FODA-TDMA satellite access scheme
for mixed traffic.
Implementation and testing features
at 2Mbit/sec bit rate.

Final Report

Dr. Erina Ferro
Ing. Nedo Celandroni

CNUCE INSTITUTE
Via S.Maria 36 - 56100 Pisa (Italy)
Tel. +39-50-593246
Telex 500371 CNUCE

CNUCE Report C88-10 April 1988

11.
12.

* % X

The RX file organization in the C language implementation
The interrupt levels in the Down process

The flow-charts of some routines of the Down process
RX_INI

RX_TE

SRB_PREPARE
STREAM_ASSIGNMENT
DATAG_ASSIGNMENT
SCAN_HELLO_MSG
FILL_GODOWN_SRB
FILL_NEWBORN_SRB
BURST_ANALIZE
RB_ANALIZE
SRB_ANALIZE
SRB_NEWBORN_HANDLING
SRB_GODOWN_HANDLING
RX_CLN

RX_NEWBORN
DGREQ_RECEIVE
STREQ_RECEIVE

KoK K K K K K K K K K K XK K K K XK

Second section: the Up process implementation

1.

he Up process areas

WDB
.1 The PREAMBLE field

.1.2 The Control sub-burst field
.3 The window type sub-field
The transm1551on chunk

~ 3 -RBFIX
RBVAR

T .

.1 The SATAB sub-field

.2 The SWTAB sub-field

.3 The status sub-field

4 The action sub-field

DAB, SITEINF, FRAME_AREA
The TXSTAT statistic area

3

°

T
1.
1.
1
1.
1.
1
1.
1.
1.
1.
1
1
1.
1

qc\mmmmm.ﬁwmywuu

Master/slave behaviour

The interface between the Up process and the LAN handling
task

TX window, burst building and DMA I/0 handling time
PI0O messages incoming from the Down process

The transmitting chunks chain

The transmitting coding values

The TX file organization in the C language implementation

9. The interrupt levels in the Up process

xx%¥ The flow charts of some routines of the Up process
TX_TE

TX_CLEAR_WFS

TX_EOB

TX_I_IN

TX_B_IN

TX_S_IN

TXS_SRB

TX_AC

TX_ADD_FRAGMENT

KoK M K K K K XK K

Third section: The fixed rate traffic generator

1. The environment

2. The traffic generator description

3. The used areas

4. Specification of the parameters and their use
5. The differences with the burst generator

6. The diagrams

Appendix A: the Delay Measurement Packet (DMP) and a very
simple burst generator on the UP side of the
FODA system.

Appendix B: some global memory areas & system parameters.

Appendix C: some considerations about the master fault
recovery procedure.

Appendix D: how to build the UP/DOWN processes for the
Motorola 68000 machine using a PDP-11.

Appendix E: the FODA system installation under C-EXEC
Release 2.1b using an IBM PC.

References

Acknowledgements

The author would like to thank all the people involved in the re-
alization of the entire system, i.e. people from the Rutherford
LAB (UK), people from Marconi Reserch Center (U.K.), people from
the Technical University of Graz. A thank to Dr. Mervyn Hine from
the DD Division at Cern for his precious cohordination work among
the partners of the project and with respect to the European Com—

munity.

I.

The hardware environment

A satellite TDMA controller, named "satellite bridge™ has been
designed and developed which consists of four major elements:

a)

b)

c)

d)

The system bus, process, memory and communication support
hardware. This system has been given a flexible design which
allows most of the parameters of a TDMA system to be selected
and altered under process control. The actual transmission and
reception of bursts is handled by the communication support
hardware and requires no intervenction by the process.

This flexible scheme ensures speed of operation with the abil-
ity to dvnamically change the time frame, the number and the
sizes of the transmission windows, the buffering and priority
requirements of the data and the algorithms used in managing
the satellite access scheme.

A most important feature of the design allows the modem and
encoding rate to be changed dynamically during a transmission
burst.

A variable rate digital burst modem which is capable of oper-—
ating at 1, 2, 4 or 8 Mbit/sec inside a b5 Mhz frequency band.
Different modulation schemes are used for different rates in
this design. As the modem is mainly digital (after the first
stage of analogue filteringl, it is possible to implement these
schemes using different tables in ROM (Read Only Memory). The
modem is capable of dvnamically changing its transmission rate.

An encoders/decoder implemented in VLSI and which is specif-
ically adapted to the modulation scheme. The encoding rate may
be changed on each sub-burst within a burst allowing different
BER servives for voice, video or data.

The combination of the modem and the encoder will deal with
most fade conditions and will alsoc allow a wide variety of
BERs, between 10%%-46 and 10%%x-9, for user services.

A satellite access scheme which provides both "stream”™ virtual
circuits of known bandwidth to regular services such as voice
and video and a "datagram® service for bursty traffic from the
distributed computing system. The scheme allows for dynamic
allocations of "stream® channels in a few hundred milliseconds
and for FIFO ordering of *datagram™ +transmissions which
normally allow for the immediate transmission of a datagram

packet.

T

From the

The satellite bridge can be summarized in such a way:

] /1N To the
| satellite] satellite
| |
Vv |
————————— + e
Modem | | Modem |
————————— + o
| |
————————— + S
| Decoder | | Encoder |
S + o +
| [
T + PIO Homm +
| Down process |- | Up process]
| (Motorola 68000)|-——-=--——=-——=——— | (Motorola 68000) |
e + o e — +
| To the /|IN From the
i LAN | LAN
| |
v |

The mentioned satellite access scheme, named FODA-TDMA (Fifo Or-
dered Demand Assignment—Time Division Multiple Access), has been
enterely developed by CNUCE and implemented in C language under
the C-EXEC operating system. This report refers to the 2Mbit/sec
implementation. '

The reading of the CNUCE Report C85-3 is strongly recommended to
well understand the FODA-TDMA acting, the network environment and
the considered types of traffic.

IT. The FODA system architecture on Motorola 68000

The svstem on both the Up and Down machines runs basically under
C-EXEC V2.1b, a Unix like multitasking operating system.

In order tao speed up the operations requiring very quick re-
sponses, they are performed at interrupt level. It means that the
CPU works in system mode, at rather high priority level. It con-
sents to avoid the overhead due to the operating system and the
use of the entire set of machine istructions other than a dynam-
ical management of the CPU priority, according to the operation
under execution.

More precisely, all the operations relative to the satellite ac-
cess method are performed by several processes entered by either
hardware or software interrupts. The other processes called at
interrupt level are the 1line drivers (terminal, Cambridge Ring
interface) of the operating system.

All the other operations, such as the interface versus the opera-
tor, the LAN interface and the messages handling are performed by
3 different tasks named "upuser™, "upring™ and "msghandler™ re-
spectively for the UP process, and "downuser™, "downring™ and
"msghandler™ respectively for the DOWN process.

In this implementation the considered LAN is a Cambridge Ring.

In the currently used version of the C-EXEC operating system,
tasks always work at priority level zero.

The interrupt level processes are in the following listed by de-
creasing priority order.

On the Up machine:

- DMA end of block: the%DMA board has finished the transfer of a
burst on satellite (interrupt level 6.

— PIO read: the transfer of the first word is completed (inter-
rupt level 5).

- Timer: this interrupt occurs once per frame, in a fixed posi-
tion. At the timer interrupt, the timer is reset for the next
frame and its position is computed with respect to the frame
counter (interrupt level 3).

~ Terminal input: commands from the operator are entered (inter-
rupt level 2). The task "upuser™ handles the entered commands.

- LAN packet ready: the LAN handler has finished the read of a
packet which is set up ready to be sent on satellite (interrupt
level 1).

On the Down machine:

10

- DMA end of block: the DMA board has finished the read of a burst
from the satellite (interrupt level.6). The system must begin
to analyse the received data lowing the priority to 3.

-~ Timer: it occurs once per frame in a fixed position Cinterrupt
level 5). In order to keep the timer cycle hanged to the frame
cycle, the timer is set at the timer interrupt and it is tuned
up on receiving of the reference burst. Such a procedure 1is
needed because the frame—-counter is not readable in the Down
machine. '

— RB UW detection: the unique word relative %to the receiving of
a reference burst is detected (interrupt level 4).

- PIO read: the transfer of the first word is completed (inter-
rupt level 3. Unused).

— Terminal input: commands from the operator are entered (inter-
rupt level 2). The task "downuser™" handles the entered com-—

mands.
— LAN read: interrupt level 1. Unused.

Communications between interrupt level processes and C-EXEC tasks
are needed in both ways. They are made possible according to the
following procedures:

— Interrupt level process to C-EXEC task:

the process uses the C-EXEC "ttyin" routine to put a byte 1in
the pipe of the task. After the return from exception (RTE)

instruction the system will alert the receiving task by its
priority.

- C-EXEC task to interrupt level process:

as a C-EXEC task is alwayvs running at system level, it can call
directly routines which are normally executed at idinterrupt
level.

A remark has Yo be pointed out about the PIA interface: the in-
terrupt provoked by the reads of the first word is shared between
the access method process and the C-EXEC driver. The two di-
rections of the fork are taken according to the most
significative bit of that word: the message belongs to the proc-
ess if +the bit is set on (in our implementation, the most
significative bit), otherwise it belongs to the driver.

The PIO write is performed by a routine called at task or at system
level. No interrupt is generated after the transfer of each word
at the writing machine. As the writing provokes an interrupt and
a switching to high priority at the reading machine, it has been
taken care of performing also the write operation at rather high
priority level, in order to make fast enough the message transfer.

