighboring agents that left the network. Notice that, to
the best of our knowledge, this is the only work addressing consensus for
open multiagent systems with nonlinear and time-varying coupling. The
nonlinear, time-varying, and heterogeneous nature of the interaction
rules considered in this brief article have the potential to yield better
performance, for instance in terms of error rejection, while allowing
agents to join and leave the network at will. In order to show the
effectiveness of the proposed framework, we provide a case study in
the context of the well-known average consensus problem and, under
the premise that the network becomes fixed, we develop a sufficient
condition that assures asymptotic convergence.

A. State of the Art

In the literature, several works on MAS have focused on the possi-
bility that agents may join or leave the network. For example, in [4],
the problem of adaptive coalition formation is considered; in [5], the
authors develop a trust and reputation model for OMAS; [6] presents
an OMAS gossiping framework; the works in [7] and [8] focus on the
ability of agents in an OMAS setting to form short-term teams; in [9], the
stability of gradient descent for OMAS is discussed. Notably, consensus
and, in particular, average consensus, represents a popular topic in the
context of OMAS, and several distributed consensus algorithms that
explicitly account for agents that may join or leave the network have
been proposed in the literature. In particular, [10] provides a dynamic
average consensus algorithm that is robust to the dynamic change
of communication topologies as well as the joining and leaving of
nodes; however, the algorithm guarantees convergence up to a nonzero
steady-state bounded error. In [11] and [12], a plug-and-play distributed
architecture for model predictive control and distributed Kalman filter-
ing is presented, respectively. In [13], the authors develop an algorithm
based on the premise that agents leave and arrive at predetermined
periods, whereas [14] assumes that each time an agent departs the
network, another one enters it instantly. The technique described above
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has been extended to the case of time-varying network size in [15]. The
case where agents need to estimate the time-varying average of a set
of reference signals is addressed in [16] and [17]. In [18], stochastic
consensus for OMAS is investigated under the assumption that ar-
rivals and departures occur randomly as a Bernoulli process. In [19],
the authors propose an OMAS consensus process in which agents
track the median of time-varying reference signals. Agent interactions
over randomly induced discretized Laplacians are investigated in [20].
In [21], multidimensional switched systems are used to characterize an
OMAS. Under the assumption of frequent arrivals and departures of
agents, the work in [22] characterizes the performance limitations of
average consensus in an OMAS setting, establishing lower bounds on
the predicted mean squared error. Moreover, in [23] an OMAS strategy
to compute the mode of the agents’ state is proposed. This approach
is based on a novel OMAS average consensus algorithm, which, under
the assumption that the overall number of agents is fixed, guarantees
that the effect of agents leaving the network is ruled out.

Finally, it is worth mentioning that, although not intended for
OMAS scenarios, in the literature, some average-preserving proto-
col approaches have been developed, based on auxiliary variables,
sometimes also referred to as “storage variables” and “surplus vari-
ables” [24], [25]. However, so far, only linear state update strategies for
these auxiliary/storage variables have been considered.

B. Contribution

In this article, we develop an OMAS framework where the pairwise
agents’ interaction is in general nonlinear, time-varying, and hetero-
geneous. To this end, we present the agents’ interaction in terms of
flows and divergence.1 Then, in order to show the potential of the
approach, we consider the average consensus problem as a valuable
case study, and we show that such a framework preserves the sum
of the values chosen by the agents at the last instant they join the
network. The proposed framework relies on support variables that
accumulate the flows received by neighboring agents. Interestingly, this
accumulation is possible in spite of the nonlinearity and time-variability
of the exchanged flows. In more detail, similarly to the approach
in [23] for the linear case, in this article we assume that each agent
maintains an additional state variable for each of its neighbors and
that, upon disconnection of a neighbor, such a variable is used to rule
out the influence of the disconnected neighbor. Notably, the proposed
framework extends [23] in a number of ways; in particular, we allow for
nonlinear, time-varying, and heterogeneous interaction schemes while
no assumption is made on the number of agents.

