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A B S T R A C T   

COVID-19 emergency has pushed the international scientific community to use every resource to combat the 
spread of the virus, to understand its biology and predict its possible evolution in terms of new variants. Since the 
first SARS-CoV-2 virus nucleotide and amino acid sequences were made available, information theory was used 
to study how viral information content was changing over time and then trace the evolution of its mutational 
landscape. In this work we analyzed SARS-CoV-2 sequences collected mainly in the USA in a period from March 
2020 until December 2022 and computed mutation profiles of viral proteins over time through an entropy-based 
approach using Shannon Entropy and Hellinger distance. This representation allows an at-a-glance view of the 
mutational landscape of viral proteins over time and can provide new insights on the evolution of the virus from 
different points of view. Non-structural proteins typically showed flat mutation profiles, characterized by a very 
low Average mutation Entropy, while accessory and structural proteins showed mostly non uniform and high 
mutation profiles, often coupled with the predominance of variants. Interestingly NSP2 protein, whose function 
is currently still debated, falls in the same branch of NSP14 and NSP10 in the phylogenetic tree of mutations 
constructed through correlations of mutation profiles, suggesting a co-evolution of those proteins and a possible 
functional link with each other. To the best of our knowledge this is the first study based on a massive amount of 
data (n = 107,939,973) that analyzes from an entropy point of view the mutational landscape of SARS-CoV-2 
over time and depicts a mutational temporal profile of each protein of the virus.   

1. Introduction 

The COVID-19 pandemic has profoundly affected our lives in recent 
years in every aspect: socially, professionally and obviously from a 
health point of view. The emergency has pushed the international sci
entific community to use every resource to combat the spread of the 
virus, to understand its biology and predict its possible evolution in 
terms of new variants. Since the first SARS-CoV-2 virus nucleotide and 
amino acid sequences were made available, information theory was 
used to study how viral information content was changing over time and 
then trace the evolution of its mutational landscape. Sequence compo
sition was studied through computational methodologies since late 90s. 
The first attempt to analyze sequence composition and statistical prop
erties of biological sequences was performed by the pioneering works of 
Karlin in 1997 (Karlin et al., 1997; Karlin and Mrazek, 1997). In more 
recent years information theory has been applied in the context of 

molecular biology to study the information content of biological se
quences (Chanda et al., 2020; Vinga, 2014; Vinga and Almeida, 2004; 
Adami, 2004). Shannon entropy has been shown to be of particular in
terest in evaluating mutation rate of single genomic or amino acid po
sitions as well as of specific loci (Vopson and Robson, 2021; Gregori 
et al., 2016; Rhee et al., 2008). Mutual information has been used to 
study co-mutations (Pensar et al., 2019) and Kulback-Liebler like dis
tances to study how mutational distributions are far from each other 
(Vergni et al., 2022). 

Several studies in literature have focused on mutational landscape of 
SARS-CoV2 from an information theory point of view. Ghanchi and 
colleagues studied available SARS-CoV-2 sequences collected in 
Pakistan between March and October 2020 to investigate their genomic 
diversity and compare site-specific mutations and entropies among 
strains isolated before and after June 2020 (Ghanchi et al., 2021). Ashraf 
and colleagues followed up this study by investigating associations 
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between mutation rates and entropy in Pakistan comparing three time 
intervals 2020, 2021 and 2022 (Ashraf et al., 2023). Mullick and col
leagues in 2021 deployed Shannon entropy to identify positions in the 
Spike proteins of SARS-CoV-2 that are most susceptible to mutations and 
built a model based on ProtBERT to predict potential mutation hotspots 
(Mullick et al., 2021). Namazi and colleagues in 2020 applied 
complexity and information theory to investigate the variations of SARS- 
CoV-2 genome showing that the fractal dimension and Shannon entropy 
of genome walk change significantly between different USA states 
(Namazi et al., 2020). In 2024 Formentin and colleagues proposed a 
study based on Shannon entropy of SARS-CoV-2 sequences as well as the 
relative entropy and the mutual information between the reference 
sequence and the mutated ones suggesting new optimal entropic prop
erties of the mutation process (Formentin et al., 2024). 

