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Abstract
In the last 20 years, a new approach has emerged to investigate the physiopathology of the circulation. By merging
medical images with validated numerical models, it is possible to support the decision-making process of doctors. The
iCardioCloud project aims at establishing a computational framework to perform a complete patient-specific numerical
analysis specially oriented to aortic diseases (like dissections or aneurysms) and to deliver a compelling synthesis. The
project can be considered as a pioneering example of Computer Aided Clinical Trial, i.e. a comprehensive analysis of
patients where the level of knowledge extracted by traditional measures and statistics is enhanced by the massive use
of numerical modeling. From a computer engineering point-of-view, iCardioCloud faces multiple challenges. First, the
size of the problems to solve for each patient is significantly huge – as typical of computational fluid dynamics (CFD)
– and it requires parallel methods. In addition, working in a clinical environment demands efficiency as the timeline
requires rapid quantitative answers (as may happen in an emergency scenario). It is therefore mandatory to properly
implement on high-end parallel systems, such as large clusters or supercomputers.
Here we discuss a parallel implementation of an application within the iCardioCloud project, built with a black-box
approach – i.e. by assembling and configuring existing packages and libraries and in particular LifeV, a finite element
library developed to solve CFD problems. The goal of this paper is to describe the software architecture underlying
LifeV, and to assess its performances and the most appropriate parallel paradigm.
This paper is an extension of a previous work presented at the PBio 2015 Conference. This revision extends
the description of the software architecture and discusses several new serial and parallel optimizations to the
application. We discuss the introduction of hybrid parallelism in order to mitigate some performance problems previously
experienced.
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1 Introduction

Scientific computing during the last 20 years has been
extended from traditional fields like civil, aerospace,
mechanical engineering to new research topics related to
sports, environment and life sciences. After taking advantage
of the traditional expertise, these new fields raised new
exciting challenges, often related to the impact of their
effective solution that, beyond technical aspects, may reach
out the entire society. This is the case of computational
fluid dynamics (CFD) in the study of cardiovascular
diseases. As a matter of fact, an accurate quantitative
analysis of hemodynamics in patients based on numerical
simulations has been proved to provide a terrific insight
into physiopathological dynamics with a potential impact
on diagnosis, prognosis and ultimately on the entire clinical
practice.

In spite of a mature level of the mathematical
background11 and of many successful proofs of concept
proving the previous statement, the massive penetration of
medical practice by scientific computing tools is not yet real.
There are several reasons for this. At a strict scientific level,
the computational challenges raised by a patient-specific
simulation involves image processing, massive numerical
approximations featuring huge algebraic problems and

appropriate post-processing procedures. Moreover, the entire
work pipeline requires computational facilities that are not
typically hosted by healthcare institutions; on the other hand,
time requirements due to the large number of patients usually
involved, as well as possibly specific emergency situations,
demand for high computational efficiency. Altogether,
these aspects still challenge mathematicians and computer
scientists to search new efficient numerical methods (see
e.g.4;19) as well as the effective exploitation of parallel
architectures – local or remotely located, as in the case of
cloud computing18;22;26.
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All these aspects are becoming part of a new –
somehow groundbreaking – concept recently introduced as a
breakthrough, the Computer Aided Clinical Trials (CACT).
These are clinical studies – i.e. extensive investigations of
large volume of patients as an ultimate step to assess the
etiology of a disease as well as the effect of a therapy,
in controlled environment with an enrollment of patients
strictly regulated by specific protocols – where numerical
simulations systematically provide a support to enhance
the knowledge extracted with a traditional analysis. The
iCardioCloud Project is a pioneering initiative founded by
Fondazione CaRiPLo, Italy, working in this direction. As a
matter of fact, it aims at the definition and establishment of
a consolidated pipeline for the routine numerical analysis of
patients affected by aortic diseases presented at the Hospital
IRCCS San Donato in Milan, Italy.

The work-line starts with the acquisition of images
and measurements to the simulation process, finalized by
the delivery of charts, diagrams and tables that describe
quantitatively the patient status in terms of quantities only
partially measurable, including velocity, pressure, wall shear
stress, etc.

More precisely, the procedure consists of three steps.

1. Pre-processing includes the image elaboration to
obtain a 3D patient-specific geometrical model, the
preparation of this model for the numerical simulation
(the so-called meshing step) and the extraction of
any data to be used in the numerical simulation from
available measures.

2. Problem solving is the core of the procedure, where
appropriate mathematical models fed by the patient-
specific data obtained at the previous step are applied
to extract more knowledge as the result of physical
principles and constitutive laws. More specifically, the
equations that are solved for the aortic diseases are
the so-called incompressible Navier-Stokes Equations
(NSE) that describe the behavior of a fluid like blood
under the conditions prescribed by patient-specific
data. This is the most intensive step in terms of
computational cost.