C. Article Outline

The rest of this article is organized as follows. In Section II,
we provide a detailed discussion of the objective of the article. In
Section III, we describe how the proposed framework may represent
a generalization of the current studies on MAS. In Section IV, we
characterize the ability of our framework to preserve the sum of the
states of the agents currently participating in the network. Section V
considers the average consensus problem as a case study and develops
a sufficient condition to guarantee asymptotic convergence when the
topology becomes fixed. Section VI provides a simulation campaign

1The divergence is an operator that provides a measure of the rate of variation
of a quantity defined on a node in a network (e.g., see [26]). When applied to the
agents’ states it essentially corresponds to the difference between the outgoing
flow from the node to its neighbors and the incoming flow to the node from its
neighbors.

aimed at numerically demonstrating the effectiveness of the proposed
approach. Finally, Section VII concludes this article.

II. OMAS: A GENERALIZATION OF MAS

Let us consider a nominal MAS system where agents interact over
a fixed graph G = {V,E} with n nodes V = {v1, v2, . . . , vn} and
e edges E ⊆ V × V , where (vi, vj) ∈ E captures the existence of a
link from node vi to node vj . Moreover, let us assumeG is undirected,
i.e., (vi, vj) ∈ E whenever (vj , vi) ∈ E and connected, i.e., each node
vi can be reached from each other node vj using the edges inE. Let aij
be such that aij = 1 if (vi, vj) ∈ E and aij = 0, otherwise. Moreover,
let fkij denote the, possibly, nonlinear and time-varying flow from i to
j at the kth step, e.g., a value or quantity sent from agent i to agent j
at step k. In particular, let us define the in-flow and out-flow for agent i
at step k as

inki =
∑
j

ajif
k
ji and outki =

∑
j

aijf
k
ij

respectively. In other words, the above quantities correspond, respec-
tively, to the sum of the incoming or outgoing flows at step k. Moreover,
the divergence associated to agent i at step k is defined as the imbalance
between the out- and in-flow at step k, i.e.,

divki = outki − inki .

Finally, let us define the total divergence DIVk at step k, i.e., the total
variation of the system due to the flows, as

DIVk =
∑
i

divki =
∑
i

∑
j

aij
(
fkij − fkji

)
.

Notably, since the underlying graph G is undirected, by construction
we have that, for any choice of the terms fkij , it holds DIVk = 0.

Based on the above definitions, let us consider agents interacting
over G according to the following discrete-time dynamics:

xk+1
i = xki − divki . (1)

Notice that, in spite of the generality of the dynamics and, in particular,
of the flows, we have that∑

i

xk+1
i =

∑
i

xki − DIVk︸ ︷︷ ︸
0

i.e., the sum of the states is preserved, and thus∑
i

xki =
∑
i

x0i ∀k ≥ 0.

Moreover, let us assume that the above dynamics converges to a function
χ(·) of the initial states of all agents, i.e.,

lim
t→∞

xki = χ
(
x01, . . . , x

0
n

) ∀i ∈ {1, . . . , n}.

Let us now discuss how the above dynamics behave in an OMAS
setting. Notably, in this case, the agents exchange the flows fkij only
with neighbors that are currently participating in the network. In this
case, the preservation of the sum of the states and the convergence
to χ(·) is no longer granted due to the variation in the set of agents
occurring over time.

In this view, the aim of this article is to develop a framework to
extend the peculiarities of the above MAS dynamics to an OMAS
setting, guaranteeing that the sum of the states of the agents currently
participating is preserved and that, in the event that the topology
becomes fixed, the agents are able to compute χ(·) over the initial
states of the agents currently participating in the network, as it would
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occur within a typical MAS setting. In other words, our objective is
to make sure that the effect of agents joining the network is taken into
account, while the effect of agents leaving the network is completely
ruled out.

III. PROPOSED OMAS FRAMEWORK

Let us consider a scenario where a network of agents interacts in a
synchronous discrete-time fashion in an OMAS setting. In particular,
we assume that each agent can join and/or leave multiple times. In this
view, each agent i is assumed to join or leave at given steps and, in
particular, is characterized by the sets Ai,Di ⊂ N≥0, i.e., the sets

Ai = {τA,1i , τA,2i , . . .} and Di = {τD,1i , τD,2i , . . .}
collecting the steps at which agent i joins and leaves (i.e., ∀i, h τA,hi

< τD,hi ), respectively. Notably, the ith agent is active at those steps k
such that

τA,hi ≤ k < τD,hi .