11

The FODA software situation can be reassumed in the following
pictures : - L : ‘ . '

y - - A

| satellite | satellite
N/ : |

et + PI0 Ammmmmmmmmmmm e +
[RX EOB interrupt|-——-------—- Fo >| PIO interrupt| .| TX ‘EOB |
lhandler | | | handler | 1| -interrupt- |
e + | dm——>] | | handler I
] | e + | | o e + A mm e}
! I | TIMER interrupt |--—--- [~ + e l
I I | handler I | LAN I | TIMER I
] | o — + | | interrupt | | interrupt |
| I | | | handler] | handler I
| F————— + |] j—————— - + o ——— +
I vV Vv I I | !
|- e — o | |- ————=—== o e ———— |
| LAN | MESSAGE | USER I | LAN | MESSAGE | USER I
| handler} handler |handler | | handler | handler | handler |
| task | task ltask | | task | task | task |
————————— USSR S
l N
_____________________________ +

! |

| I

| |

\Y \

DOWN up

With the terminology "DOWN process™ all the FODA software running
on the down box of the satellite bridge is referred to. "UP proc-
ess™ means the same on the up. box.

12

Y

III. The message handler task ("msghandler™)

Most of the FODA software runs at interrupt level, so it is im-
possible to use the standard routines (errfmt, putfmt, etc.)
furnished by the C language to print messages on terminal.

To solve this problem, the following solution has been adopted.
A new task, named "msghandler™, has been created on both the up
and down processes and its entry point is the routine MSGhd1l{().
The definition of this new task has been added to the UPROC table
(the user process table) defined respectively in +the files
TXCONFIG.C and RXCONFIG.C.

This task is started by means of the "pstart (process number in
UPROC)"™ routine invoked by the user handler task (which is the
only one automatically started by the operating system). The name
of the user handler task is "upuser®" and "downuser™ respectively
for the Up and the Down process, and its functions are defined
respectively in the files UBUl00.C and UBD10O0O.C.

It must be underlined that the user handler task 1is only able to
receive commands from the input terminal and, as conseguence of
these commands, eventually to display information on the output
terminal, but it is not able to display messages sent from the
interrupt level software or from other tasks.

The "msghandler®™ task uses the device "wyake?2" as standard input,
"tty0" as standard output and "ityl" as standard error output,
allowing particular error or statistic messages be printed on a
dedicated terminal ands/or collected in a file.

From the interrupt level software, the msghandler task 1is waken
up by means of the "w2sendchar(char)™ routine, defined in the
WAKE.C file, whose object module is included in the SATCXLIB.68K
system library. This routine uses the "ttyin®™ system routine,
which processes the input character "char" for the specified de-
vice unit. Any process waiting for read from the device specified
in the ttyin routine is activated at the appropriate time.

The MSGhdl() routine performs different functions on the base of
the input character "char", depending on which side it is imple-
mented. This routine is defined in the files TXMSGH.C and
RXMSGH.C respectively for the Up and the Down process.

13

IV. The user handler task

A communication is estabilished between the operator and each side
of the satellite bridge by means of the user handler task, named
"ypuser" and "downuser" respectively on the Up and on the Down
process. The definition of this task is in the files UBU100.C and
UBD100.C respectively.

The logic of this task is the same on both the sides, i.e. gener-—
ally to accept commands from the operator and to reply to them
displaying some areas, but the accepted commands depend on the
side on which the task is running.

The LAN interface task and the message handler task are activated
by this task.

DOWNUSER

On the down side, the operator is requested to enter a valid
physical address for the station. After that, the "downuser™ task
enters in a wait state for commands from the operator.

Available input commands are:

C : to display the rxcb area containing also the statistics.
E : to end the down process.
UPUSER

On the up side, the operator is requested whether or not the test
fixed rate traffic generator (see third part) can be started. If
ves, the traffic parameters are requested. In any case, the traf-
fic generator cannot be started till when the station physical
address is received via PIO0O from the down process. After that,
the task enters a wait state for commands from the operator.
Available input commands are:

A : to change the traffic parameters of the fixed rate traffic
generator ot to start it if not initially selected.

B : +to create bulk bursts with the burst generator.
C : to display the "txstat"™ statistic area.
D = to display the areas containing the definition parameters for

the delay measurement packet (DMP).
E : to end the up process.,
F : to finish the traffic generator.

G : to create bulk + stream + interactive data bursts with the
burst generator.

H : to stop the +transmission of a DMP every "n" (specified)
frames.

14

K : to create bulk + stream data bursts with the burst generator.
I : to create interactive data bursts with the burst generator.

L : to release the stream channels requested by the burst gener-
ator test application and by the Cambridge Ring voice appli-

cation.
M : to create and transmit just one DMP.
N : to create and transmit one DMP every specified "n" frames.
Q : to display the number of data buffers waiting for trans-

mission in the bulk, interactive and stream data queues.

R : to create and send a bulk buffer 4 chunks long.

S : to create stream bursts with the traffic generator.

T : to start the fixed rate traffic generator or to enter the
number of stream channels (after opening the STREQ_AREA) in

the case of the burst generator.

\ : to display the stream channels requested and those really
assigned.

W : to create stream + interactive bursts with the burts genera-
tor.

The DMP, the burts generator and the traffic generator facilities
have been created to test the system performances. They are de-
scribed in the following.

15

16

@

Section I

First section: the Down process implementation

The behaviour of the receiving side (Down process) of the satel-
lite bridge, running the FODA-TDMA satellite access scheme, 1is
documented in this section.

The Down process working areas and some particular behaviours are
described.

The flow-charts of the most significative routines are presented
in order to make easier the understanding of the process and the
reading of the software.

Section I 17

1. The Down process areas

1.1 SCBTAB (Station Control Block TABle)

e e — +
I I
| SCB #0 |
| I
e — — +
I |
| SCB #1 [
| [
e +
| |
| SCB #2 |
I |
o +
o e — — +
I |
| SCB #63 |
I : |
o e — — +

To each “station a station control block

(SCB) is associated which

contains information regarding the particular active station.

SCBTAB is the table of all the SCBs. As the maximum allowed number

of simultaneously active stations is 664,
6% SCBs.

Section I

SCBTAB is constituted by

18

1.2 SCB (Station Control Block — 44 bytes long)

bit-wide

e +

8] status | sch_status
] (bit format) |
e +

8] station physical] scb_phyaddr
] address |
T +

32 | datagram enqueuing | dnextlink
| forward pointer |
e +

32 | datagram enqueuing | dbacklink
| back pointer |
o e — +

32 | stream endqueuing | snextlink
| forward pointer |
S +

32 | stream enqueuing | sbacklink

—— 16 bytes boundary
| back pointer]
e — +

8 | in which frame numb. | drfn
| datag. req. received|
e +

8 | in which frame numb. | srfn
| stream req. received]|
A N e +

16 |] datagram request i backlog
I (backlog) !
o e — +

16 | stream channel | scb_stregq
| request [
o ——— e — +

16] hello messages i helloc
] counter |
S +

8 | interactive traffic | iexpfn
| expexted fragment # |
o e e +

8 | interactive buffer | ibid
| identifier |
o e +

32 | interactive data] ielstart

‘ | incomplete buff.addr|

—————— o e ———————] § by tes boundary

Section I 19

32

32

Section 1

datagram traffic
expected fragment #
datagram buffer
identifier
datagram incomplete
buffer address
stream traffic
expexted fragment #
stream buffer
identifier
stream incomplete
buffer address

dexpfn

dbid

delstart

sexpfn

shid

selstart

20

1.3 ¢cB (channel Control Block- 62 bvtes long)

bit-wide

32

32

lé

32

datagram request
queue head pointer

datagram request
queue tail pointer

datagram request
queue counter

stream request
queue head pointer

DRQ

DRQ

DRQ

head

tail

counter

head

—— 16 bytes

16

32

32

16

stream request
queue counter

new born queue
head pointer

new born queue
tail pointer

new born queue
counter

NBQ

NBQ

counter

head

tail

counter

—— 16 bytes

32

lé6

leé

Section I

max.
lassigned datag.

down station queue
tail pointer

down station queue
counter

coefficient of
proportionality

numb .
slots

of already]

DSQ

tail

counter

cp (%)

ncsmax

boundary

boundary

21

16 | min. numb. of alreadyvl|
|lassigned datag. slots | ncsmin
e +

8 | stream upper bound]
] limit | stubl
o e — +

8 | stream total requests|
| (on & frames) | sttot

—————— i ——————————=~1§6 bytes boundary

8 |[timer interr. counter |
lto prepare the SRB | srbtimer
e +

8 |timer interr. counter |
|to scan the hello msg | hellotimer
e +

8 | number of the last |
| received ref. burst | lastrbn
o e +

8 * alignment *
¥ %
e e +

16 | already assigned]
| datagram slots | alrass
e — +

16 | datagram starting |
| for frames ending #0| dstart(0) x
s +

16 | datagram starting |
| for frames ending #1| dstart(1l) (%x)
P +

16 | datagram starting |
| for frames ending #2]| dstart(2) (%x)
o e +

16 1 datagram starting |
| for frames ending #3| dstart(3) (*x)
S +

(x¥) The coefficient of proportionality is used by the master sta-
tion to calculate the percentage of the datagram requests which
must be allocated.

(%) These areas are initialized with a value of the datagram
starting time computed as no stream allocations present.