3. Post-processing is the final step where the results are
collected and represented in forms that allow an easy
translation from mathematical to clinically significant
information.

The present paper is clearly concerned with the second step.
The NSE represent a challenging problem both in terms
of mathematical theory and numerical approximation. In
particular, an accurate approximation of NSE requires the
repeated solution of linear systems of a size of about 107

equations for many time steps within an interval spanning a
few heart beats.

The iCardioCloud team basically resorts to the finite
element library called LifeV2, a joint initiative of different
groups, including the CMCS Center at the Department
of Mathematics of EPFL, Lausanne (CH), the Laboratory
MOX at the Department of Mathematics of the Politecnico
di Milano (IT) and the Department of Mathematics and
Computer Science of Emory University, Atlanta (GA-USA).

The library is intended to be a general purpose tool for the
approximation of partial differential equations with the finite

element method, however it has a strong and established
record of publication in the field of bio-fluid dynamics. In
particular, in17 the library has been successfully validated
against a benchmark proposed by the US FDA within the
Critical Path Initiative12;23.

Since the beginning, LifeV has been Object Oriented
developed in C++ with advanced programming paradigms.
In particular, since 2006 LifeV has been developed for
parallel environments, mainly resorting to pure OpenMPI.
For this reason, it is a natural candidate for the massive use
of CACT, as the iCardioCloud project demonstrated5;6;24.

However, the assessment of performances on parallel
architectures is critical for the successful adoption of the
tool on a routine basis. This paper gives a contribution in
this direction, following up a previous work presented in
the PBio 2015 conference in Helsinki7. We investigate the
efficiency of the solver and discuss parallel paradigms to
maximize the performances, moving from the coarse level
profiling in7 that identified modules to be customized and
specific processor level optimizations. As in the previous
paper we indicated a hybrid shared memory and message
passing approach as a possible solution to mitigate the
performance pitfalls, this option is explored here.

More precisely, Section 2 describes the processing
component of the iCardioCloud project and introduces the
structure of LifeV. Section 3 presents a case study of aorta
hemodynamics, to showcase some performance benchmarks
of a hemodynamics application on two different parallel
systems. The two systems are a small local cluster and
the CINECA FERMI1 BlueGene/Q installation in Bologna
(Italy). Section 4 discusses the improvements to the code
carried out in this work: the usual compiler and serial
optimizations and the introduction of hybrid parallelism
with the openMP approach. A discussion of the future
perspectives on the project, and the many challenges that lay
in the way of a full hybrid and efficient implementation is
presented at the conclusion.

2 Architecture
In this section, we provide a short introduction to the
numerical procedure required to analyze a patient within the
iCardioCloud workline and address some specific feature of
the LifeV library.

2.1 The numerical approximation procedure
Partial Differential Equations of interest in real problems
seldom admit an explicit analytical solution and numerical
approximation procedures are in order. Among other
methods, Finite Elements (FE) feature a strong mathematical
background. As a matter of fact, the theory of FE
has been systematically completed and organized in a
“Periodic Table” (femtable.org). The mathematical
foundations are critical to assess the accuracy and the
overall performances of the method for problems of real
interest. The method is based on the so called weak or
integral formulation of the problem – the natural formulation
descending from the virtual work principle. Moving from
this formulation, the rationale is to split the region of
interest in regions or elements where the solution is
assumed to be polynomial. This yields to represent the
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approximate solution as a linear combination of polynomial
basis functions that have a local support, i.e. they are nonzero
only on a limited small region of the domain of interest.
This feature has many advantages, in particular: (a) the code
organization may be based on a “local-to-global” perspective
where local contributions to the problem are first computed
on a local basis and eventually mapped to the global problem;
(b) the global approximating problem obtained by this choice
is typically a sparse algebraic system, where – after suitable
linearization procedures – the associated matrix has just a
small fraction of the total entries non zero, with a huge
storage saving. After the algebraic system is obtained, it is
conveniently solved by appropriate methods of numerical
linear algebra. This operation needs to be repeated at each
time step of a temporal discretization for unsteady problems.

