

VESPA: a Vibrational Excitation Spectrometer with Pyrolytic-graphite Analyzers

D. Colognesi¹, A. Fedrigo^{1,2}, M. Hartl³, M. Zoppi¹, U. Bafile¹, M. Bertelsen^{2,3}, M. Celli¹, P. P. Deen^{2,3}, F. Grazzi¹, L. Ulivi¹

(1) ISC-CNR, Sesto F.no, Italy
(2) NBI, Copenhagen, Denmark
(3) ESS, Lund, Sweden

- 1. VESPA: what is it?
- 2. VESPA: research areas
- 3. VESPA: complementary & unique
- 4. VESPA: instrument overview
- 5. VESPA: choppers & energy resolution
- 6. VESPA: high resolution
- 7. VESPA: high intensity
- 8. VESPA: secondary spectrometer
- 9. VESPA: science & sample environment

10. VESPA ...

1. VESPA: what is it?

<u>V. E. S. P. A.</u> (Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers)

A crystal-analyser inversegeometry time-of-flight spectrometer fully devoted to *Neutron Vibrational Spectroscopy (NVS)*

It'll be the **only** inelastic instrument at **ESS** focused on **molecular vibrations** in **chemistry** and **material science!**

Why vibrational spectroscopy?

KC

Vibrational spectroscopy is a technique widely used in scientific and technological research, fundamental as well as applied:

- probing potential energy surfaces and interatomic interactions;
- permitting the identification of bonds and functional groups, as well as their transformations;

•determining the **vibrational density of states** (related to various thermodynamic properties).

Vibrational spectroscopy: cross-sections and intensities

 σ (Raman)~10⁻²⁸ cm²/molec.; J_{ph} (Nd:YAG)~10²⁰ cm⁻²s⁻¹

σ (Neutr.)~10⁻²⁴ cm²/molec.; J_n (ILL)~10¹⁵ cm⁻²s⁻¹

 σ (IR)~10⁻¹⁸ cm²/molec.;

 $J_{\rm ph}$ (Globar)~10²⁰ cm⁻²s⁻¹

So why neutron vibrational spectroscopy?

- In Raman, polarizability normally grows with Z: possible problems to detect protons.
- In IR (sensitive to electric dipole), H-bond provides a strong signal, but can be distorted by the so-called electric anharmonicity (not vibrational).
- Molecules with a high symmetry: many modes are optically inactive (e.g. in C₆₀ more than 70%!).

LIN SIGNAL SIGNAL

vibrational eigenvectors.

Conclusions

NVS is complementary to optical spectroscopies and is

often crucial for studying proton dynamics!

Comparison of IR, Raman and INS spectra of nadic anhydride

Example: nadic anhydride (C₉H₈O₃) on TOSCA (courtesy of S. F. Parker)

2. VESPA: research areas

* Neutron Vibrational Spectroscopy (+ Diffraction/PDF)

* Neutron Vibrational Spectroscopy (+ Diffraction/PDF)

*high-pressure

* Neutron Vibrational Spectroscopy (+ Diffraction/PDF)

*gas loading High-performance polymers *high-pressure Bioprotectants Currently not enough... *gas analysis *photocatalysis *photocatalysis Amino-acids Renewable . Photolysis /solar cells *electrical cell A: constant & high resolution Applied, industrial catalysis **B**: intensity DFT-bench Molecules in confinement Short H boo **C:** bandwidth (i.e. 'one shot') ^{*}gas loading, reactor *gas analysis Water in minerals *photocatalysis *electrical cell

- science
- * techniques

A+B+C simultaneously is not available worldwide! *gas loading

3. VESPA: complementary & unique

Existing **NVS** instruments at spallation sources:

- VISION (US): about 3x oversubscribed;
- TOSCA (UK): about 2x oversubscribed.

Existing **NVS** instruments at spallation sources:

- VISION (US): about 3x oversubscribed;
- TOSCA (UK): about 2x oversubscribed.

- Chopper system for choosing desired resolution ($\Delta E/E_0$).
- Not unconventional, but increased coverage (Ω=1.196 sr), increased flux and resolution (ESS source / instrument length).
- Constant resolution $\Delta E/E_0$ possible because of long pulse.

- Chopper system for choosing desired resolution ($\Delta E/E_0$).
- Not unconventional, but increased coverage (Ω=1.196 sr), increased flux and resolution (ESS source / instrument length).
- Constant resolution $\Delta E/E_0$ possible because of long pulse.