Section I 22

an

1.4 RXCB (RX Control Block)

bit-wide
T e +
8 | my current | mycln (%)
i logical number |
o ———— — +
8] my previous] mypln
| logical number]
S +
8 i my counter of the | framen
] frames !
N et +
8 | master or slave I role (xx)
| role]
S +
8 | initial temporary | rcb_status
| status (bit format) |
e +
8 | flag indicating the | refbflag
| receiving of a R.B. |
e +
8 |counter of consecutivel missrbcounter
] missing Ref. Bursts |
e — +
8 * alignment *
% %
T +
800 | STATISTIC | statarea
(100 bytes)]| AREA ' |
I |
| I
e +
(¥) 0 = master station

0 < any slave station <= 66

i

slave role
master role

(xx) 0
1

1

Section I

The statistic area is 50 16-bits words long, each word being a
counter of a particular event. The code number by which the rou-
tine is called is used as word offset inside the “rxcb.statarea®
area to increase the corresponding counter.
The meaningful counters are the following:

RXCB.STATAREA

bit-wide codes/word offset

e +

16 | R.B. with a wrong | WRONG_VERSION (0)
| version number |
e — +

16 | R.B. received with] WRONG_RB (1)
| errors |
e +

16 | station erroneously | ALREADY_ACTIVE (2)
| redeclared active |
e +

16] station erronecusly | DECLARED_DEAD (3)
| declared dead]

—————— fmm—mm——mmm—m—— e —————f—————————-——16 bytes boundary

16 | wrong traffic types | WRONG_TRAFFIC (4)
| |
S +

16 | headers with data | GOOD_HDR_WITH_DATA (5)
| correctly received |
e +

16 | headers received | WRONG_HDR (6)
| with errors I
G +

16 | R.B. correctly | GOOD_RB (7))
| received |
o e — +

16 | control sub-bursts | WRONG_CS (8)
| received with errors |
e — +

16 | headers without data | GOOD_HDR_WITHOUT_DATA (9
| correctly received]
e +

16 | incompleted buffers | INCOMPLETE_BUFFER (10)
I [
S +

16. | buffers enqueued to | ENQUEUED_TO_CR (11)
| the LAN (Camb. Ring) |

—————— o m———————————1§6 bytes boundary

16 | data not for me | DATA_NOT_FOR_ME (12)
I |
e e e e e +

16 | data for me] DATA_FOR_ME (13)
I [
e +

Section I 2%

16 | number of bursts] B_BURST (14)
| of bulk data |
B +

16 | number of bursts of | I_BURST (15)
| interactive data |
e +

16 | number of bursts of | S_BURST (16)
| stream data]
o e e +

16 | bad sub-bursts] BAD_SCB (17)
| counter |
e +

16 | total missed ref. | TOTAL_RBMISSED (18)
| bursts I
e — +

16 | total (rel)starts of | TOTAL_INIDMA (19)
| the DMA |

—————— oo —e e ——=———————=16 bytes boundary

16 | buffers generated by | FRTG_DATA (20)
| the traffic generator]|
e +

16 | HDR wrong len in the | IS_NOT_HDRLEN (21)
| control sub-burst]
o e e e — — +

16 | corrupted "rellen" | INV_HDR_RELLEN (22)
| field in good HDR]
e +

16 | negative datagram | NEGATIVE_MYDALLOC (23)
| allocation I
o e +

Some other counters may be added in the future. In any case;, their
offset values may be found in the RXDEFINE.H file.

Section I 25

1.5 STATEL (STATion ELement)

bit-wide

e +

32 | address of | s _elfwd
] next element |
, T +

8] logical number of | logical
| the station (or 0) |
o e — +

8 | physical address | phyaddr
] of the station]
o +
8 * alignment *
* *
o +

The STATEL blocks are used by the master Down process to be en-
queued in the station new born queue (NBQ) and in the down station

queue (DSQ).
NBQ and DSQ are contained in the CCB area (see 1.3).

Section I 26

1.6 FSQ (Free Station element Queue)

| Head | Tail] Counter

|
|
v |
to———— o + |
| | STATEL | |
| Fomm + I
| |
e — + |
| [
Vv !
F—— o ——— +]
| | STATEL | I
[e + |
! . .
|
I
| .
| |
e + |
! l
Vv |
o - +
| STATEL |
o +

Section I

1.7 Areas for the PIO communications with the Up process

The use of the following areas is described in chapter 6.

1.7.1 RBMYSTA (Reference Burst MY STream Assignment)

bit—-wide

8,8

This area is a sub-field of the SRBINF area (see 1.7.3).

Section I

stream starting slot]|
number (from 1) |
in frames ending |
with 0 |

stream starting slot|
number (from 1) |
in frames ending |
with 1 I

stream starting slot]|
number (from 1) |
in frames ending]
with 2 I

_____________________ +

stream starting slot]
number (from 1)]
in frames ending]
with 3 I

number of stream
slots assigned
in frames ending
with O

number of stream
slots assigned
in frames ending
with 1

number of stream
slots assigned
in frames ending
with 2

number of stream
slots assigned
in frames ending
with 3

28

[

1.7.2 RBMYDA (Reference Burst MY Datagram Allocations)

bit-wide
e e +

8,8 | code=MY_DATAG_ALLOC | word length of the | code, len
| | following data |
N R +

8,8 IR.B. number where thel number of the | dw_frame, dw_count
lallocations were | datagram entries]
e — o — e +

16] Ist datagram assignment starting time] myda(0)
I I
o +

16] 1st datagram assignment length] myda(l)
] (in multiple of 8-bits) |
o e — +

16 | 2nd datagram assignment starting time] myda(2)
[|
o e +

16 | 2nd datagram assignment length | myda(3)
| (in multiple of 8-bits) | .
o e +

16] etc | .
| I .
o o ——————— + .

16 | etc |
I » [
o +
| I
o e e e +

This area is used by the slave Down process to pass to the Up
process its own datagram allocations for the next frame.

Till to a maximum of 10 different datagram allocations are allowed
in a frame to the same station (MYMAXDA) at 2Mbit/sec.

Section I 29

1.7.3 SRBINF (Superframe Reference Burst INFormations)

bit-wide

Sy e +
8 | code = SLAVE_SRB I
| |
e +
8 | word length of the followingl
] data |
B +
8 | reference burst frame number|
| (new superframe) |
e +
8 | number of actual active |
| stations |
Fm—————— e, — e +
8 | next available logical |
| number |
e +
8 | logical number assigned]
] to the station |
o +
8 | current speed used]
| |
Y S +
8 * alignment *
% : %
o e +
16] satellite adjustment |
| (in bytes) I
e +

64 my stream assignment

(8 bytes) (on 4 frames) table

RBMYSTA
(see 1.7.1)

code

len

frame

naas

naln

lognumb

speed

adjustment

rbmysta
area

This area is used by the slave Down process to pass to the Up
process information regarding the received new superframe refer-

ence burst.

Section I

30

T

1.7.4 MDA

bit-wide

8,8

16

16

16

16

16

16

This area
process t

LLOC (Master Datagram ALLOCations)

|code=MASTER_DALLOC | word length of | code, 1len
I [the following area | '

| starting time (in multiple of 8-bits)|
i of the datagram assignment |

e +
e +
! 0 I
l l
e +

is used by the master Down process to pass to the Up

he global datagram allocations for the next frame.

Till to a maximum of 10 different datagram allocations are avail-

able in t

Section I

otal in a frame (MAX_DALLOC) at 2 Mbit/sec.

31

1.7.5 REFBURST (prepared by the master Dowh process)

bit—-wide

8

Section I

code = MASTER_SRB

word length of the following

area

destination station
physical address

control information for the

p

source station
hysical address

source station
logical number

master (bit format)

reference burst length

number of the frame which
BURST refers to

number of frames constituting

this REF.

t

(multiple of 8-bits)