Let us assume that when an agent joins the network, it creates
undirected links arbitrarily and when it leaves, all its links are removed.
Therefore, in the considered setting, the agents interact according to a
time-varying graph and, specifically, we useGk = {V k, Ek} to denote
the graph underlying the agents’ interaction at step k. Notice that Gk

is assumed to be undirected but it can be disconnected.
Briefly, in this article, we assume that, when an agent joins the

network at some step τ , it joins with an arbitrary value; in the following,
we use xτi to denote the value chosen by the i-th agent when it
(re)activates at step τ . Notice that, where understood, we simply use
xi to denote the value chosen at the last (re)activation step. Let us now
define a few variables that will be used as index functions to denote the
agents arriving, departing, or remaining in the network, respectively,
i.e.,

αki =

{
1 ∃h∈ N≥0 : k = τA,hi

0 otherwise

ζki =

{
1 ∃h∈ N≥0 : k = τD,hi

0 otherwise

θki =

{
1 ∃h∈ N≥0 : τA,hi ≤ k < τD,hi

0 otherwise.

In other words, αki , ζ
k
i , and θki are equal to one if the ith agent is

joining, leaving, or active at timek, respectively, and are zero otherwise.
Moreover, let us use akij to denote the existence of a link between i and j
at step k. Notably, based on the above variables, ak+1

ij can be expressed
as follows:

ak+1
ij = (1− ζk+1

i )(1− ζk+1
j )θki θ

k
j .

Clearly, since the agents create undirected links, we have thatakij = akji.
At this point, considering the flows fkij , the in-flow and out-flow for
agent i at step k can be rewritten as

inki =
∑
j

akjia
k+1
ji fkji, and outki =

∑
j

akija
k+1
ij fkij

respectively. Moreover, the divergence at agent i at step k is rewritten
as

divki = outki − inki =
∑
j

akija
k+1
ij

(
fkij − fkji

)
.

Finally, the total divergence DIVk at step k, is modified accordingly,
i.e.,

DIVk =
∑
i

divki =
∑
i

∑
j

akija
k+1
ij

(
fkij − fkji

)
.

Notably, also in this case, since the underlying graphGk is undirected,
by construction, for any choice of the terms fkij , it holds DIVk = 0.

Based on the above definitions, we now develop a strategy to extend
the nominal MAS dynamics in (1) to an OMAS setting, which will be
proven to preserve the sum of the values chosen by each of the agents
currently participating in the network at its last (re)activation step, in
spite of activations and deactivations. In particular, we consider the
following dynamics for the agents:

xk+1
i = αki xi + (1− αki )θ

k
i x

k
i − divki

−
∑
j

akij
(
1− ak+1

ij

)
zkij

zk+1
ij = akija

k+1
ij

(
zkij + fkij − fkji

)
(2)

with x0i = x0i and z0ji = 0. Briefly, the term αki xi accounts for case
where the ith agent activates at step k and selects a value xi. More-
over, the term (1− αki )θ

k
i x

k
i − divki models the nominal dynamics

involving the agent and its neighbors, when the agent is already present
in the network at step k. Finally, the terms −(1− ak+1

ij )zkij account
for the sum of the flows exchanged by a neighbor j that leaves the
network at step k + 1, and is introduced in order to get rid of the
cumulative/past contribution of disconnecting agents at later times. In
more detail, the terms zkji represent additional state variables that each
agent maintains for each of its neighbors. Notice that, according to (2),
when an agent joins the network at step k it sets zk+1

ij = 0. Notice
further that deactivated agents may either stop updating their values or
set them to some arbitrarily chosen values.

IV. SUM-OF-STATES PRESERVATION

The MAS dynamics considered in this article are very general, since
the structure of the terms fkij is intentionally not further specified. In
spite of its generality, we now show that the extension to an OMAS
setting given in (2) is such that the sum of the states of agents currently
participating in the network equals the sum of the values they chose at
the last step in which they joined the network.

Theorem 1: Let us consider an OMAS where agents interact ac-
cording to the dynamics given in (2). Moreover, let us assume that each
agent, upon joining the network at a time step τ , selects an arbitrary
value xτi that represents its initial condition (or a reinitialized initial
condition) of the value of the agent joining, and let xi denote the value
chosen at the last time instant at which the agent i joins the network,
i.e., step τ that is closest to the current time instant k. At each step,
k the sum of the states of the active agents is equal to the sum of the
values xi, i.e., ∑

i

θki x
k
i =

∑
i

θki xi.