In 2022 an entropy-based study on mutational trajectories of SARS- 
CoV-2 protein sequences collected in India has been proposed (Santoni 
et al., 2022). In particular, in this paper the average entropy profiles 
over time were computed for all the viral proteins showing a clear 
different behaviour between structural and non-structural proteins. In 
the present work we followed the approach proposed in Santoni et al. 
(2022) analyzing a significantly much larger data set which covers a 
period from March 2020 to December 2022, mainly considering se
quences collected in USA. The peculiarity of the proposed approach 
consists in collapsing all the information related to amino acid mutations 
over a given time interval in two values the Average Shannon Entropy 
and the Average Hellinger distance between two consecutive months 
providing a global view of the mutational evolution of viral proteins 
over time. There are several works focusing on the evolution of the virus 
studying single or set of mutations or focusing on measures of similarity 
among strains (Rogozin et al., 2024; Markov et al., 2023; Magazine 
et al., 2022) but they lack a quantitative global evaluation of mutational 
rate at a protein level over time that we performed through the appli
cation of information theory. To the best of our knowledge this is the 
first study based on a massive amount of data that analyzes from an 
entropy point of view the mutational landscape of SARS-CoV-2 over 
time (in terms of average Shannon entropy over all the positions) and 
depicts a mutational temporal profile of each protein of the virus. Pre
vious works, such as those mentioned above, either focus on amino acid 
specific positions or analyze a relatively limited amount of data. These 
studies were usually performed on a limited interval time, when not so 
many data were available, and moreover some of them were limited to 
countries where the number of sequences was not that large. The current 
work was conducted on a dataset approximately more than a thousand 
time larger than the previous one (Santoni et al., 2022). Furthermore we 
extended the analysis by also studying the relationship between virus 
variants on one hand and the average mutation entropy and the Hel
linger distance on the other hand. Finally we studied the correlations 
between mutational profiles of proteins hypothesizing that interacting 
proteins show similar (correlated) mutational profiles over time. 

2. Materials and methods 

2.1. Preparation of sequence dataset 

Initially, all available protein sequences (n  = 387,171,639) of SARS- 
CoV-2 spanning March 2020 to December 2022 were retrieved (January 
2023) from GISAID (https://www.gisaid.org/) (Khare et al., 2021). 
These sequences were firstly divided into 27 datasets, each one corre
sponding to a certain viral protein and then were further subdivided 
depending on the country from which they were collected. The present 
study was focused mainly on sequences collected from USA as their 
number is largely the highest compared to the number of sequences of 
all other countries. We are confident that such a large data size can 
ensure statistical reliability and consistency of results. We resolved to 
focus on sequences collected in a single country because the timing and 
spreading of the virus are not geographically uniform and variants 

appear months later in some countries and months before in some 
others, so it would have been unfair and ineffective to analyze together 
sets of sequences collected in different regions. All sequences from USA 
were selected and parsed using ad hoc perl scripts to discard those 
containing non standard amino acid, including the symbol X (associated 
with the non sequenced amino acid), obtaining a total of 108,448,489 
sequences. 

Furthermore the length distribution was also analysed for each 
protein. All sequences whose length frequency was smaller than 0.001 
were removed in order to exclude from the study unreliable and partial 
sequences. The final number of sequences for all the 27 considered 
proteins is 107,939,973. For each protein the sequences were aligned by 
using kalign3 (Lassmann, 2020) and then the multiple alignment files 
were parsed through ad hoc perl scripts to compute amino acid position 
frequencies. The same procedure was applied to Spike sequences 
collected in UK, Germany and Denmark. 

In Table 1 the total number of sequences collected in USA for each 
protein is reported along with the minimum and maximum length, the 
average number of sequences per month and the lowest and highest 
number of sequences among all the considered months. 

As can be observed in Table 1 the number of sequences considered in 
the study is truly remarkable (107,939,973) guaranteeing solidity and 
reliability to the analysis. Most proteins (20 out of 27) show a fixed 
length (trivially minimal and maximal lengths are the same). On average 
the number of sequences per month is higher than one hundred thou
sand (excluding Spike 80,598) ranging from a minimum of around seven 
thousands up to around four hundreds thousands. 