o

DA implementation

he superframe

siaon number of the current

code

len

dest

destsa

source

slogic

control

length

version

framenumb

supframlen

rb_naln

rb_naas

nbphya

32

o

8 | logical number assigned to the | nbln
| new born station |

~~~~~~ o e — e —— ¢~ ——————=] 4 bytes boundary
8 | down station physical address | dsphya
| I
A e ————— +
8 | logical number of the down | dsln
| station ]
A e e +
8 ] logical number which has to be ] hole
! filled (hole) |
e ——————— +
8 ] current speed used ] rb_speed
I |
e +
16 ] master round trip delay ] mrtdoff
| offset (in bits) ]
e +
8 | number of stream assignments | sentries
] rounded to next multiple of 4 |
o e +
8 | number of datagram assignments ] rb_dentries
I I
o e ——————— e m e
8 | station physical address ] beginning
| | of
e + the
8 | station physical address | STREAM
] | assignments
Frm e — e + on
. G
frames
, e e — +
8 | physical address or 0 (rounded ]
| to the next multiple of 4) ]
e e e +

This area is used by the master Down process to pass (at the be-
ginning of a new superframe) to the Up process the new superframe
reference burst to be transmitted. Only the fixed part of the
reference burst, constituted by the first 22 8-bits bytes (from
"dest" to "rb_dentries™ included) plus the stream allocations for
the whole superframe are contained in REFBURST. The datagram al-
locations, which must be passed at every frame, are communicated
to the Up process in the MDALLOC area.

Till to a maximum of 16 stream channels can be allocated per frame.
Therefore, the stream assignments contained in the reference burst
can be at maximum 4 ¥ 16 = 64 bytes long.

Section I 33



1.7.6 CLNAREA (send the Change Logical Number control message)

bit-wide

o e — +

8 ] code = SEND_CLN | code
| I
o o — +

8 | word length of the ] len
] following area ( =1 ) |
e +

8 | spare |
| |
o e — +

8 | new logical number | cln_newlog
I I
e — +

1.7.7 SCLNAREA (stop sending the Change Logical Number control

message)
bit-wide

o i e e — S

8 | code = STOP_CLN | code
| I
o e +

8 ] word length = 0 | len
| I
o e e e — e +

Section I

36

T



1.7.8 SITEINF (SITE INFormation)

bit~-wide

o e — +

8 | code = PHY_SITE ] code
| I
o o e +

8 ] word length of the | len
] following area (2 words)|
o e +

8 | my physical address | phya
[ |
e +

8 | spare | site_spare
| |
o — +

16 | station offset for the | tx_stoff
| slave TX [
o e +

The SITEINF area is filled at the very starting of the down proc-
ess, when the operator is requested to enter the physical address
of the station. The input value is stored in the "thissite® global
area and copied in the "phva"™ field of the SITEINF area. The en-
tered physical address is then <checked for wvalidity in the
"site_tab"™ table, whose entries are as many as found before the

final zero row.

Each entry in site_tab has the following format:

bit-wide

e e +

8 | station physical address | addr
| |
e S +

8 * alignment *
* *
o o +

16 | station offset for | txstoff
| slave TX |
e +

32 | station offset for | rxstoff
[ master RX [
o e e e +

Section I 35



Therefore, the format of the site_tab table is the following:

o o e +
| addr | txstoff ] rxstoff |
o e o —— +
| addr | txstoff ] rxstoff ]
o Y St e +
Formmm e m e e +
| addr | txstoff | rxstoff |
o o o — +
| 0 [ 0 | 0 |
S e R +

Entries can be added simply adding new lines to site_tab, which
is allocated in the RXALLOC.C file.

If the specified station physical address is invalid (not found
in site_tab), the operator is requested to enter again the station
physical address. If valid, the corresponding "rxstoff™ value is
stored in the STATION_OFFSET global field of the down process and
the "txstoff" value is copied in the "tx_stoff"™ field of the
"siteinf"™ area. The whole "siteinf" area is then passed to the
Up process via the PHY_SITE PIO message.

Section I 36

[



1.7.9 FRAME_AREA

This area has been devoted to pass to the Up process,
frame, the current frame number of the Down process for
nization purposes.

bit-wide

e e e +

8 | code = DOWN_FRAME | code
| I
o e e e +

8 | len = 1 word ] len
I I
o —————— e — +

8 | current frame number used | rx_frame
| on the down process |
o e — +

8 | spare (PIO transmission ] rx_spare
| requirement) ]
e e +

Section I

once per
svynchro-

37



1.8 "STATUSY™ BYTE DEFINITIONS

The following is the bit format of the "status” bvte in both the
SCB and the RXCB areas.

AC
DR
ST
CL
SG6
IN

Section I

o

e ss  ee o0

e — e —— o — e m—p————

| x | x | IN ] s6 |l cL | sT | DR | AC |
e — e — e — — e p— e — e — — = —

+7 6 5 4 3 2 1 0-

IS _ACTIVE bit: the station is active;

IS DREQP bit: a datagram request is enqueued in DRQ;

IS _SREQP bit: a stream request is enqueued in SRQ;

IS_CLNP bit: the station is changing its logical number;
IS _STARTING bit: the station is in the starting phase;
IS_INITIALIZING bit: the station decided to start as master
but the sent null reference burst has not yet been received
back. As soon as it will be, this bit will be set off and
the IS_ACTIVE bit will be finally set on;

spare bit.

38



1.9 Format of some areas as received from satellite

1.9.1 The Reference Burst

bit-wide

8

Section I

| destination station |
| physical address |

| source station ]
| physical address ]

] source station ]
| logical number |

| control information for the |
| master (bit format) |

] reference burst length |
| {multiple of 8-bits) |

| version number of the current |

| FODA implementation g
o gy +

| number of the frame which ]
| this REF. BURST refers to |

] number of frames constituting |
| the superframe ]

dest

destsa

source

slogic

control

length

version

framenumb

supframlen

rb_naln

rb_naas

nbphya

39



8 | logical number assigned to the | nbln
] new born station |
o o e +
8 ] down station physical address | dsphya
I I
o +
8 | logical number of the down ] dsln
| station |
o +
8 | logical number which has to be | hole
| filled (hole) I
o e e — e — +
8 ] current speed used ] rb_speed
I |
o +
16 | master round trip delay | mrtdoff
] offset (in bits) i
o — + ,
8 | number of stream assignments ] sentries
| rounded to next multiple of & |
o e e o — e — — +
8 | number of datagram assignments | rb_dentries
I !
e e — N
8 | station physical address | beginning
| ] of
e e e e + the
8 | station physical address ] STREAM
| - | assignments
e e e e e e e e e + on
. 4
. frames
o e — +
8 | physical address or 0 (rounded |
| to the next multiple of &) ]
o o e — e
] datagram | beginning
| allocations | of
. . the
. see 1.7.4 - . DATAGRAM
| I allocations
e e e e e + for next
16 | 0 ] frame
| |
o o o e e +
16 ] frame size ]
| |
e o o o e e +

The format of the datagram allocations is exactly that one de-
scribed in 1.7.6 when the datagram allocations are prepared by the
master station to be transmitted in the reference burst.

Section I 40



1.9.2 The Header (Satellite Header + LAN header)

bit-wide 7+ 0-
o e — e e +
8 | destination physical | dest SATELLITE |
| address | HEADER [
e — + |
8 | destination ] destsa |
] sub-address ] v
o e +
8 | source physical ] source
] address ]
e +
8 | source logical | slogic
| number o
e +
8 | control information | control
| field |
e +
8 | data information | datainf
| field |
N +
8 | data fragmenting | fragment
] information ]
o e +
8 | data buffer | sh_bufid
| identification ]
o ——— +
16 | stream request i sh_stregq
! I
e e +
16 : ] datagram request ] datareq
| |
o ——— +
16 | bvte length of the | datalen
| following data |
e ¥
8 | HDR word length | rellen (%)
| |
o e +
8 | new logical number | newlog
! |
e e e +

(¥) This byte must contain the word 1length of the satellite
header. It is checked to be sure about the reception of just an
header (if in the control sub-burst the word length corresponding
to this sub-burst is 0xC).

Section I 41



+ ______________________
16 ] 1liason label

I

+ ______________________
16 |byte len. of the data

|part of the packet

+ ——————————————————————
16 ] check-sum

I

+ ______________________
16 | packet type

|

e e ————

(%)

ih_length
I

LOCAL NETWOK |
ROUTING |
INFORMATION |
(%) |
v

The 1local area network routing information field is strictly de-

pendent by the local are network

itself.

The one presented

related to the Cambridge Ring local area network.

Section I

is

62



1.9.2.1 The satellite header subfields

The control byte format is the following:

d——t——t et —— o —tm—t——t——F
IN ICc |IH IX IR IX Is ID |
+——t——t——Ft——F——=t——t-—t——+t

+7 6 5 4 3 2 1 0- bit position
where:
X = spare bit.
D = IS_DGREQ bit; datagram request is present (value = 1)
S = IS_STREQ bit; stream request is present (value = 23};
R = IS_RESERVED bit; reserved to indicate a master reference burst

(value = 8);
= IS _HELLO bit; hello control message is present (value = 32);
IS_CLN bit; change logical number control message 1is present
(value = 646);
N = IS_NEWBORN bit; new born control message is present
(value = 128);
X = spare bit.

O
1

The data information field format is the following:

f——t——t—— b —F e p— e —F——+
D IT 1T IT 1w W 1w IWw |
g e e o — — e —
+7 6 5 6 3 2 1 0- bit position

where:
D = data follow the header;

T = type of traffic (3 bits):
000 = undefined
001 = bulk data traffic
010 = undefined
011 = undefined

100 = undefined
101 = undefined
110 = interactive traffic
111 = stream traffic
W = where (in which window subframe) data have been sent (4 bits):

0001 = unused (Ref.Burst subframe)d;

0100 = stream subframe used;
1000 = datagram subframe used;
0010 = control subframe used;

Section I 63



The data fragmenting byte format is the following:

+7 6 5 4 3 2 1 0- bit position
where:
F = fragment number (7 bits);
E = End bit. If on, this is the last fragment of a data buffer.

Section I

+——t——F——t——t——t——F——t-—+
lE |F |IF IF |F IF IF IF |
t——t——t——f——t——t——t——t——t

44

£y



2. Interrupts and routines organization

The Down process is initialized by means of the RX_INI routine
called by the "downuser™ task. It has to handle only two types of
interrupts: the timer interrupt and the satellite EOB interrupt.
In the following, the main routines called at each interrupt event
are listed together with the other sub-routines invoked (tree
structure):

— Initialization phase:
RX_INI routine entered

A) RX_INI = =——————- > ALLGC