Proof: In order to prove our statement we observe that at k = 0, by
construction it holds ∑

i

θ0i x
0
i =

∑
i

θ0i xi

hence, the statement holds true at k = 0. Let us now prove the statement
holds at k + 1 for all k ≥ 0. Notice that, by using the dynamics for zkij
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in (2) we have that∑
j

ak+1
ij zk+1

ij =
∑
j

ak+1
ij

(
akija

k+1
ij

(
zkij + fkij − fkji

))
=
∑
j

akija
k+1
ij zkij +

∑
j

akija
k+1
ij

(
fkij − fkji

)
=
∑
j

akija
k+1
ij zkij + divki

where we used the fact that, by construction, it holds (akij)
2 = akij .

Therefore, for all i such that (1− αki )θ
k
i = 1, by using the dynamics

for xki in (2) and the above equation, it holds

xk+1
i −

∑
j

ak+1
ij zk+1

ij = xki − divki −
∑
j

akij
(
1− ak+1

ij

)
zkij

−
∑
j

akija
k+1
ij zkij + divki

= xki −
∑
j

akijz
k
ij .

Thus, considering the largest step k∗i ∈ Ai with k∗i ≤ t (which always
exists by construction), we have that

xk+1
i −

∑
j

ak+1
ij zk+1

ij = x
k∗
i
i −

∑
j

a
k∗
i
ij z

k∗
i
ij = xi

where the latter equality holds since, by construction, all terms z
k∗
i
ji = 0

and x
k∗
i
i = xi. Moreover, by construction, for all i such that αki = 1

it holds xk+1
i = xi and zk+1

ij = 0. Therefore, noting that the agents

with θk+1
i = 1 are either those such that αki = 1 or those such that

(1− αki )θ
k
i = 1, we have that∑
i

θk+1
i

(
xk+1
i −

∑
j

ak+1
ij zk+1

ij

)

=
∑
i

θk+1
i αki

(
xk+1
i −

∑
j

ak+1
ij zk+1

ij

)

+
∑
i

θk+1
i (1− αki )θ

k
i

(
xk+1
i −

∑
j

ak+1
ij zk+1

ij

)

=
∑
i

θk+1
i αki xi +

∑
i

θk+1
i (1− αki )θ

k
i xi

=
∑
i

θk+1
i xi

i.e., it holds∑
i

θk+1
i xk+1

i −
∑
i

θk+1
i

∑
j

ak+1
ij zk+1

ij =
∑
i

θk+1
i xi.

The proof follows noting that, by definition, zk+1
ij = 0 whenever

θk+1
i = 0, and thus∑

i

θk+1
i

∑
j

ak+1
ij zk+1

ij =
∑
i

∑
j

ak+1
ij zk+1

ij = 0

where the latter equality holds since, by construction, zkij = −zkji and
the graph Gk is undirected for all k. The proof is complete. �

We established that, by resorting to the proposed framework, the
sum of the states of a generic distributed system based on the exchange
of flows among the agents is preserved in spite of the openness of
the system. We reiterate that the agents’ dynamics are very general

and, in particular, the structure of the flows is intentionally not further
specified. Therefore, our framework represents a viable way to extend
the dynamics originally developed for an MAS context as in (1), in
order to account for the possibility that agents may join or leave the
network during the evolution.

V. CASE STUDY: AVERAGE CONSENSUS

Notice that the proposed OMAS strategy applies to a broad variety
of situations, preserving the sum of the agents’ initial state. In this
section, we focus on average consensus as a representative problem
instantiation of the proposed framework and we inspect the case of
both linear and nonlinear flows. In particular, in order to characterize a
class of systems that reaches the average of the initial conditions when
the topology becomes fixed, let us consider the following assumption.

Assumption 1: There is a finite step k† such that it holdsGk = Gk
†

for all k ≥ k†, i.e., no activation or deactivation occurs from step k† on.
In the following, we assume Gk

†
is composed of m connected

components and we use Vh to denote the set of agents in the hth
component, while we use ψi to denote the identifier of the connected
component featuring the ith agent.

In order to develop a sufficient condition that, when the network
stops changing, guarantees the reach of the average of the initial values
of the agents participating in the network, let us now introduce a further
assumption on the structure of the flows fkij .