The number of subdivisions of the region of interest into
elements is relevant to (a) the accuracy of the solution;
(b) the computational cost. More elements lead to a more
accurate solution, but larger algebraic systems, generally
more expensive to solve. The number of elements as
well as the degree of polynomials selected to represent
the solution need to be carefully selected as a trade-off
between accuracy and computational costs, depending on
the application at hand and the computational facilities
available. It is worth noting that in CACT the accuracy
required is basically associated with the clinical application,
and the quality of numerical solutions must guarantee an
accurate understanding of the situation of the patient to be
translated into clinical actions. Therefore, in many cases
accuracy needs not to be pushed to extreme limits, as far as
doctors correctly interpret the results and take the consequent
actions – in favor of rapid computations compatible with
the clinical routine. The literature dedicated to the FE is
tremendously large and it is not possible to provide an
exhaustive bibliography. Interested readers may refer, e.g.,
to10;14 and references therein.

In the applications relevant to iCardioCloud, we need to
solve the Navier-Stokes Equations. These are the equations
that describe velocity and pressure in a region of interest, as
the result of the application of basic principles (conservation
of mass and momentum) and empirical constitutive laws
– for instance for describing the blood rheology. These
equations raise some specific challenges, as the three
components of velocity and the pressure are computed all
together and the polynomial degree of interpolation for
the velocity depends on the one for the pressure. This
implies that the size of the algebraic system to solve rapidly
increases. In the application of interest for iCardioCloud
a typical size of of the order of 107. In addition, as for
any unsteady nonlinear problems, these systems need to be
assembled and solved at each time step, spanning a few heart
beats for a number of steps on the order of 104.

In aortic diseases, the high velocity induced by the
heart pumping action generally triggers dynamics qualified
as highly disturbed or even turbulent in some (typically
pathological) cases. This requires an extra effort that can lead
to finer reticulations, or additional equations that properly
describe the energy cascade and the effects of disturbances
from the small scales (not resolved) to the large ones. For
aortic flows, the latter approach in the framework of the

so called Large Eddie Simulation, has been proved to be
effective and it is used in iCardioCloud8.

This short summary points out the significantly high
computational effort required by a patient-specific analysis.
For the sake of clarity, here we list the steps to do.

1. Geometry tessellation or meshing;
2. Time loop (from 3 to 5 heart beats, each is in turn split

into an order of thousands of steps)

(a) Assemble the matrix of the algebraic problem
with a local-to-global approach

(b) Solve the algebraic problem
(c) Store the solution (when needed)

The LifeV library is mostly concerned with the Assembly
step, while the solution of the algebraic problem is
outsourced to available libraries. In particular, the Trilinos
Library is used as the default choice. The assembly step
consists of a series of procedure to (i) compute integrals of
the basis functions properly differentiated for the specific
problem to be solved; (ii) map each integral from a local
computation on a reference element to the global problem.
Both the assembly and solving steps greatly benefit from
parallel architectures, as we detail in the next section.

2.2 Processing
We summarize hereafter the sequence of steps performed
to solve the problem with emphasis on the assembly step
and its parallel framework. For a full description of these
aspects, the reader is referred to the website lifev.org
and to21. Once the reticulation of the domain of interest is
available and all the specifications of the problem to solve
are available, all the MPI processes load the global mesh.
Then we perform the following steps.

1. The mesh is partitioned in N parts by using
ParMETIS. Here N denotes the number of processes
or computational units. ParMETIS a parallel library
to partition unstructured graphs based on the METIS
library. The guideline of partitioning is to guarantee
a balanced workload among the different processors,
including in this the solution time of each processor
as well as the communication time. This is therefore
a critical step since the quality of this decomposition
has a major impact on the overall performance. At the
end of the partitioning procedure, each process retains
only the associated partition.

2. Assembly. In this step the library assembles the
algebraic system as dictated by the mesh and the
choice of the degree of the polynomial functions.
Notice that the assembly is performed simultaneously
also for the vector that forms the right hand side
of the algebraic system. Each computational unit
loops over the elements (e.g triangles in 2D) assigned
by ParMETIS in the previous step. Each local
loop on elements can be done in parallel, without
communication. The loop – as mentioned above –
requires the numerical solution of integrals: (a) each
element is referred to template element where the
integrals are easily computed.20; (b) the contribution
brought by each element is then mapped to the global
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level, by constructing a matrix for each process, this
is called local assembly; (c) after local assembly, a
method called GlobalAssemble() manages the
communication and constructs the pattern of the
global matrix, i.e. the map of the nonzero entries
in the matrix. The amount of communications in
the global assembly depends the granularity of the
decomposition. The Epetra methods of the Trilinos
library handles all of the underlying complexity.

3. The matrix/right hand side pair obtained after
assembly typically does not include the boundary
conditions. They are properly and conveniently
included at the end of assembly, to avoid conditional
jumps inside the assembly loop over elements to
select boundary degrees of freedom. The inclusion of
boundary conditions typically entails a correction of a
low number of rows of the matrix and the right hand
side.