INI_FREE_SELQ
INI_REFBURST

INI_CCB
INI_RXCB
INI_RXDMA
rx_tini (assembler routine)
PIA_init

— Timer interrupt:

RX_TE routine entered
B) RX_TE == —=——==—= > RX_RECOVERY

SCAN_HELLO_MSG
SRB_PREPARE

N Aan

DATAG_ASSIGNMENT
SEND_TO_TX --->pia_bout

B.1) SCAN_HELLO_MSG—-==———=~ > DOWN_ENQUEUE
DELINK_REQUEST

B.1) SRB_PREPARE = --—————— > FILL_GODOWN_SRB
FILL_NEWBORN_SRB
STREAM_ASSIGNMENT
DATAG_ASSIGNMENT

SEND_TO_TX

B.2) DOWN_ENQUEUE -~-————- > DEQUEUE
ENQUEUE

B.2) FILL_NEWBORN_SRB--——=—- > DEQUEUE
ENQUEUE

B.2) DATAG_ASSIGNMENT-—-——-- > DELINK_REQUEST

LINK_REQUEST

- Satellite EOB interrupt:
BURST_ANALIZE routine entered

C) BURST_ANALIZE  —-—-==-———- > ENQUEUE_TO_CR

Section 1 45



C.1) RB_ANALIZE  —-=———=—— >
C.1) ANALIZE_CONTROL-——=——~ >
C.1) ENQUEUE_TO_CR -———=——-— >
C.2) SRB_ANALIZE  -—-—7——~ >
C.2) DGREQ_RECEIVE -—-——=—7—~- >
C.2) wakering = —————=—-— >
C.2) RX_NEWBORN  ——————-— >
C.2) STREQ_RECEIVE --——-=-——- >

C.3) SRB_GODOWN_HANDLING-—-->

Section I

RB_ANALIZE
ANALIZE_CONTROL
INI_RXDMA
cut_chunks
UBl2getel

MY_DALLOC_COMPUTE
SEND_TO_TX
SRB_ANALIZE

RX_CLN
DGREQ_RECEIVE
RX_NEWBORN
STREQ_RECEIVE

SEND_TO_TX
UBlégonfree
UBl4ggatend
wakering

MY_SALLOC_COMPUTE
SEND_TO_TX
SRB_NEWBORN_HANDLING
SRB_GODOWN_HANDLING
LINK_REQUEST

ttyin

ENQUEUE
DEQUEUE

LINK_REQUEST
DEL INK_REQUEST

SEND_TO_TX

46

&



3. The Douwn process starting

To start the down process, the operator is requested to enter the
station physical address using the terminal connected to the down
box of the satellite bridge. .

As soon as the value is entered, it is checked for validity and,
if accepted, a PI0 message is sent to the Up process to communicate
the station physical address and the relative tX slave station
offset. This communication between the Down process and the oper-
ator is handled by the "downuser™ task which activates also the
LAN interface handler task "downring". Then the routine RX_INI
is entered.

The "downuser" task from now on remains in a wait state for reading
from terminal other operator commands.

When the RX_INI routine is entered, the following actions are
done:

al) the area of the free station element dqueue (INI_FREE_SELQ);
is initialized;

a?) the REFBURST area is initialized containing the null reference
burst, independently whether or not the station is master;

a3) (where it is possible) the "code™ and "length™ bytes of the
areas normally used by the Down process to pass (via PIA) in-
formation to the Up process are initialized;

aG) the CCB and the RXCB areas are ini
the "role"™ value equal to "slave™ (de
ber (current and previous) equal to
status"™ equal to starting;

ng in RXCB

fault) with logical num-
-1 and the %Ytemporary

ab) the RX DMA is initialized:

a6) the timer for the timer interrupts is initialized;

a7) the PIA interface is initialized;

a8) some global areas are set to zero.

Section I - 47



4. The Down process master/slave behaviour

As soon as a timer interrupt occurs the RX_TE routine is entered.
If the station is in %the starting phase (i.e. the IS _STARTING bit
is on in *the RXCB temporary status), the following actions are
performed:

a) If no reference burst has been received:

al) a counter of the consecutive missing reference bursts is
increased;

a?) as soon as the counter reaches a fixed value, the Down
process assumes to start as master (nothing is on the air).
So, the station logical number is set to zero;

a3) the counter of the missing reference bursts is cleared;
a4) the temporary status in RXCB is cleared;

a5) in +the SCB # 0 (relative to the master station) the
IS_INITIALIZING bit is set on in the "status®™ field, and
the physical address of +the station 1is copied in the

. "phyaddr® field;

a6) the hardware is alerted to start as master;

a7) a null superframe reference burst is sent for transmission
to the Up process.

As soon as the sent null superframe reference burst is received
back by the master station (BURST_ANALIZE routine) and recognized
as a null reference burst (RB_ANALIZE routine), the following
actions are taken:

- in the refburst area, the reference burst is marked as valid;

- the adjustment of the station with respect to the satellite
movements is calculated and written in the refburst area (for
next sending);

- in the status of the SCB number zero the IS_INITIALIZING bit is
set off and the IS _ACTIVE bit is set on to indicate that now the
station is really active.

b) If a reference burst has been received:

bl) some other station is master, so the station must really
start as slave (default). In this case, the information
regarding the received superframe reference burst (SRB) has
already been passed to the Up process (on receiving of SRB,
in the SRBINF area) with the indication that the current
station logical number is -1. The Up process detects that
the logical number must still be assigned by the master to
the station and sends the NEWBORN control message.

Section I 48

k|



5. The change logical number behaviour

The "change logical number™ procedure is entered when a slave
station is declared dead and the station with the current highest
logical number must assume that one of the dead station to fill
the hole created by the dead station in the logical number se-
quence.

Here it must be reminded that in a superframe only one station at
a time can be declared dead.

— Slave Down process detection that its current logical number
must be changed (at the S.R.B. receiving time):

a) the field "hole"™ in the S.R.B. is not zero;

b) its current logical number is equal to the nexf available
logical number -1. It means that the station has the highest
logical number.

- Slave Down process actions:

a) to clear the SCB related to the station having "hole"™ as
logical number (dead station);

b) to set on the IS_CLNP bit in the status of its SCB (related
to its current logical number);

c) to set the current logical number equal to "hole" in the
RXCBs;

'd) to inform the Up process to send the Change Logical Number
control message. The logical number the station is going to
assume (hole) is passed to the Up process;

e) to pass to the Up process the information related to the re-
ceived S.R.B. (SRBINF area), writing the "previous"™ logical
number in the "logical number"™ position.

- Master Down process detection of the presence of the Change
Logical Number control message:

a) in the received satellite header, the IS_CLN bit is on in the
"control®™ field.

- Master Down process actions on receiving of a Change Logical
Number control message:

2) to check whether or not the IS_ACTIVE bit is on in the SCB
related to the "new logical number™ the slave station is go-—
ing to assume. If yes, this 1is a duplicated message and
therefore it is discarded;

b) to copy the SCB relative to the "slog® field (in the satel~-
lite header) in the SCB relative to the ™newlog®™ field;

Section I 49



c) to adjust, eventually, the datagram and stream request
queues;

d) to clear the SCB related to the "slog®™ station (the old log-
ical number of the slave station);

e) to clear the "hole" field in the Superframe Reference Burst
areas

£) to set the "next available logical number™ field equal to
"slog"™ in the Superframe Reference Burst area.

Slave Down process detection that the Change Logical Number
control message has been received by the master station:

a) the IS_CLNP bit is on in the SCB relative to its "previous"™
logical number;

b) the "hole" field in the new received S.R.B. is not equal to
the "current™ logical number.

Slave Down process actions:
a) to copy the "previous™ SCB in the Ycurrent"™ SCB;
b) to clear its "previous"™ SCB;

c) to set the "previous"™ logical number equal to the "current™
logical number value in the RXCB;

d) to set off the CLNP bit in the status of its current SCB;

e) to pass to the Up process the command to stop sending the
Change Logical Number control message.

Section I 50



6. PIO messages from the Down toward the Up process

The following codes are used for the PIO communications from the
Down to the Up processs:

-~MASTER_SRB : if the station is master, the REFBURST area is
passed to the Up process in order to transmit
the superframe reference burst. As REFBURST

does not contain the datagram allocations, which
are contained in the MDALLOC area, two sequen-
tial PIO operations are necessary to communicate
to the Up process the whole superframe reference
burst.

The REFBURST area is passed to the Up process
only every superframe (64 frames) just to reduce
the activity on PIO.

~-MASTER_DALLOC : if the station is master, at every frame the
MDALLOC area is passed to the Up process, con-
taining all the datagranm allocations for next
frame.

-MY_DATAG_ALLOC: when a reference burst is received and datagram
allocations are present for the specific sta-
tion, the RBMYDA area is filled with the
datagram assignment starting times and the as-
signments lengths. Then this area is communi-—
cated to the Up process in order to set up the
datagram transmission windows.

-SLAVE_SRB 3 when a superframe reference burst is received,
the SRBINF area is filled and passed to the Up
process. If no stream allocations are present
on & frames for the specific station, the
RBMYSTA part of SRBINF is filled with zeroes.

—-SEND_CLN : the CLNAREA area is passed to the Up process in
order to send the Ychange logical number™ con-
trol message.

~STOP_CLN : the SCLNAREA area is passed to the Up process
in order to stop sending the Ychange logical
number®™ control message.

-PHY_SITE : the SITEINF area is passed to the Up process in
order to communicate to it the station physical
address and the (slave) tx station offset.

-DELAY_MEASUREMENT: this special code is used to alert the Up
process about the receiving of the Delay Meas-
urement Packet (DMP), a very packet whose use
is to measure the delay of the entire system on
the base of the traffic conditions of the sta-
tion (see Appendix A).

Section 1 51



master or slave, the FRAME_AREA area is passed,
once per frame, to the Up process to maintain
synchronized the frame numbers of the processes.
Command ready but nor used.

~DOWN_FRAME

oo

All the previous areas are passed from the Down to the Up processs
via the PIA interface. The first byte of each area contains the