2.2. Entropy-based approach 

Let A be the set of symbols or alphabet made of the twenty canonical 
amino acids plus the symbol “-” indicating a deletion. Let S = s1, s2,…, sm 
be a set of sequences (of a given protein), where m is the total number of 

Table 1 
Statistics on sequences collected in USA from March 2020 to December 2022 and 
considered in this study. For each protein the total number of sequences is re
ported along with the minimum and maximum length, the average number of 
sequences per month and the lowest and highest number of sequences among all 
the considered months.  

Protein Tot Seq Min 
Len 

Max 
Len 

Av Seq 
month 

Min 
Seq 

month 

Max Seq 
month  

E 4,241,188 75 75 124,741 11,806 403,414  
M 3,748,816 222 222 110,259 10,889 297,124  
N 3,937,933 416 419 115,822 10,285 389,842  
NS3 4,071,404 275 275 119,747 10,415 399,476  
NS6 4,311,133 61 61 126,798 11,226 448,812  
NS7a 3,942,485 121 121 115,955 9,154 426,240  
NS7b 4,034,747 43 43 118,669 9,271 406,812  
NS8 3,807,377 105 121 111,982 11,294 392,354  
NS9b 4,199,927 94 97 123,527 11,199 415,633  
NS9c 4,073,636 73 73 119,813 7,618 444,827  
NSP1 4,030,937 175 180 118,557 11,293 429,004  
NSP2 3,891,272 638 638 114,449 9,831 407,652  
NSP3 4,071,404 1,944 1,945 119,747 10,415 399,476  
NSP4 3,820,546 500 500 112,369 10,294 389,246  
NSP5 4,190,185 306 306 123,241 11,385 419,457  
NSP6 4,007,023 287 290 117,854 10,683 398,616  
NSP7 4,391,459 83 83 129,161 11,814 451,999  
NSP8 4,272,114 198 198 125,650 11,202 445,346  
NSP9 4,361,033 113 113 128,266 11,720 453,342  
NSP10 4,258,397 139 139 125,247 10,917 445,078  
NSP11 4,350,328 13 13 127,951 11,421 450,313  
NSP12 3,873,878 932 932 113,938 10,253 380,608  
NSP13 4,019,087 601 601 118,208 10,367 400,987  
NSP14 3,559,628 527 527 104,695 7,853 380,200  
NSP15 3,900,545 346 346 114,722 9,590 403,579  
NSP16 3,833,149 298 298 112,740 9,391 427,078  
Spike 2,740,342 1267 1273 80,598 8,661 189,850   
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sequences. Let X be a matrix of dimension n × m derived from a multi 
alignment (where n is the length of aligned sequences). Each element x(i,
j) ∈ X is an amino acid or a deletion occurring in the alignment at po
sition i of jth sequence (for i = 1,2,..n, and j = 1,2,..m). For every aligned 
position i, the distribution frequency pi(a) for a ∈ A is defined as the 
ratio between the number of occurrences of a at position i and the total 
number of sequences m. The mutation Entropy (E) of a position i is 
computed as Shannon entropy of the frequency function pi(a): 

E(i) = −
∑

a ∈ A
pi(a) log2(pi(a)) (1)  

The Average mutation Entropy (AE) is trivially the Mutation Entropy (E) 
averaged over all the positions i of the given multi alignment: 

AE =

∑

i=1..n
E(i)

n
(2)  

The Average mutation Entropy was computed separately on sequence 
sets related to each month starting from March 2020 till December 2022. 
In order to evaluate how residues are differently distributed between 
different sample sets (different months) for a given position we used the 
Hellinger distance. 

Given two sets of sequences A and B (in our case they will correspond 
to sequences associated with two different months) the relative fre
quencies of a given amino acid (or deletion “-”) for a given position i in 
the multi alignment are defined as pA

i (a) and pB
i (a) for A and B respec

tively. It is worth noting that the multi alignment was performed on all 
sequences together (before separating them into months) so the length 
of each aligned sequence is the same. The Hellinger distance between 
sequence sets A and B related to position i,H(i)A,B is defined as follows: 

H(i)A,B =
1̅̅
(

√
2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

a∈A

( ̅̅̅̅̅̅̅̅̅̅̅

pA
i (a)