4. Solver. The solution of the linear system (described by
the global matrix) is typically performed by iterative
methods. The number of iterations is managed (and
minimized) by creating simplified linear problems
(called preconditioners) whose solution drives the
solution of the problem at hand in a fast way. Ideally,
the number of preconditioned iterations when solving
a linear system should be independent of the number
of processors. LifeV treats the algebra solver as a black
box operated by Trilinos, where OpenMPI is used
to distribute the computations over the system. Note
that the solver decomposition is generally different
from the one used in the assembly step. The interested
reader may refer to13 for the documentation of the
Trilinos library.

5. Finally, the solution is exported and stored in parallel
by using the HDF Format, so to minimize the slowing
due to the disk writing of large vectors21.

It is worth stressing again that the matrices of the algebraic
problem are sparse, i.e. only a few nonzero entries are
present. For this reason, matrices are conveniently stored
in compact format such as Compressed Row Storage
(CRS) where only the nonzero entries are tracked. The
CRS matrices and the corresponding unknown vectors are
properly distributed among the processes thanks to Epetra.

3 Case study: hemodynamics of the aorta

In this section, we propose a case study to analyze the
behavior of a LifeV hemodynamics application in a real
scenario. In particular, we chose a case study about the
blood flow in the aorta of a post-operative patient. From
a mathematical standpoint, as already discussed above, the
problem is modeled with incompressible NSE. Developing
a FE solution for the NSE is a well-studied and complex
topic which is outside the scope of this paper. For further
information, one may refer to16 for a physics standpoint
introduction to the NSE or to10 for a discussion on FE
methods for the NSE, the numerical method upon which
the LifeV-based application is based and thus it follows the
general model depicted in Section 2.

Figure 1. Snapshot of the mesh used for the test problem.

The case study presented here is extracted from5, where
is properly discussed from both an engineering and medical
point-of-view.

Nevertheless, we provide here a short discussion of the
issues related to the discretization and resolution of the
NSE, as well as the test problem used in this work. The
geometrical input data of the case study is taken from clinical
data and it is composed of 6.7 million of tetrahedra (see
Figure 1). The method used is the classical Nodal Lagrange
Finite Element method. The solvability and stability of
the system rely on a careful choice of the polynomial
approximations of the velocity and the pressure. As a matter
of fact, we use a piecewise continuous linear approximation
for the velocity field, stabilized by a quadratic bubble, and
thus the number of degrees of freedom for the velocity
field is around 23 millions, and a piecewise continuous
linear pressure and thus 1.2 millions degrees of freedom
for the pressure. As a consequence, the global system
is of 24.2 millions degrees of freedom. By no means,
such a description represents the number of floating point
procedures used to solve the problem solving the system
(see9 for a presentation of the problem using LifeV, but
with a different Navier-Stokes solver). Indeed, with such
a larger linear problem it is not possible to use direct
methods such as Gauss-Jordan. Instead, the code uses an
algebraic splitting approach, called High Order Yosida. It
is out of the scope of the present work to present in
detail the algebraic splitting strategy used in this work. We
want to point out that the required time for one time step
heavily depends on, in particular, the Reynolds number of
the problem (and associated stabilization strategies), the size
of the elements, the time stepping, the polynomial order used
to approximate the various fields, and, obviously, the time
integration schemes and the iterative solver technique. The
interested readers may read26, and the literature cited therein,
in particular25. Regarding the boundary conditions, the
inflow flux has been obtain from the same patient from phase
contrast Magnetic Resonance Imaging. More precisely, the
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inflow flux is the integration of the projection of the velocity
field onto the normal of the plane, which was selected by the
radiologist. On the contrary, the outflow boundary conditions
have been modeled using 3-elements Windkessel system.
The parameters have been taken from the literature15.
Obviously, the choice of the boundary conditions also
impacts the conditioning of the global system, in particular
for the outflow ones. However, these critical points are
strictly mathematical and, therefore, should not impact the
parallelization strategy. As a consequence, to keep the
mathematical aspects out of our concern, we maintained, for
all our test problems, all the parameters fixed, with the only
exception of the number of cores. Consequently, our main
concern in the present work is the asymptotic behavior of the
code, rather than the absolute results.

The analysis has been conducted on two different testing
environments. The first one is a relatively small cluster,
hosted at the University of Pavia. The second is the
FERMI1 supercomputer (an IBM BlueGene/Q) at CINECA
in Bologna, Italy. On each machine we performed two
different sets of tests. The goal is to assess the performance
and the scalability of the processing steps of LifeV, and
especially the assembly and solver phase.