operation code (code) and the second byvte (len) the word length
of the data to be passed, "code"™ and "len" not being included in
this count. ‘

section I 52



7. The receiving chain from satellite

On receiving from satellite, data are put by the TDMA controller
hardware (of the Down box) in a chain of pre—existing rX chunks
each one having the following structure:

] address of the next | c_ptr (32 bits)
| chunk in the chain |

| | c¢_data
] data part of the ]
| |

chunk (CHUNK_SIZE = 128
. l16-bits words)
e — +
| word length of the data | c_len (16 bits)
| contained in this chunk | (used only for transmission
i + of the data on the LAN)

It must be noted that the RX hardware considers the receiving
chunk 128 words long in total: 2 words for the next chunk address
and 126 words (HARDWARE_DATACKSIZE = 126 1lé-bits words) of data.
The "c_len™ field is not considered by the receiving DMA hardware;
it is filled by the software for the transmission of the data on

the LAN.
The data part of a receiving chunk may contain:
a reference burst (see 1.9.1)
or
an header (see 1.9.2)
or
a frame counter information
or
a control sub-burst
or

user data.

The frame counter information is 4 8-bits bvtes long and it is
filled by the hardware at each satellite DMA end-of-burst (EGCB)

interrupt.

The receiving chunks are organized in a aqueue, called the
FREE_CHUNKS queue, so constituted:

F———— - t———— e +
| o I N~ | T | D |
Fm d———— o o — +
32 16 32 32 bit-wide
where:
H = pointer to the first chunk in the queuej

number of the chunks in the queue;
pointer to the last valid (for writing) chunk in the queue;

N
T

Section I 53




D = pointer to the "dummy" chunk. The dummy chunk is the very last
chunk in the queue and its pointer to the next chunk points
+top itself. Normally it has not to be used (it would mind that
in the queue there are no more usable chunks). If used, the
hardware will rewrite on the same (dummy) chunk the data re-
ceived from the satellite.

The used chunks must be released by means of the cut_chunks rou-
tine which moves the used chunk(s) from the current position to
the bottom of the free_chunks queue. So the chunks are used in a
circular manner.

At each receiving from satellite, the chunk chain is filled by the
hardware:

e ————— + o —m + e ——— + o + e ————
[ F |—=>1 CS |-->]1 RB/H |-->1 H [-—>] D
e ————— + e + e + o —— + e ——————
D + e ————— + e ——— + o ——— +
| D [-=>1 H f==>..0.—=>] H [-=>1 D [-->..
e + e —— + e ———— + o +
where:
F = frame counter chunk;
CS = control sub-burst chunk;
RB = reference burst chunk. It may or may not be present;
H = satellite header chunk;
D = user data chunk. '

In any case, the first chunk after the control sub-burst chunk
will always contain a reference burst or a satellite header. After
a2 satellite header chunk, a user data chunk may or may not be
present (i.e. if the control slot is used, user data may be not

present).

The data part of the control sub-burst chunk has the following
format:

P Fo———— FIR o fom P e +
[ [ v | v | v | | L Jlextral
| N = j—mm - [ eeevooneoesl| === Jword |..eeecen
I | ¢ | ¢ | ¢ | | ¢ | I
pm—— IR g PR e Fm fom— +

0 1 2 3 N N+1

Each field is 16-bits long, with the following meaning:

N = number of the received sub-bursts. N is not inclusive of
the control sub-burst itself;
L/C = length in words of the sub-burst and its coding. L 1s con-

stituted by the less significative 12 bits, C by the most
significative remaining 4 bits.

Section 1 54



The extra word of the control sub-burst has to be checked in order
to verify whether or not the control sub-burst itself has been
correctly received (it must be =zero!). If no, all the filled
chunks must be removed from their current position and put at the
bottom of the free_chunks queue, together with the frame counter
chunk and the control sub-burst chunk themselves.

The minimum length of the control sub-burst is 3 1lé6-bits words.
Therefore, the minimum allowable number of transmitted sub-bursts
is 2. In this case, the control sub-burst field is so filled:

RS fmm——— o Fo—m—— +
| | L 1 lextral
| 2 === | 0 Jfword |....00.. .
! | ¢ | | I
fo———— Fomm o o +
0 1 2 3

which means that the second sub-burst is a dummy one, with 0 length
and coding values.

Dividing the sub-burst word length (L) by the number of words
constituting the data part of a chunk really filled in by the
hardware (HARDWARE_DATACKSIZE), the number of chunks constituting
the sub-burst is computed;,; adding 1 in case that the rest of the
division is not zero. If the receiving is correct, this sub-chain
of chunks is maintained in memory in an appropriate queue (on the
base of the data type) in order to be enqueued to the LAN later
on, when all the data constituting the original buffer will be
received.

If any consistency error is detected; the sub-chain of chunks is
returned to the bottom of the free_chunks queue (by the cut_chunks

routine).

Section I 55



8. Interface between the Down process and the LAN software

When data are received from satellite, buffers are created for the
incoming data and, when completed, they are passed to the the lo-
cal area network handling process ("downring" task).

A buffer is ready to be passed to the LAN when all the possible

fragments constituting the buffer are received.

The type of the incoming data (which fill the "chunks"™) may be:
stream, bulk or interactive. So, three different queues are
internally maintained by the Down process before to enqueue the
completed buffers to the unique queue of the LAN.

When a buffer is ready to be enqueued, the data structure is the
following:

T Sy + T +
| Buffer |-->] | Fom e +
| element | |  Buffer |-->] Header |
e + | Proper | | chunk |
| I Fom +
| |
| | o + oo + R
I I-->] data |-->]| data l..-->] data
| | | chunk | | chunk | | chunk
T T + I + U + T

and the buffer element address is used to Pass the whole structure
to the LAN.

The header chunk linked to the buffer proper must be filled in
keeping the data from the first header transmitted related to the
buffer. This header must contain the fields:

h_port
h_length
h_check
h_head

relative to the data originating LAN.
The task handling the LAN must be alerted about the data incoming
by writing a byte into its pipe (inter-task communication as used

in the C-EXEC operating system). It is done by means of the
"wakering¥ routine.

Section I 56




8.1 The buffer element format

bit-wide

32

32

16

16

32

16

1lé

Section I

______________________ +
forward Pointer |

I
______________________ .*..
backward pointer ]

[
______________________ +
status/port |

|
______________________ +
dest. site or host |

|
______________________ +

pointer to the buffer]|

proper I
______________________ 3
no. of timer counts |
since retry |
______________________ +
no. of retries |
sending to ring |
______________________ +

elfwd

elback

elstat

eldest

bufstart

eltimect

elsendct

57



8.2 The buffer proper format

bit-wide

32

IN

lé

16

16

16

16

32

16

16

32

32

16

32

lé

______________________ +
pointer to the first |
data byte in a chunk |

—————————————————————— +
number of bytes of |

data I

—————————————————————— +

first minipacket ]
I
______________________ +
routing |

[
______________________ +
type of data I

|

______________________ +
destination host ]

I

—————————————————————— +
destination port |

|

—————————————————————— +

______________________ +
checksum value |
passed along |

—————————————————————— +
whether checksum |

was wrong ]

______________________ +

pointer to the header|
chunk ‘ |

pointer to the first |
data chunk |

count of the number !
"of chunks |

pointer to the first |
out chunk I

encoding rate for |
data |

pkt

bvtecount

head

route

tvpe

desthost

destport

buffel

checksum

checked

b_head

b_dat

chunk_count

b_posn

The buffer proper format is the same for the Down and the Up

processes.

ent hardware requirements.

Section I

Only the chunk structure is different, due to differ—

58



When a buffer is get; the buffer element address is returned. It
points to the buffer proper which automatically includes a chunk
for the header.

Section I 59



9. The Timer Interrupts Handling

Every frame a timer interrupt occurs in the Down process.

In normal running (i.e. when the station status 1is ACTIVE), at
every timer interrupt the Down process checks whether or not a
reference burst has been received. If no, a counter of the con-
secutive missed reference bursts is increased and the recovery
routine for master fault is entered as socon as a certain value of
the counter is reached.

On the other hand, every time a reference burst is received, this
counter is cleared and the indication that a reference burst has
been received is set on.

If the station is master and its status is not yet ACTIVE but only
INITIALIZING, the receiving of the null reference burst is wailted
for. In this meantime, the timer interrupts do not provoke any
action, a part the eventual increasing of the counter of the
missed reference bursts.

As soon as +the null reference burst is received by the master
station (the slave station simply throws away the null reference
burst), the status of the station changes from INITIALIZING to
ACTIVE and the valid superframe reference burst is prepared in the
REFBURST area. Its frame number is always equal to zero and in
contains the adjustment of the master station with respect to the
satellite movements.

If the station is master; the superframe reference burst is pre-
pared and passed to the Up process every 64 timer interrupts. Ev—
ery superframe, the scan of the received hello messages is also
executed.

On the other hand, at each timer interrupt (each frame), the
datagram allocations for the next frame are computed and passed
for transmission to the Up process.

Section I 60




10. The scanning of the hello messages

At the beginning of every superframe the master station scans the
hello messages received from those slave stations declared Yac-
tive™ at that moment.

It happens exactly after 63 timer interrupts, when the superframe
reference burst has been already prepared and passed via PIO to
the Up process. The hello counter field (helloc) of every SCB is
incremented by the master process every time something (datagram