√

−

̅̅̅̅̅̅̅̅̅̅̅

pB
i (a)

√ )2
√
√
√
√ (3)  

Similar to the average entropy, the Average Hellinger distance between 
the two sets A and B over all the positions of the given protein is defined 
as: 

AHA,B =

∑

i=1..n
H(i)A,B

n
(4)  

Both Average Shannon Entropy and Average Hellinger distance have 
been computed through designed ad hoc perl scripts. Both the scripts are 
available online at https://www.iasi.cnr.it/dsantoni/SARS- 
CoV2_USA_entropy/ along with a Readme document providing further 
explanations about the information theory methods and with sample 
files in order to run the scripts on sample data. 

2.3. Pairwise distance correlation matrix and Phylogenetic trees 

For each pair of proteins pi, pj for 1⩽i, j⩽27 the two Average mutation 
Entropy profiles were compared and the Pearson correlation C(i, j) value 
was computed. A pairwise distance Correlation Matrix CM was built 
where each component of the matrix was derived from C(i, j) through 
the formula 

CM(i, j) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 ∗ (1 − C(i, j))

√
(5)  

. 
The function CM maps Pearson correlation values in the range [-1,1] 

to the reverse range [0,2], where two profiles whose Pearson correlation 
is equal to 1 will provide a CM equal to 0 and on the other hand a 
negative correlation − 1 will provide a CM equal to 2. The function CM is 
a distance since all the three properties characterizing a distance are 
satisfied, trivially CD(i, i) = 0 and CM(i, j) = CM(j, i), for the triangular 
inequality see (Mantegna, 1999) as a reference. The pairwise distance 

matrix CM was used to build a phylogenetic tree through UPGMA al
gorithm (Sokal and Michener, 1958), implemented in Phylip package 
(http://cmgm.stanford.edu/phylip/). The Phylogenetic Tree (as re
ported in Fig. 7) was displayed through the online tool Tree Of Life 
(iTOL) v5 (Letunic and Bork, 2021). 

3. Results 

The mutation rate of SARS-CoV-2 over time (with a monthly tem
poral interval) was evaluated by considering the Average mutation En
tropy AE and Average Hellinger distance AH between consecutive 
months. We first analyzed Spike protein profiles related to sequences 
collected in four difference countries for comparison. We then analyzed 
all protein profiles derived from sequences collected in USA (all of them 
are available as Supplementary Material S1) and compared profiles of 
different functional protein classes providing some global statistics. The 
profiles were also analyzed to investigate the relationships between 
variants and AE. Finally we computed pairwise distances between pro
teins via the Pearson correlation values of their AE profiles and built a 
mutation phylogenetic tree of proteins. 

3.1. Average mutation Entropy and Average Hellinger profiles of SARS- 
CoV-2 proteins 

Shannon Entropy and Hellinger distance provide complementary 
information about global protein mutation landscape. AE measures how 
much the given protein is exploring the configurational space while AH 
measures the change of mutational “direction“ between two time in
tervals. To some extent we could say they account for quantity and 
quality of mutations respectively. 

Fig. 1 reports Average mutation Entropies and Average Hellinger 
distances for Spike sequences collected in four different countries (the 
countries where the highest numbers of sequences were collected): USA 
(panel A), UK (panel B), Germany (panel C) and Denmark (panel D). In 
each panel (as in the panels of the following figures) the black dots 
represent AE (y axis) as a function of the time interval - month (x axis) 
while the asterisks represent AH (y axis) between two consecutive 
months (x axis, midpoint between two consecutive months). The three 
color bands represent the period in which variants Alpha (gray), Delta 
(pink) and Omicron (cyan) are predominant respectively. We considered 
a variant as predominant (with respect to a set of sequences) if all the 
mutations officially associated with that variant (source CDC 1) show a 
frequency higher than 50%. In all four panels the typical AE V slope can 
be observed when profiles are superimposed on the variants. Entropy 
tends to increase when a new variant appears and reaches its peak when 
the existing variant and the new one coexist. When the new variant 
becomes predominant a minimum entropy value is observed (V bottom). 
Then again AE starts to increase as the virus tries to explore new con
figurations until a new variant appears competing with the existing one. 