Assumption 2: For all steps k ≥ 0 and for each unordered pair of
nodes {vi, vj} such that (vi, vj), (vj , vi) ∈ Ek, the flows satisfy

fkij − fkji = gk{i,j}(x
k
i − xkj )

where:
1) the functions gk{i,j}(x

k
i − xkj ) are odd, i.e.,

gk{i,j}(x
k
i − xkj ) = −gk{i,j}(xkj − xki );

2) gk{i,j}(·) is zero only at zero;

3) for xki �= xkj , gkij(·) satisfies

|gk{i,j}(xki − xkj )| <
1

δk{i,j}
|xki − xkj |, (3)

where | · | is the absolute value and

δk{i,j} = max

{∑
h

akih,
∑
h

akjh

}
.

Notably, we assume that at each time step each link has, in general,
different interaction rules gk{i,j}(·), even though the interaction is skew-
symmetric at the level of each link.

Notice that points (1) and (2) are classical requirements in the context
of MAS (e.g., [27] and [28]); in particular, point (1) comes from the
requirement that the interaction is symmetrical and point (2) is due
to the desire that the agents stop interacting when they reach the same
value. Regarding the last requirement, since the function is zero at zero,
this requirement is satisfied when the functions gk{i,j}(·) are Lipschitz.

Interestingly, the class of flows that satisfy Assumption 2 is quite
large and features, for instance, the functions reported in (6)–(9), which
include the classical linear interaction [see (6)] as well as functions that
account for saturations [either smooth as in (7) and (9) or nonsmooth
as in (8)].

We now establish that under Assumptions 1 and 2, the state of each
agent converges to the average of the initial conditions of the set of
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agents belonging to the same connected component. To this end, we
first need the following ancillary lemma.

Lemma 1: Let us consider an OMAS system where agents interact
according to the dynamics given in (2) and let Assumptions 1 and 2
hold true. For all steps k ≥ k† it holds∑

i

(divki )
2 ≤

∑
(vi,vj)∈Ek†

δk{i,j}
(
gk{i,j}(x

k
i − xkj )

)2
. (4)

Proof: In order to prove the statement we observe that, for k ≥
k† the graph Gk is fixed and is equal to Gk

†
. Let Ωk be the

card(V k)× card(V k) matrix such that

Ωkij = gk{i,j}(x
k
i − xkj ).

Moreover, define aki =
[
aki1, . . . , a

k
ink

]T
and let Γki denote the

nk × nk matrix with the ith row that coincides with the ith row of
Ωk, while all other entries are equal to zero. We have that

Ωk1nk =
∑
i

Γki a
k
i

therefore, using ‖ · ‖2 and ‖ · ‖F to denote the Euclidean and Frobenius
norms, respectively, it holds∑

i

(divki )
2 = ‖Ωk1nk‖22 = ‖

∑
i

Γki a
k
i ‖22 ≤

∑
i

‖Γki ‖22‖aki ‖22

=
∑
i

‖Γki ‖22
∑
h

(akih)
2 =

∑
i

‖Γki ‖22
∑
h

akih

≤
∑
i

δk{i,j}‖Γki ‖22 ≤
∑
i

δk{i,j}‖Γki ‖2F

=
∑
i

δk{i,j}
∑
j

(
gk{i,j}(x

k
i − xkj )

)2
=

∑
(vi,vj)∈Ek†

δk{i,j}
(
gk{i,j}(x

k
i − xkj )

)2
where the last equality holds sinceGk is undirected and gk{i,j}(·) is odd.
This completes our proof. �

We are now in a position to prove convergence when the agents’
topology becomes fixed.

Theorem 2: Let us consider an OMAS where agents interact accord-
ing to the dynamics given in (2) and let Assumptions 1 and 2 hold true.
Then, all agents i for which θk

†
i = 1 converge to the average of the

initial values xj of the agents in the set Vψi , i.e.,

lim
t→∞

xki = x̂ψi , with x̂ψi =
1

card(Vψi)

∑
j∈Vψi

xj

where card(·) denotes the cardinality of a set.
Proof: For the sake of simplicity and without loss of generality,

let us consider the case where there is only one connected component
(otherwise, the reasoning of this proof can be applied to each connected
component). In this case, for all i ∈ V k† , it holds

x̂ψi = x̂ =
1

card(V k†)

∑
j∈V k†

xj . (5)

In order to prove convergence of the agents’ states to x̂, let us consider
the Lyapunov-like function

W k =
∑
i

θk
†
i (xki − x̃)2

where x̃ is a generic value to be determined later in the proof. Notice
that the above function is zero only when all xki = x̃ and is positive
otherwise. At this point we observe that, by construction, it holds

W k =
∑
i

θk
†
i (xki )

2 +
∑
i

θk
†
i x̂

2 − 2
∑
i

θk
†
i x̃x

k
i .