request, stream request, hello message itself, etc) is received
from the associated slave station.

If, scanning all the SCBs in SCBTAB, a station is declared active
(the IS_ACTIVE bit is on) but 1its associated hello counter is
zero, the station is assumed to be dead in the meantime. The master
Down process dequeues all the eventual stream and/or datagram re-
quests of the dead station from SRQ and DSQ. The status of the dead
station in the associated SCB is set to Down and a STATEL, con-
taining the dead station physical address and logical number is
enqueued in the DSQ.

On the other hand, if a station is active and its hello counter
is greater than zero, the station is still considered active for
the incoming superframe, but its hello message counter is reset
to zero in order to verifyv whether or not something will be re-
ceived from that slave station in the superframe is going to be-

gin.

If the master station is the only active station, only reference
bursts are in the aer. Therefore, at each receiving of a reference
burst, the hello message counter of the SCB associated to the
master is increased.

When a new slave station becomes active,; the master makes a pres-
ent of a 1 in the hello message counter of the SCB related to the
new born station. This is to avoid that the new slave station be
immediately declared dead when the hello message counters are
scanned if the slave come up too close to the end of the previous
superframe (and it had no time to send anything).

Section I 61



11. The RX files organization in the C language

implementation

The routines

implementing the FODA-TDMA satellite access scheme

on the new satellite bridge Down process are organized in files
in the following way:

RXDEFINE.H

RXSTRUCT.H

RXSTRUCT.X

RXALLOC.C

RXINI.C

RXPIG.C

RXTIMINT.C

Section I

header file; it defines variables used by the
Down process only.

header files; it defines the structures of the
areas used by the Down process.

i+ contains the external references.

it contains the real allocations of the Down
process areas.

it contains all the initialization routines:
RX_INI main initialization program;

INI_FREE_SELQ +to initialize the FSQ queue;
INI_REFBURST to initialize the refburst

: area;
INI_CCB to initialize the CCB area;
INI_RXCB to initialize the RXCB area;

INI_RXDMA to initialize the RX DMA
: interface.

it contains the SEND_TO_TX routine for the PIO
communications with the Up process.

it contains all the routines invoked when a
timer interrupt occurs. They are:

RX_TE entered when a timer inter-—
rupts occurs;

SCAN_HELLO_MSG te scan the received hello
control messages;

SRB_PREPARE to prepare the superframe

reference burst;

FILL_GODOWN_SRB to fill the "godown™ field
in the superframe reference
burst in course of prepara-
tion;

.FILL_NEWBORN_SRB to fill the "newborn®™ field

in the superframe reference
burst in course of prepara-
tion;

STREAM_ASSIGNMENT to compute the stream as-
signments for the entire
superframe;

DATAG_ASSIGNMENT to compute the datagram as-
signments which will be

62



sent with the next super-

frame ref. burst;
RX_RECOVERY entered when the master

station faults down.

RXBURST.C it contains the routines invoked when an End-
Of~-Burst (EOB) interrupt occurs:

BURST_ANALIZE entered at the DMA EOB inter-
rupt to analize the received
burst;

ENQUEUE_TO_CR to enqueue the data received
from satellite to the LAN (in

this implementation a
Cambridge Ring).
GO_IN_TRAP to force a system trap.
RXRBANAL.C it contains all the routines invoked when a

reference burst has been received (after an
EOB interrupt occurred):

RB_ANALIZE to analize the received
reference burst;

SRB_ANALIZE to analize the received
superframe reference
burst;

SRB_NEWBORN_HANDLING to handle the "newborn®
field in the received

superframe reference

) burst;
SRB_GODOWN_HANDLING to handle the "godown™
field in +the received
superframe reference

burst;
MY_DALLQOC_COMPUTE to compute my datagram

allocations on the base
of the datagram allo-
cations in the received
reference burst;

MY_SALLOC_COMPUTE to compute my stream al-
locations for the entire
superframe.

RXCONTROL.C it contains all the routines invoked when a
satellite header has been received (after an
EOB interrupt occurred):

ANALIZE_CONTROL to0o analize the control byte
in the received header;

RX_NEWBORN to handle the received new-
born control message;

RX_CLN to handle the received change
logical number control mes-
sage;

STREQ_RECEIVE to handle the received stream
request;

Section I 63




RXQUEUE.C

RXCONFIG.C

RXMSGH.C

RXASS.S

RXINGBK.S

UBD70.C

UBD100.C

DGREQ_RECEIVE to handle the received
datagram request.

it contains the routines for manipulating the
datagram request dqueue (DRQ), the stream re-
quest queue (SRQ), the new born queue (NBQ)
and the down station queue (DSQ):

LINK_REQUEST to enqueue a request in the
DRQ/SRQ queue}

DELINK_REQUEST to dequeue a request from
the DRQ/SRQ queue; '

DOWN_ENQUEUE to enqueue a station element
in the DSQ;

DEQUEUE to dequeue elements from the
FSQ;

ENQUEUE to enqueue elements to the
FSQ.

it contains the device configuration table and
the user task definition table for the down
process.

the "msghandler™ message handler task for the
down process. Messages sent at interrupt
level are displaved on terminal and/or re-
corded in a special file.

some assembler routines are here defined.

the -assembler file 1linking the down FODA
software to the C-EXEC nucleus.

files containing the "downring® LAN interface
task.

the "downuser"™ task, handling the interface
between the FODA system and the operator.

COMMON FILES

The following files contain definitions or allocations valid for
both the Down and the Up processes and for the software of the
local area network linked to the satellite TDMA controller:

UBCx*® .H

RXTX.H

RXTXALLOC.C

Section I

header files; common definitions of variables
and structures are here defined.

header file; it defines variables and struc-
tures used by both the Down and the Up
processs.

it contains the routine ALLOC used to allocate
in memory common variables.

64



RXTXEXT.X

UB10/30/60.C

UB200.C

uUB210.C

XC10A68K.C

XC11A68K.C

XC13DUMMY.C

UBAL1.S

Section I

it contains common external references.

LAN interface common files.

queues and chunks handling routines.

PIA initialization.

routines relative to the LAN handler.
routines relative to the LAN handler.
routines relative to the LAN handler.

PIO0 handling assembler routines are here de-—
fined:

pia_bin to read from PIO,
pia_bout to write on PIO.

65



12. The interrupt levels in the DOWN process

DMA End Of Burst --———---—--—

TIMER ---

RB UW detection =~==—=—-—-

PI0O read
TERMINAL
LAN read

Section 1

input -———————=-

level
level
level
level
level
level

N W DU N

66









DOWWN Process Initislizstion:

Initialize the
FREE_SELQ areas.
(INI_FREE_SELQ)

N

Initislize the
CCB ares.
(INI_CECB)

N

Initiaglize the
RXCH area.
(INI_RXCB)

N

Initiglize the

HEMAl routine

Initislize "len” and "code” fields of
the sress used for‘ the Pia

REFBURST areas.
(INI_REFBURST)

communications to the UP process

s
Initialize the DMA
(INI_ RXDMA)

Initialize the Timer
far the timer interrupts.

(RX_TINI)

™

Initialize the PlATOr the
communications with the

UF process

-
____.>K @@EMB




Timer Interrupt: RX_TE rouline

Set again the new timer

value.
J
/’
=" Inthe YES

7/

W@ phase’.—P//

Increment the counter
of the consecutive missing
Reference Bursts

RN

- YES
Counter = Maximum

Set off the flag
indicating thst
8 Ref. Burst has
been received

routine

Cs11 the recovery:

RX_RECOYERY

MO

BETIREE
\\_T_'_’/)\

'

MO

Scan also the

~ received hello

messages

Prepare and pass to
TX the complete SRB

N

YES

Increment modulo 64

off)

YES

{superframe)

Prepare and pass 1o TX only

the datagram allocations

/
(bit IS_INITIALIZING

the counter of the timer

interrupts
Counter \
AN
=07?
MO (frame)




e \
yd NO

| . \ Increment the counter of
\/ Have | received X the consecutive missing
a Reference Pz Refe. Bursts
Burst
. N

YES /
(surme sther station Ve
is master. | will start /Counter _ NO
as slave ) Now_START_

AS_MASTER

— —
@?@w

YES —

Clear the indication that
a Reference Huyrst has
been received

Clear the counter of the missi ng
Reference Bursts

N

Set in RXCB:

my current logical number = 0Q;
my previous logical number = Q;
my role = MASTER;

clear the IS. STARTING bitin the
tempurar y status.

N
In my SCB (#0) set on the IS_INITIALIZING
bit (in the status field) and copy my physical
address.
Send to TX the null Superframe \L
Reference Burst, g Alert the hardware to start as
master

[oV]




Superframe Reference Burst preparation: BEE_PEEFPAREE

Any in
the DSQ ?

Handle the “gone down"

station

(FILL_GODOWN_SRB)

|

Any in YES

the NBOQ ?

—

‘Handle the "New Born"

: station

- (FILL_NE'BORN_SRB)

NO

e
/ N

™,

for this superframe and write
are3. (STREAM_ASSIGNMENT

Compute all the stream allocations (on 4 frames)

thern in the refburst

routine)

N

routine

Send to the UP process the
REFBURST area

frame

Compute the datagram

allocations for this

Send the datagram
allocations (MDALLOC
area) to the UP
process

(DATAG_ASSIGNMENT

routine)




STREAM assignment algorithm: STREAM_ASSIGNMENT routine

Stream

: request YES
Clear "sentries™ .
——% ueue (SRQ) BETH
in the refburst d i BETORE
area empty
Get the address of the first
SCB enqueued in SRQ
7
& B

Get the number of the stream requests
contained in this SCB

Copy in the refburst area the station physical
address as many time as the number of the
stream requests contained in this SCB

Inthe refburst area, increment "sentries” of the
value of the stream requests contained in this SCB

(2]




More SCB
enqueued in
the SR( queue

YES

Save in 8 temporary vslue
the real vaiue of "seniries”

rest of

(sentries / 4)
=0

AN

AN

NO

Round "sentries” to
the next muliiple
of 4

N

Clear in the refburst
area the positions from
(temp + 1) o sentries

NV




DSTART = (temp /4) * stresm slot size
+ stream start time

N
7
N

end of the loop

(assignment cycle)

For j=0t0 3 )

N

rest of (temp/4)
<]

CCB.DSTART(j) =
DSTART + stream slot size

CCB.DSTART(J) = DSTART




Datogrom Assignment Algotithm: DATAG_ASSIGNMENT routine