As expected the shapes of the four profiles are comparable even if 
some differences can be observed. The typical V shape is evident for all 
the variants with the exception of Alpha variant in panel A (USA) where 
a higher and ascending AE profile is observed. It is worth noting the AH 
peak in panel B (UK) between December 21 and January 22. Even 
though AE is comparable between the two months a very different 
mutational scenario is observed due to the extremely high AH value, 
testifying to a change in the mutational trajectory associated with the 
new variant. The same peak is observed in panel D (Denmark) and also 
in panel A (USA) and C (Germany) even if AH is lower than AE. 

To further investigate this issue and to provide a practical example of 
the significance of the coupled analysis provided by AH and AE we 
focused on the mutational scenarios of sequences collected in UK in 

1 https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classi
ficaVirusestions.html 
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December 2021 and January 2022. The number of occurrences of each 
amino acid (20 standard amino acids) or Deletion for each position of 
the protein in the multiple alignemnts are reported in Supplementary 
Material STAB1 (B sheet for December 21 and C sheet for January 22) 

along with the Hellinger distance between the two distributions and the 
Shannon entropies of the two months for each position (A sheet). Table 2 
provides detailed information on amino acid positions showing the 
highest Hellinger distances (third column), the highest Entropies for 

Fig. 1. Average mutation Entropy and Average Hellinger distance profiles of the Spike protein in different countries. Time periods in which a particular variant is 
predominant are highlighted with a colored band, Alpha in gray, Delta in pink and Omicron in cyan. 

Table 2 
Most significant amino acid positions for sequences collected in UK in December 21 and January 22. The top rows of the table display the amino acid positions showing 
the five highest Hellinger distances (Hellinger distances are highlighted in bold). The center rows of the table show the five highest entropies for December 2021 
(entropy values for December 2021 are highlighted in bold). The bottom rows of the table show the five highest entropies for January 2022 (entropy values for January 
2022 are highlighted in bold). Amino acid positions are indicated according to the multialignmment (first column) and according to the reference Spike sequence 
YP_009724390.1 (second column). The third column represents the Hellinger distance, followed by the entropies for December 2021 (fourth column) and January 
2022 (eighth column). Additionally, the three highest amino acid frequencies (when higher than 0.01) for December 2021 are reported in columns 5–7, and for 
January 2022 in columns 9–11.    

Positions showing the highest Hellinger distance  
Pos ma Pos ref H E 21–12 1AA 2AA 3AA E 22–01 1AA 2AA 3AA 

557 505 0.87 0.13 Y 0.98 H 0.02  0.09 H 0.99 Y 0.01  
550 498 0.87 0.13 Q 0.98 R 0.02  0.09 R 0.98 Q 0.01  
553 501 0.87 0.13 N 0.98 Y 0.02  0.09 Y 0.98 N 0.01  
502 452 0.87 0.14 R 0.98 L 0.02  0.09 L 0.98 R 0.01  
413 371 0.87 0.14 S 0.98 L 0.02  0.35 L 0.94 F 0.04 S 0.01              

Positions showing the highest Entropy for December 21  
Pos ma Pos ref H E 21–12 1AA 2AA 3AA E 22–01 1AA 2AA 3AA 
157 145 0.80 0.99 Y 0.70 H 0.28 DEL 0.02 0.33 DEL 0.94 Y 0.05  
256 222 0.34 0.87 A 0.72 V 0.028  0.05 A 0.99   
99 95 0.16 0.69 I 0.82 T 0.18  0.27 I 0.95 T 0.04  
1327 1264 0.18 0.42 V 0.92 L 0.08  0.06 V 0.99 L 0.01  
39 36 0.14 0.27 V 0.95 F 0.04  0.01 V 0.99                