3.1 Local cluster
The first batch of tests has been run on a cluster of four AMD
Opteron 6272 nodes running at 2.1 GHz. Each node has four
CPUs, each with 16 cores, for a total of 64 cores and 252
GB of RAM per node. Overall, the cluster has 256 cores and
about 2 Tb of RAM available. Each node is connected to the
others through a Gigabit Ethernet switch.

In the following we present two figures to show,
respectively, the performance of the assembly and the
solving step of the blood flow analysis of the case study
(see Section 2.2). Please note that all data are the average
of 20 consecutive runs, where the first is discarded because
it includes some initialization costs. Figure 2 shows the
scalability results for the assembly phase on the local cluster.
By analyzing the figure, it is clear that the assembly phase
scales very nicely up to 64 cores. We can draw the same
conclusions, even when considering different distributions
of the computations across the entire cluster. Nice scalability
results, as shown by the differently colored lines in the figure,
hold in fact either when using a single machine and even
when using the four computational units at the same time.
Unfortunately, the scalability quickly degrades if the number
of cores become larger than 64. Eventually, after 128 cores,
the overall execution times even start to increase. The reason
for this behavior is due to the high ratio of communication
time over computation time, which is overemphasized by the
interconnection network of the local cluster: clearly, a simple
Gigabit Ethernet is not enough to keep up with the high
volume of communication required by applications such as
the case study.

Figure 3 shows the scalability results for the solving phase
on the local cluster. Analyzing the figure, it is clear that
the solver does not scale very well on the local cluster;
we are sure that the lack of scalability is not due to the
internal implementation of the Trilinos solver, as proven by
the more satisfying results described in the following section
on the FERMI supercomputer. To understand the reason for

 10

 100

16 32 64 128 256

T
im

e 
as

se
m

bl
y 

(s
ec

.)

Number of cores

1
2
4

Theoretical

Figure 2. Scalability of the assembly phase of the case study
on the local cluster. On the x-axis the overall number of cores
concurring to the computation. On the y-axis the execution
times in seconds. Both axis use a logarithmic scale. Different
plots correspond to different distribution of the computation on
the nodes (e.g. the red line refers to a test scenario where the
computation is equally distributed on two nodes in the cluster).
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Figure 3. Scalability of the solving phase of the case study on
the local cluster. On the x-axis the overall number of cores
concurring to the computation. On the y-axis the execution
times in seconds. Both axis use a logarithmic scale. Different
plots correspond to different distributions of the computation on
the nodes (e.g. the red line refers to a test scenario where the
computation is equally distributed on two nodes in the cluster).

this behavior, it is also important to note that we obtain
better performance for the solver when the computation is
distributed among different nodes (at least up to 64 total
cores). Remember that the computations in the solver are
mostly floating point operations and that the Interlagos
(AMD 6200 series) architecture shares each floating point
unit between two cores: if we use less cores on each node we
can easily improve the floating point performance; moreover,
less processes on a node also means less contention for the
memory bus. These two hardware limitations provide a huge
hint about the lack of scaling.

Moreover, as we shall see later on in Section 4.1, more
satisfactory results in the solver scalability were obtained
using a serially optimized version of the code, which is
able to fully exploit the floating point units with efficient
vectorization.
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Figure 4. Communication time of the target application on the
local cluster. On the y-axis the percentage the time spent in MPI
calls with respect of overall execution time. On the x-axis the
number of cores. Different plots correspond to different
distributions of the computation on the nodes (e.g. the red line
refers to a test scenario where the computation is equally
distributed on two nodes in the cluster).

Finally, we have analyzed the behavior of the application
using the TAU profiler3. Figure 4 shows the percentage of
the overall execution time that is spent in communications
as the number of cores increase. Similarly to the previous
graphs in this section, different distribution of the workload
across the local cluster are analyzed. The figure shows
that the percentage increases more than linearly when we
use more than one node; in other words the application
becomes communication-bound, and this is coherent with
the unsatisfactory scalability results discussed above.
These results and can be explained with the inadequacy
on the interconnection network. Indeed the impact of
communication remains more or less constant when using
only one node.

3.2 FERMI supercomputer
The local cluster is a necessary tool for evaluating the
development of the iCardioCloud project. However, the sheer
size of hemodynamics problems and the time requirement
of clinical applications demand a more drastic approach.
To understand the performance on the hemodynamics
application on a high-end machine, we repeated the
experiments described in the previous section on the FERMI
supercomputer. The main difference in the set-up of the
experiment is that we had to partition the input mesh using
an offline partitioning strategy. The reason is that the amount
of memory available to each node in the FERMI architecture
is smaller than the size of the mesh and each thread has to
load the whole mesh at the beginning of the application to
proceed with the partitioning. On the contrary, with offline
partitioning we provide the mesh already divided and thus
each thread only load its part of the mesh. However, this
process does not impact on the performance in a significant
way, as offline partitioning is done only once and off-line; to
be fair, the results on the local cluster in the previous section
did not include the cost for the initial online partitioning.