Moreover, by construction,divki = 0when θk
†
i = 0; therefore, we have

that ∑
i

θk
†
i x̃div

k
i = x̃

∑
i

divki = x̃DIVk = 0

where the latter equality holds since the total divergence DIVk is zero.
As a consequence, since by Assumption 1 the graph is fixed for all
k ≥ k†, we have that

W k+1 =
∑
i

θk
†
i (xki − divki − x̃)2

=
∑
i

θk
†
i (xki )

2 +
∑
i

θk
†
i (divki )

2 − 2
∑
i

θk
†
i x

k
i div

k
i

+
∑
i

θk
†
i x̃

2 − 2
∑
i

θk
†
i x̃x

k
i + 2

∑
i

θk
†
i x̃div

k
i︸ ︷︷ ︸

0

=
∑
i

θk
†
i (xki )

2 +
∑
i

θk
†
i (divki )

2 − 2
∑
i

θk
†
i x

k
i div

k
i

+
∑
i

θk
†
i x̃

2 − 2
∑
i

θk
†
i x̃x

k
i .

Let us now define ΔW k =W k+1 −W k. We have that

ΔW k =
∑
i

θk
†
i (divki )

2 − 2
∑
i

θk
†
i x

k
i div

k
i

=
∑
i

θk
†
i (divki )

2 − 2
∑
i

θk
†
i

∑
j

gk{i,j}(x
k
i − xkj )x

k
i

=
∑
i

θk
†
i (divki )

2 − 2
∑

(vi,vj)∈Ek†
gk{i,j}(x

k
i − xkj )x

k
i

=
∑
i

θk
†
i (divki )

2 −
∑

(vi,vj)∈Ek†
gk{i,j}(x

k
i − xkj )

(
xki − xkj

)
where we used the fact that, for all k, Gk is undirected and g{i,j}(·)
is odd. At this point, we observe that by construction divki = 0 when
θk

†
i = 0, therefore ∑

i

θk
†
i (divki )

2 =
∑
i

(divki )
2.

Hence, by using Lemma 1, we have that

ΔW k ≤
∑

(vi,vj)∈Ek†
ΔW k

ij

where

ΔW k
ij = δkij

(
gk{i,j}(x

k
i − xkj )

)2
− gk{i,j}(x

k
i − xkj )

(
xki − xkj

)
.

Since, by Assumption 2, the terms gk(·) are odd functions and are zero
only at zero, we have that, unless xki = xkj , it holds

gk{i,j}(x
k
i − xkj )

(
xki − xkj

)
> 0.

Therefore, we have that, for xki �= xkj , the terms ΔW k
ij are negative iff

(3) holds true. Since, by Assumption 2, this is the case, we conclude
that, unless all xki such that vi ∈ V k† are equal to x̃, the term ΔW k
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is negative. We have established that the state of all agents that par-
ticipate in the network at step k† converges to the same value x̃. To
conclude the proof, let us now show that it must hold x̃ = x̂. To this
end, we observe that since in Theorem 1 we established that the sum
of the initial conditions is preserved, by definition it must hold∑

j∈V k†
xj = lim

t→∞

∑
j∈V k†

xkj = card(V k
†
)x̃

from which

x̃ =
1

card(V k†)

∑
j∈V k†

xj = x̂.

This completes our proof. �
The next remark characterizes a broad class of systems that satisfy

Assumption 2, and thus converge to the average when the topology
becomes fixed.

Remark 3: Assumption 2 holds true when the odd functions gk{i,j}(·)
are locally Lipschitz with Lipschitz constant 	k{i,j} < 1/δk{i,j}. In fact,

since gk{i,j}(·) is zero at zero, we have that

|gk{i,j}(xki − xkj )| = |gk{i,j}(xki − xkj )− gk{i,j}(0)|
≤ 	k{i,j}|xki − xkj − 0| = 	k{i,j}|xki − xkj |.