Neutron guides & choppers

• guide starts from 2 m after the moderator.

•1st chopper position: 6.5 m;

•3 PSC pairs (H, M, L; optical blind chop.) + FOC + 2×sFOC (1, 2);

•all choppers are counterrotating double disks: trapezoidal transmission;

• *T*₀-chopper still undecided.

5. VESPA: choppers & resolution

- 3 subframes in one "shot" use of the complete ESS pulse (wavelength frame multiplication);
- equivalent rel. resolution for the fingerprint region (optical blind choppers);
- energy resolution can be selected (3 configurations).

Chopper	Low-	Mid-	High-
parameters	Res.	Res.	Res.
WFM-PSC1 (m)	6.50	6.80	6.50
WFM-PSC2 (m)	7.44	7.44	6.80
z _o (m)	0.94	0.64	0.30
Final Energy			
Resolution:	1.1%	0.7%	0.4%

- 3 subframes in one "shot" use of the complete ESS pulse (wavelength frame multiplication);
- equivalent rel. resolution for the fingerprint region (optical blind choppers);
- energy resolution can be selected (3 configurations).

Chopper	Low-	Mid-	High-
parameters	Res.	Res.	Res.
WFM-PSC1 (m)	6.50	6.80	6.50
WFM-PSC2 (m)	7.44	7.44	6.80
z _o (m)	0.94	0.64	0.30
Final Energy			
Resolution:	1.1%	0.7%	0.4%

6. VESPA: high resolution

TOSCA: D. Colognesi *et. al, Appl. Phys. A* **74**, S64 (2002). **VISION:** L. Daemen, private communication (2015).

TOSCA: D. Colognesi *et. al, Appl. Phys. A* **74,** S64 (2002). **VISION:** L. Daemen, private communication (2015).

Hi-resolution examples: bioprotectants

ALLS SICIET SILVER

VESPA resolution is 2x better than TOSCA (1.5-2%)!

TOSCA: spectra of dry trehalose (red line) and a mixture of trehalose plus 2.5 wt-%. glycerol (black line).

- Hydrogen bonding network greatly affected by addition of 2.5% glycerol!
- Bioprotectant system (cryo/lyo stem cells), not present in mammals.

655

from S. Magazù et al., J. Phys.Chem. B115,11004 (2011).

Perfectly suited for the *ESS* long pulse... making new spectroscopy (*i.e.* high pressure, catalysis, hydrogen storage etc.) possible with neutrons!

SC 8. VESPA: secondary spectrometer

- 1 high resolution.

	Backscattering bank	Equatorial banks
2θ (deg.)	152-174	75-105
Q (Å ⁻¹)	31.37-2.77	24.92-1.74
d (Å)	0.2-2.3	0.25-3.6

- 2×2 sets of HPOG analysers (40° & 60°) in forward- and backscattering: Ω= 1.20 sr;
- 3^{rd} proposed set of Cu (?) analysers ($\approx 60^{\circ}$) for upgrade at a later point: $\Omega = 1.52$ sr (28% more coverage).

Secondary spectrometer details from *VISION* (SNS, USA).

C 9. VESPA: sample environment

- Sample size: 30x30 mm² or less;
- closed-cycle refrigerator (*in-situ* temperature studies etc.);
- sample changer (high-throughput).

Data modeling

- ESS Data Management & Software Center (DMSC);
- DTU Copenhagen (DFT calculations GPAW);
- other possible collaborations...

- Sample sticks and cells: *in-situ* measurements, high pressure cells, flow cells, gas manifold, photo-lamp/ battery cell;
- low-temperature sample changer;
- hardware/software interface.

High-performance polymers Hydrogen storage **Bio**protectants has... Ami A: constant & high resolution **B:** intensity Applied, industrial catalysis DFT-benchm C: bandwidth (i.e. in 'one shot') tolecules in confinement AND most importantly... Short H-bonding Water in Minerals A+B+C simultaneously! repositories

VESPA: a strong support from

This talk is dedicated to the dear memory of **Dr. Marco Zoppi** (1946-2015).

VESPA (formerly called **VSI**) is an instrumental proposal for **ESS** originally conceived by Marco in 2012. He passed away unexpectedly in June this year.

Many thanks to the audience members for their kind attention to the presentation of *VESPA*...