This time, we condense in one figure the results for both
the assembly and solving steps. All data are the average of 10
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Figure 5. Scalability of the case study on the FERMI
supercomputer. The data refer to both the assembly and solving
steps. On the x-axis the number of cores concurring to the
computation. On the y-axis the execution times in seconds.
Both axis use a logarithmic scale.

executions, expressed in seconds. Again, the first execution
is discarded to discard the initialization time.

Figure 5 shows that the both phases and thus the overall
application, scale very nicely up to 1024 cores on FERMI.
Increasing the available number of cores, however, only
the solver performance has any benefit, while the assembly
quickly becomes the bottleneck of the application: in the case
of 4096 and beyond it completely dominates the execution
times.

Having analyzed the case study on both architecture,
we can compare the results presented in this section to
the ones presented in Section 3.1. First of all, even if
the solver did not scale very well on the local cluster,
it scales reasonably well on FERMI, up to 2048 cores.
FERMI interconnecting network is better suited for high
volumes of communication with respect to the local cluster;
indeed the ratio of computation over communication remains
constant up to 1024 cores. Moreover, the PowerA2 chip is
more optimized for floating point operations with respect
to the AMD 6272; in particular floating point unit are not
shared between adjacent cores, while this does happen on
the Bulldozer architecture.

Overall, the most critical point is that as the number
of cores increases, the amount of the inter-process
communication and synchronization during the global
assembly quickly explodes on FERMI. Intuitively, the
perimeter of the mesh chunks becomes longer, while the
inner volume becomes smaller. The smaller the ratio between
the volume of a chunk and the length of its border, the
smaller become the granularity of the parallel application,
up to a point where the communication overhead becomes
comparable to the computational time of a single chunk. Due
to the relatively small number of cores, this behavior was not
observed on the local cluster.

To mitigate the problem, LifeV developers have proposed
a new decomposition strategy for the computational mesh but
it is not used in our hemodynamics application at present.
The approach, called ghost cells, amounts to inflate with
replicated the data the borders of each computational chunk.
In this way, each region need to communicate less with
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their neighbors during assembly. Overall this amounts to
a reduction of inter-chunk communication. Put in other
words, using the ghost cells we can keep the granularity the
same and reduce the overhead. The cost of this strategy is
twofold: first of all a relatively small portion of the data,
that is the ghost cells, needs to be replicated across multiple
computational units, thus increasing the memory footprint of
the application. On the other hand, the solver needs to be
modified to account for a different data format in input.

An alternative, yet more complicated, strategy is possible:
indeed, hybrid parallelism (Section 4.2) could probably
improve the overall performance of the application beyond
the level of the ghost cells approach.

4 Optimizing the performance
The analysis presented in Section 3 has shown several
performance issues of our hemodynamics application.
Clearly, these issues have something to do with the parallel
paradigm of the implementation, and can theoretically be
solved by modifying the paradigm and/or its implementation.
For instance, we could introduce hybrid parallelism in the
iCardioCloud project. This idea will be fully discussed in
Section 4.2.

However, we are not only interested in parallel
performance and scalability on supercomputers, but also in
the overall execution time. In particular, even if it is relatively
small, the local cluster presented in Section 3.1 is extremely
important for our day-to-day operations, as it is not easy
to obtain a satisfying level of access to more powerful
machines. In practice, obtaining good performance on the
local cluster is of paramount importance for our research. To
this end, we can apply several black-box serial optimizations
to the application, which are discussed in Section 4.1.

4.1 Serial optimizations
From a software engineering point-of-view, the iCardio-
Cloud framework we see LifeV as a black-box, thus the
amount of serial optimization we can introduce is limited by
our choice not to modify the code in-depth.

As is it common with many frameworks, every major
revision of Trilinos brings new tools and capabilities to
the library. In particular the transition from Trilinos 10 to
Trilinos 11 has brought to the table many optimizations;
among them, the most significant are the new internal
implementations of the solver modules. Unfortunately, our
version of LifeV is Trilinos 10 based. The first task we
did has been to upgrade our version of the code to Trilinos
11. Moreover, upgrading to Trilinos 11 is a necessity in
perspective for the parallel optimization of the application
(Section 4.2). Upgrading to Trilinos 11, obviously, also
brought us to upgrade (and sometime substitute) most of the
other libraries in the iCardioCloud framework. For instance,
we decided to move from the ACML linear algebra library to
MKL on the local cluster, as testing showed that the latter had
better performance when comparing their respective most
recent releases.