Positions showing the highest Entropy for January 22  
Pos ma Pos ref H E 21–12 1AA 2AA 3AA E 22–01 1AA 2AA 3AA 
388 346 0.40 0.03 R 0.99   0.92 R 0.66 K 0.33  
757 701 0.27 0.07 A 0.99   0.74 A 0.79 V 0.21  
413 371 0.87 0.14 S 0.98 L 0.02  0.35 L 0.94 F 0.04 S 0.01 
21 19 0.87 0.15 R 0.98 T 0.02  0.35 T 0.94 I 0.04 R 0.01 
157 145 0.80 0.99 Y 0.70 H 0.28 DEL 0.02 0.33 DEL 0.94 Y 0.05   
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December 2021 (fourth colum) and for January 2022 (eighth column) 
along with the three highest amino acid frequencies (when higher than 
0.01). As can be observed, the positions with the highest Hellinger dis
tances (top rows of the table) exhibit completely different amino acid 
frequency distributions indicating a transition from a variant to another. 
For position 557 the Y - Tyrosine - is dominant with 0.98 in December 21 
while H - Histidine -becomes dominant with 0.99 in January 22. Similar 
behaviour can be observed for position 550 (Q - Glutamine - 0.98 in 
December 21 and R - Arginine - 0.98 in January 22), 553 (N - Asparagine 
- 0.98 in December 21 and Y - Tyrosine - 0.98 in January 22), 502 (R - 
Arginine - 0.98 in December 21 and L - Leucine - 0.98 in January 22) and 
413 (S - Serine - 0.98 in December 21 and L - Leucine - 0.94 in January 
22). Position with the highest entropies for both the months typically 
show the same dominant amino acid albeit with different frequencies. 

In Fig. 2–4 AE - AH profiles are reported for proteins of different 
functional classes: non-structural, structural and accessory proteins 
respectively. Four representatives for each class are shown (see Sup
plemental Material S1 for the complete list of profiles). As can be 
observed non-structural proteins typically show a flat and low profile 
(see S1) when compared to proteins of structural and accessory classes, 
with only a few exceptions (NSP1 and NSP6 panel B Fig. 2). Some Non- 
Structural proteins have a very low mutation rate and only a few amino 
acids are different from the original reference sequence, for example 
NSP10 and NSP12 reported in Panel C and D of Fig. 2 respectively. It is 
reasonable to expect this scenario since it can be hypothesized that 
structural and accessory proteins are more exposed to selective pressures 
resulting in broader exploration of the configurational space. 

In general AE peaks within the period of a variant are associated with 
low AH while peaks occurring in periods when the variant is changing 
are associated with high AH (see for example Panel A Fig. 1 Spike pro
tein USA - Alpha variant - gray - March/June 21 or Panel C in Fig. 4 
protein NS7b protein - Omicron variant - cyan - June/October 22). 

Fig. 5 shows the average and standard deviation of AE over all the 
months of the period considered for each protein. Once again as 

observed above the non-structural proteins show lower values for both 
average and standard deviation, while the accessory proteins in partic
ular NS8, NS9b and NS9c and structural proteins in particular N and 
Spike show the highest values. 

In Fig. 6 the mean AE for all the proteins is shown for every single 
variant period. As can be observed, AEs typically show higher values for 
Alpha variant specifically N, NS3, NS8, NS9c, NSP6 and Spike. NS9c 
profile reported in Fig. 4 panel D is particularly significant; AE values 
reach a peak of almost 0.04 in the period ranging from March until June 
21 where the Alpha variant is predominant. Interestingly, some proteins 
such as NS7a and NS7b show their highest values for Delta variant while 
some others such as NSP1, NS9b and NS6 show their highest values for 
the Omicron variant. 

3.2. Pairwise distances between profiles and Average mutation Entropy 
phylogenetic tree 

Pairwise distances between Average mutation Entropy protein pro
files were derived from Pearson correlation values and a phylogenetic 
protein tree was built using UPGMA (see Material and Methods Section 
for details). The phylogenetic tree, as reported in Fig. 7, shows how 
proteins tend to co-mutate or co-evolve. The closer the proteins are in 
the tree (when they occur in the same branch) the higher the Pearson 
correlation value of their profiles. It is reasonable to hypothesize that 
two proteins that physically or functionally interact with each other are 
likely to co-evolve or share on average a common mutation pattern over 
time, whereby a high correlation value should be observed between 
their entropy profiles. The phylogenetic tree can be a valuable tool to 
infer physical or functional relationships between protein or cluster of 
proteins. It can be observed that Spike and Membrane proteins fall in the 
same branch of the tree and three out of four structural proteins Spike, 
Membrane and Envelope fall very close to each other, providing con
sistency to our approach as the three structural proteins are known to 
interact with each other (Kumar et al., 2023). 