Examples of flows belonging to this class include, among other possi-
bilities, the following cases:

gk{i,j}
(
xki − xkj

)
= wk{i,j}(x

k
i − xkj ) (6)

gk{i,j}
(
xki − xkj

)
= wk{i,j} tanh

(
xki − xkj

)
(7)

gk{i,j}
(
xki − xkj

)
= wk{i,j} min

{
1,max

{
xki − xkj ,−1

}}
(8)

gk{i,j}
(
xki − xkj

)
= wk{i,j}

xki − xkj√
1 +

(
xki − xkj

)2 . (9)

In all the above cases, it can be shown that 	k{i,j} = wk{i,j} and thus, the

assumption holds by choosing weights 0 < wk{i,j} < 1/δk{i,j}.

VI. SIMULATIONS

In order to numerically demonstrate the effectiveness of the proposed
approach, we consider a case where G0 is an Erdös-Renyí graph with
n = 30 nodes and link formation probability p = 0.3 (not reported for
space reasons). Moreover, we assume that at step k = 59, a subset of
five agents becomes disconnected, and is reconnected at step k = 99,
while another set of ten agents is disconnected at step k = 69 and
reconnected at step k = 149. Notably, at all steps k, the agents that are
active always belong to the same connected component. We assume the
agents’ initial condition x0i is chosen uniformly at random in [0, 100]
and, in particular, we have that the average of the initial conditions
is
∑
i x

0
i = 51.2583. Moreover, we assume that, when an agent is

reconnected at step k‡, it selects again the original initial condition,
i.e., xk

‡
i = x0i . Finally, we assume that for each step k and for each link

(vi, vj) ∈ Ek, the pairwise interaction rule gk{i,j}(·) is selected at ran-

dom from those in (6)–(9). In particular, we setwk{i,j} = 1/(1 + δk{i,j})
when gk{i,j}(·) is selected as in (6)–(9).

Fig. 1 reports the evolution of the MAS dynamics in (1), when the
terms gk{i,j}(·) are chosen as above (for the sake of readability, discon-
nected agents maintain their last updated states when disconnected).
Conversely, Fig. 2 shows the evolution of the agents’ states in the
proposed OMAS setting. It can be noted that, while the MAS dynamics
fail to track the average of their initial states (shown by gray asterisks),

Fig. 1. Example of MAS dynamics when gk{i,j}(·) is randomly selected
from the functions in (6)–(9) and agents join and leave the network.

Fig. 2. Example of OMAS dynamics when gk{i,j}(·) is randomly se-
lected from the functions in (6)–(9) and agents join and leave the net-
work.

the proposed OMAS framework is successful in accomplishing the task.
Fig. 3 reports the temporal evolution of∣∣∣∣∣∑

i

akijx
k
i −

∑
i

akijx
k
i

∣∣∣∣∣
both in the MAS and OMAS examples. According to the figure, in
spite of the variability of the network and of the different choices for
gk{i,j}(·), the sum of the states chosen by agents currently participating
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Fig. 3. In the OMAS setting, the sum of the initial states of the active
agents is preserved, up to numerical precision; the MAS dynamics fail
to do so.

Fig. 4. Evolution of the Lyapunov function Wk, in both a MAS and
OMAS setting.

in the OMAS at their last joining instant is preserved up to numeri-
cal precision, thus experimentally validating Theorem 1; conversely,
the MAS dynamics do not preserve the sum of the agents currently
participating in the network.

Finally, Fig. 4 shows the temporal evolution of the Lyapunov function
W k, again, considering both the MAS and OMAS settings. Notably,
when at the beginning no agent joins/leaves, the evolution of W k

is the same for both the MAS and OMAS dynamics. However, the
addition/removal of agents generates new transients: while in the MAS
setting the Lyapunov function fails to converge to zero, in the OMAS
setting we observe that, after each transient, the states of the active

agents approach the average of the states currently participating in the
network.

VII. CONCLUSION

This article presents an OMAS framework for undirected networks
with nonlinear and time-varying agent interactions. Our method, in
particular, ensures that the sum of the present states of the agents
in the network is preserved. Furthermore, we develop a sufficient
condition that ensures asymptotic convergence under the assumption
that the network becomes fixed. Future work will aim to extend the
proposed framework to directed graphs and to exploit the nonlin-
ear, time-varying, and heterogeneous nature of the interaction rules
to improve performance, e.g., in terms of convergence speed, error
rejection, resistance to outliers, or distributed stopping. Moreover, we
will investigate the possibility of applying this approach to distributed
optimization problems.
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