The serial optimization also included an in-depth study
of possible compile-time optimizations. In particular, we
profiled the application to discover that almost 60% of
the computation time, is spent inside the underlying

Run Assembly Preconditioner Solver Overall
1 81.14 82.88 70.06 234.08
2 29.32 36.76 61.96 128.04
3 29.21 35.98 80.77 145.96
4 29.57 36.61 67.88 134.06
5 29.38 36.88 76.53 142.80
6 29.53 36.60 73.92 140.04

(etc.) ... ... ... ...
Table 1. Raw data for the 64 cores performance of the case
study on the local cluster. “Old implementation” as in the
previous version of this paper. Note that these data is the same
shown in Figure 2.

Run Assembly Preconditioner Solver Overall
1 13.76 36.75 57.73 108.25
2 37.03 37.49 50.55 125.08
3 37.15 37.41 50.97 125.53
4 37.36 37.45 53.45 128.25
5 37.41 37.56 43.85 118.82
6 37.73 37.64 43.91 119.28

(etc.) ... ... ... ...
Table 2. Raw data for the 64 cores performance of the case
study on the local cluster. “New implementation” with compile
time optimizations and Trilinos 11 porting.

mathematical library, such as ACML or MKL. Both of
these libraries support system-specific hardware instructions.
Namely, as we are working on AMD nodes on the local
cluster, recompiling the code using the FMA4 vector
instruction has the potential to greatly improve the overall
performance of the application. In addition, we studied the
effect of many other possible compiler optimization, and
selected the best and most stable ones; in particular, we
strived to obtain automatic vectorization of the code.

The selected string of optimizations flags on the local
cluster is the following: -O3 (standard optimization flag),
-march=bdver1 (compile optimized code for the AMD
Bulldozer architecture), -funroll-all-loops (force
loop unrolling; this flag is recommended by AMD),
-mfma4 (enable FMA4 instruction set), -mavx and
-mprefer-avx-128 (enable AVX instruction set to
induce vectorization outside of the already optimized math
libraries). A more in-depth discussion of these compiler
optimization, can be found in9.

To prove the effectiveness of the serial optimizations,
we executed several tests on the case study described in
Section 3. Table 1 shows in tabular form the same data
presented in a synthetic way in Figure 2, but is limited
to the most interesting scenario in practical applications;
that is, due to the results in Figure 4 showing the poor
interconnections on the local cluster, we run the application
on a single node, exploiting all of its 64 cores. Table 2 is
similar to Table 1, but shows the results of the new optimized
implementation. All the values are expressed in seconds.

Each row of the two tables show a different time step of
the computation. The measured times are subdivided in the
different step of processing. As previously, we can safely rule
out the first rows in the tables as outliers. First of all we can
note that the assembly times seems to be almost the same
in the two versions, and thus are unaffected by the serial
optimizations. The most interesting results, however, is that
the solver takes much less time in the new version of the
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Figure 6. Scalability of the new implementation for the case
study on a single node of the local cluster. On the x-axis the
number of cores concurring to the computation. On the y-axis
the execution times in seconds. Both axis use a logarithmic
scale.

code. As stated before, this was expected as most calls to
the underlying mathematical library are performed during
the solution of the matrix, and this calls are now heavily
optimized.

Averaging the results, we can state that the serial
optimizations amount to a measured reduction in the overall
execution time of almost 16%, and up to 20% in some cases.
Bear in mind that a one-fifth reduction in the execution time
amounts to several days when a complete run on a real
patient could take up to two weeks of computations. Finally,
Figure 6 shows the extremely good scalability of the new
implementation on a single node; it seems that the serial
optimizations have solved the previous problems about the
scalability of the solver (see Section 3.1).

We can conclude the the impact of the serial optimizations
is quite significant, especially when considering that, due to
the black-box approach, we have not modified the internal
structure of the code.

4.2 Parallel Optimizations
As shown by the analysis presented in Section 3, the
assembly phase of the LifeV implementation has serious
scalability issues. To mitigate the problem, we discussed the
ghost cell approach (Section 3.2). However, another, more
radical approach is possible, that is to modify the parallel
paradigm of LifeV.