Fig. 2. Average mutation Entropy and Average Hellinger distance profiles of four representative non-structural Proteins. Time periods in which a particular variant is 
predominant are highlighted with a colored band, Alpha in gray, Delta in pink and Omicron in cyan. 
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Fig. 3. Average mutation Entropy and Average Hellinger distance profiles of four representative structural Proteins. Time periods in which a particular variant is 
predominant are highlighted with a colored band, Alpha in gray, Delta in pink and Omicron in cyan. 

Fig. 4. Average mutation Entropy and Average Hellinger distance profiles of four representative accessory Proteins. Time periods in which a particular variant is 
predominant are highlighted with a colored band, Alpha in gray, Delta in pink and Omicron in cyan. 
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Interestingly the NSP2 protein, whose function is currently still 
debated (Angeletti et al., 2019; Davies et al., 2020) and remains sub
stantially unknown, falls in the same branch as NSP14 and NSP10 
(which are known to form a complex (Baddock et al., 2022)). This 
finding would deserve further investigation to suggest a possible role for 
NSP2. 

4. Conclusion 

The present work focuses on the analysis of SARS-CoV-2 mutation 
profiles over time through an entropy-based approach. Average muta
tion Entropy AE and Average Hellinger distance AH (between two 
consecutive months) profiles are shown over time for each viral protein 

as reported in Fig. 1, Fig. 2, Fig. 3 and Fig. 4 (see Supplemental Material 
S1 for a complete view of protein profiles). This representation allows an 
at-a-glance view of the mutational landscape of viral proteins over time 
in a period from March 2020 until December 2022. The analysis of 
mutational profiles can provide insights on the evolution of the virus 
from different perspectives. In this view we can claim that the present 
work has two major aims or in other words that the significance of the 
present work can be read from two different points of view. Firstly it 
paves the way for the analysis of the mutational landscape of an or
ganisms over time via an entropy-based approach. This novel approach 
is based on coupling Shannon Entropy and Hellinger distance analysis. 
Combined together they are able to provide complementary information 
resulting in a global view on the mutation trajectory of the considered 

Fig. 5. Average and Standard Deviation of protein mutational entropy over the months in the period March 2020 - December 2022.  

Fig. 6. Mean AE of proteins for all the considered months (purple), for months in which Alpha (green), Delta (cyan) or Omicron (orange) were predominant.  

D. Santoni                                                                                                                                                                                                                                        



Gene 922 (2024) 148556

8

organism. To the best of our knowledge this kind of approach is some
thing that was lacking or at least was under explored. Secondly this 
analysis has been applied to SARS-CoV2 protein sequences providing 
useful insights on the virus biology. Comparison of protein profiles 
coming from different functional classes reveals different behaviours. 
Non-structural proteins show flat profiles characterized by a very low 
Average mutation Entropy, with only a few exceptions. On the contrary 
accessory and structural proteins mostly show (in particular N, NS3, 
NS8, NS9b, NS9c and Spike) non uniform and high AE and AH profiles, 
often coupled with the predominance of variants. This observed 
different behaviour between non-structural on one hand and accessory 
and structural proteins on the other hand is something expected to some 
extent, since structural and accessory proteins are more exposed to se
lective pressures resulting in a broader exploration of the configura
tional space while non-structural proteins are more conserved. Average 
mutation Entropy profiles can also provide a valuable tool to investigate 
how proteins are linked to each other by hypothesizing that functionally 
or physically interacting proteins co-mutate over time and therefore 
they should share similar profiles. In this view, interestingly, the NSP2 
protein, whose function is currently still debated, falls in the same 
branch as NSP14 and NSP10 in the mutation phylogenetic tree of Fig. 7. 
It is worth noting that results in this work were obtained by analyzing a 
massive amount of data (n  = 107,939,973) reinforcing the significance 
and providing effectiveness to our insights. However we believe that a 
broader and comparative analysis, which was not feasible within the 
scope of this study due to the extensive amount of data already pro
cessed, encompassing more countries, could be an interesting research 
issue to confirm and generalize the observed behaviors. 
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Supplementary data associated with this article can be found, in the 
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