At the moment, LifeV processes communicate using a
pure distributed memory paradigm which means that: (i) the
communication overhead is quite high and (ii) the processes
cannot share data without explicit communication. Similarly
to the alternate domain decomposition of the ghost cell
method, a different approach, based on shared memory
paradigm, would decrease the overhead and amount of inter-
process communication of the overall application. In theory,
the approach would work for both the assembly and solving
phase and is not mutually exclusive with ghost cells. In
general, the disadvantage of the shared memory is that it
is required to carefully protect all common resources using
some form of synchronization (e.g. locks, critical section,
etc.).

In the past few years, research has been focused on the
combination of the two paradigms (distributed and shared
memory) to take advantage of both; this approach is called
hybrid parallelism. On a many-core machine such as FERMI,
hybrid solutions are almost mandatory to achieve the best
possible performance.

Unfortunately, the porting of iCardioCloud to an hybrid
approach is far from being easy or time-efficient. The most
recent versions of Trilinos 11 support hybrid parallelism
thanks to the Tpetra module, which allows to exploit hybrid
strategies to manage the mesh in a concurrent way. The
alternative is Epetra, currently used by the LifeV, which
is mostly based around a pure MPI, distributed memory
approach. The Petra modules are essential because they are
the interface to all the other modules of Trilinos, in particular
to the linear solvers (see Section 2.2). As discussed in the
previous section, we have already upgraded LifeV to work
with Trilinos 11. However, the main problem is that, due to
the nature of its code, a simple porting of the LifeV source
code from Epetra to Tpetra is not feasible.

In fact, LifeV uses a modified and extended version
of the Epetra module, which sometimes relies on the
details of the internal implementation of Epetra (i.e. the
code is not perfectly encapsulated). The main issue is that
the MatrixEpetra class, the interface from LifeV to
Epetra, makes heavy use of advanced capabilities of the
FECrsMatrix class that are not yet available in Tpetra and
thus it renders, at present, cumbersome the implementation
of Tpetra into our LifeV code. Nevertheless, even if the
Epetra module lacks the advanced hybrid capabilities of
Tpetra (such as support for CUDA, PThreads, TBB, etc.) its
data structures actually embeds partial OpenMP capabilities,
which can be easily activated during compilation.

We ran on FERMI the same test performed in Section 3.2.
The results on the local cluster are not showed here, as
they are not particularly interesting. In fact, using the hybrid
approach on the local cluster has very few advantages and,
in some cases, even worse performance. Figure 7 shows the
results on the FERMI supercomputer. For a fair comparison,
the data still refer to the old implementation (Section 4.1),
using Trilinos 10 without the optimizations introduced in
Section 4.1. The tests were run with 16 OpenMP threads per
MPI process. As each socket in the FERMI architecture has
16 cores1, this means one MPI process runs per socket or
four per node. Again, the data is the average of 10 different
runs. In green, we repeat the data from Figure 5 to allow for
an easier comparison.

From the figure it is clear that this limited introduction
of hybrid parallelism does not drastically modify the
asymptotic performance of the application, and the
scalability issues have not been solved, as expected.
However, we can note that the computational explosion of
the assembly phase is less pronounced, and the scalability of
the solver has significantly increased. While not conclusive,
these data are a clear indication that the hybrid approach is
the correct way to improve both the performance and the
scalability of a LifeV hemodynamics application.
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Figure 7. Preliminary results of a hybrid implementation with
OpenMP on the the FERMI supercomputer. As before, the data
refer to both the assembly and solving steps. On the x-axis the
number of cores concurring to the computation. On the y-axis
the execution times in seconds. Both axis use a logarithmic
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5 Conclusions
In this paper we have discussed an emerging multidisci-
plinary research topic, that is using numerical methods to
study the hemodynamics of a pathological aorta. In par-
ticular, we have described the iCardioCloud framework,
which uses a finite element software in a parallel context.
iCardioCloud is based on LifeV, a pure MPI parallel library.
The overview of the software architecture of a LifeV-based
application has shown the potential of this approach, but it
has underlined present performance limitations, which will
dealt in future works.

To validate our assumptions, we have analyzed the
performance of a clinical case study with real data on
two different systems: a small cluster and a supercomputer.
The analysis showed some limitations of the pure MPI
approach, such as lack of scalability and overhead of the
communication bandwidth.

In the final section we have discussed possible solutions
to the performance problems, that is the introduction
of a few selected serial optimizations, which allowed
to increase the overall execution time by a significant
margin, and the introduction of a new hybrid parallel
paradigm. Unfortunately, a full porting of iCardioCloud is
extremely time-consuming, due to the nature of the LifeV
implementation. However, thanks to a limited introduction
of OpenMP in the framework, we have shown the potential
merit of such porting.

At the moment, a full, efficient Trilinos 11 hybrid
implementation of LifeV is a work in progress.
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