s any 5CB
enqueued in the
DRQ 2

Set to zero the datagram
allocations counter: >
deount = O;

NO

YES

J = Frame nuniber & #0x3

N
Get correct datagr am start time for this frame.
datag.start = dstart (j)

H—

Get address of first SCB enqueued in DRQ

Set R = Backlog; PHY A = Physical address

/\
/
/./
4 A no | i the dat
/ neremsg e datagram
< R=zero ? \ ¢ . " s
. 4 -1 allocation counter :
hS .
AN / (valid backlog value) deount = deount + |
. rd
AN
\. /
\‘__\ v
YES T T
" e )
- e
C W 2 \ i /
~——— ~

8



ASS = (R *¢cp) /100
> (assignment )

J

assignment >= of the
maximum possible?

Set it equal to the maximum
possible:
ASS = cch.nesmax

ASS »= ccb.ncsmax

NV

N

assignment <= of the
minimum possible

ASS < = cch.ncmin

Set ASS equsl o
the minimum:
ASS = ccb.pesmin

NO

Subtract what has been already assigned
insurplus the previcus time:
ASS = ASS - cch.glrass

Clear the location of the slots previously
assigned in surplus’
cch.alrass = 0




ASS.SIZE = PREAMBLE.SIZE + ES = Elementary slot
HEADER.SIZE +
(ASS * ES)

N

ASS.START = DATAG.START

Compute the starting time of the
next gatagram sllocation:
NEXT.START = ASS.START + ASS.SIZE

N

Compute how much it rest for the other
allocations:
DIFF = FRAME.SIZE - NEXT.START

&
N

DIFF > zero YES DIFF <= MINSIZ VES

or
in the ssme deount>=Max_DGALLOC
frame size boundary 2
N
//'
0 the fi .
'ver @ jrame NO g
size boundary NO
N
H]
i

10



& Dequeue the SCB from the
/1 DRQO
ﬂ\\ N
(e o !

s there snother
SCB enqueued in
DR 7

il



/ Y e

et g C fe)
™ Mﬁ Wy
* a0

X
=
2> = e
=y 4 e
L ey fird o
g , a -
fon

or o
[ e =
m....\a tad 0
T s bt i 4 -V e
10
Ly
[ N
P
b
& [ ..
N & =
b = = o
N o< = i
(¥ — - b
Y ™ p
, S
d > m...
-
oy
[
.
e
o &
P =
mh_ [ -
! s < 0
- -

i

e
<

7

3

H
///
r

o

b

4]
i
i
i
i
2

] /

ef

(%]

o

#
T.START
53

#

‘
o
g

T,
Lo
T
1
1

-
i
MES

Fill the
H

12



Compute DIFF interms of Elementary Siots:
7 DIFF.ES=—(DIFF/ES)

ASS = ASS - DIFF ES 7

CCB.ALRASS = ASS

w>
N\
NEXT.START = FRAME SIZE i >
7N
pa
< 7
o N Compute DIFF interms of Elementary Slots:
L S DIFF.ES=+(DIFFKES)
ZIN

ASS = ASS + DIFF £S




Master scaanin

Scan the SCBTAB
tgble

g of the HELLO msg: SCAN_HELLO_MSG routine

4he

status of this
SCB equsl to DOWN
(=0) 7

HELLQO counter
inSCB

Clear the

hello |
counter of \

this SCB

= z2erg

1S__DREQP
bitis onin this

SCB status 7

/

»i  Anslize next
YES SCB

Have | finished
to scan the SCB

?

RETEED

NO

Dequeue this SCB from ‘
the DRQ queue

|

14



AN

IS._SREQP bit
oninthis SCB

Dequeue this
SCB from the
SRO queue

/TN

NO

yd

Enqueue 8 STATEL for this SCB
in the down station queue DSQ

Set the SCB status = DOWN

15

~



“Gone Down~ handling in the Superframe Reference Burst

FILL-B0DOWESREBB routine

Dequeue the first station element (ST ATEL)
from the Down Station Queue (DSQ)

N2
Decrement in the refburst the number of actual
active stations (NAAS)

N
Copy in the refburst the physical address and the

logical number of the dead station

N
Enqueue the released STATE in the Free Station
element Queue (FSQ) :

The down

station logical num- NO (=)

Decrement in the refburst area

the next available logical number

ber = (npext availabl

no hole created
log. number -1)

hole

created
N

Set in the refburst area

hole = logical number of the

(NALMN)

dead station

16

@l



New Born Handling in the SRB: FILLAEWEBARESRE routine

Dequeue the first STATEL from the
New Born queue (NBQ)

l

in the refburst
ares:
hole = O

YES NO N in refburst, new boarn

logical number = hole

N

Clear "hole" in the

AN
refbursri ares

In refburst, set the new born logical
number = next available logical number

N
Increment the next available logical numnber
inthe refburst area

AN

N
Copy in the refburst the physicsl address of N Increment the number of the active
the new born station { from the STATEL) stations (MAAS)

t tati
I the SCB of the new Get the SCB address of the new born station

<_* . and set onthe IS_ACTIYE bitinthe
s born station, set the
relsted status

hello counter = |

&

17



alisys of the Burst recelved from satellite: BURST-ANALIZE routing

Get the address of the control
sub-burst chunk

,Aas it

recetved OK

NO Throw awsy the

whole receiving chain

N = number of received
sub=bursis
FIRST = address of the first chunk

] after the control sub-burst chunk
E L =length of this sub-burst
;\ NO
; N
| look the extra word
| . _ Is this
| YES ;
i /& a Reference
\ Burst
N 5 itis
| SR /" an hesder
(@ \ % ;
—_/L"“" \l/‘ YES
; //\ Dequeue the chunk containin
o N g . ‘
| p YES /" Are there ~ the ref. burst (pointed by

more sub- N/ “first” and return it to the
_\bursts free chunk queue
\\?
NO
N
Free the chunks con-

Return to the free

chunk queue the fra-

YES

me counter, the con-

NI

trol sub-burst and thg

"dummy " chunks

LD = length of
the relative
dats sub-burst

AN
Using LD, set:
LAST = pointer to
last chunk of this
data sub-burst

N
Dequeue all chunks of
this sub-burst, from
“first” to "last” and

taining the frame
counter and the
control sub-burst

return them to the
free chunk queue

18



checking the
control field

Is this
g Ref. Burst

Set again the timer

YES
N
Set on the indicstion that s
itisan Ref. Burst hes been received
NO
header
N\

Clear the counter of the consecutive
missing Ref. Bursts

Anslize the control ) Control‘

. . information

infermation resent N\

(CONTROL_ANALIZE) P Anslize the received Ref. Burst
(RB_ANALIZE)

N
Date NO N Dequeue the chunk containing the
present /1 header (pointed by "first") and
? return it to the free chunk queue
YES
N
LD = Tlength of the relative dats
sub-burst

Using LD, compute how many chunks constitute

this data sub- burst and set: N B

LAST = pointer to the 1ast chunk of this data s

bub-burst

19




o VES Using the logical number of

Are the data the source station, set:
for me 7 S = address of the SCB corresponding
to the source station

Pt
7))

18 this the first
fragment?

:

Fragment

number = 0
?

Get a QEL and fill the buffer
proper with the indication
related to the new data

Y was | waiting another

fragment number?

Throw away the chunk containing
the satellite header

\

increment in the buffer the num-
ber of the enqueued chunks

\l/.

Relative

expected frag.
Numb. =0

YES (1=0)

Is this t:

ND SN ves e
the last AN expected fragment number = 0;
fragment buffer identification = -1

\?

Dequeue from the SCB the already old yed
| Set buffer-id = to the equede iro ¢ aiready old enque

' Luffer 1dentificati buffer proper (and the chunks) snd enqueue 1t
buffer 1dentificstion to C.R. with the "incomplete buffer " indication

N
Enqueue the buffer
increment the expected proper with the linked
fragment number chunks directly to the
Cambridge Ring

Enqueue to the SCB the buffer
proper with the linked chunks

20



Received

frag. number =

expected

Same buffer

identification

?

Enqueue the new data

chunks 1o the correct

buffer proper whose
addr. is in the SCB

NO

Is this the
last fragment

Dequeue the correct buffer
praper from the SCB and
enqueue it to the CR.

Set :
buffer identification = -1;

expecied fragment number = 0

Y YES Same buffer
AN identification
?
NO
<
N
Set : expected fragment number = 0,
buffer identification = -1
N
4 :
Dequeue from the SCB the old buffer
proper and enqueue it to the C.R.
with the "incomplete buffer”
identification
« Set the "missing” code in the N
-1 buffer proper s

Engueue the chunks to
the correct buffer
proper in the SCB

e

AY

Increment the expected

fragment number

21




Analisys of the received Reference Burst: RE_ANALIZE routine

y Increment in my SCB the
es
counter of the hello mesg
(my helloc in SCB#0).
No Z
N

Am | NO

Master?

Is this a YES

RETURN

N
Null R.B.? 7
Compute the adjustment using
the frame counter chunk
valid
. Inerernant
Vers10n L
statiztie In the REFBURST area, set:
-Version = CURRENT VERSION (good REf. Burst);
~copy the adjustment (for the next SRB sending);
RETURN
Set on the indication that now the station is
YES really active. In the SCB (¥0) status:
-set off the IS_INITIALIZING bit; AN
o Analize the Superframe -set on the IS_ACTIVE bit.
(stillin the
N Reference Burst

same super-

( SRB_ANALIZE)
frame)

N

s there an NO
Set last R.B. frame number = v
datagram allocation
current R.B. framenumber
for me ?

Compute my datagram allocations
in RBMYDA area to pass them to the

UP process to set up the TX windows

22



Anelisys ar ihe recerved SKA GEFSRA808 5T regliss

master ?

Am Compute the adjustment and write it

in the refburst area (for the next time)

N

NO

/N

In the status of the SCB corresponding

to my "previous™ logical nhumber

NO /\

the IS_CLNP
biton ?

/N
V4AN
Hole YES
AN
=my current i
(master has not yet received my CLN message)
Tog. numb
7
NO (master received my message)

Copy my “previous” SCB in my “current” SCB Inform the UP process to stop sending the

Change Logical Number control message

Clear my “previous” SCB

Set off the IS_CLNP bit in the status

Set: my previous logical number = my current logical number of my current SCB




Is there VES Analize the new born &
any newborn N station
station (SRB_NEWBORN_HANDLING )
NO N
v
N
N
Is there YES Analize the gone down
any gone down station
station (SRB_GODOWN_HANDLING)
N
NO
ya
N
N\

Compute my stream allocations on 4 frames
and fill the RBMYSTA part of the SRBINF

area

N,
S

Fill the SRBINF area with the information
relative to the superframe (derived from the
received SRB)

~

Pass the SRBINF area to the UP process via Pl0




Analisys ar ihe "Newbarn Stelion” in the SRE:

BREMEWEORM-HANDLING

rawline.

Is it NO

my physical

address

status (in RXCB)?

Am lin

IS_STARTING bit on in my temporary

@T&B&l

Increment
statistic

the starting

phase?

YES

Clear my temporary status in RXCB

Get the address of the SCB associated to the
logical number that the master has assigned

to me

Set on the IS_ACTIVE bit in the status of my SCB

Copy in my SCB my physical address

Set in RXCB:
my previous log.number = my current log. number =

= the new log. number assigned by the master

RETURA

25



Analisys of the “Gone Down” station: SREBODOWH_HANDLIRS
routine

MO

FIEIBR

station declared

YES
i
Get the SCB address of the W ARNING :
dead station | was declared dead, but FATAL BREERE
{ am activellll

Clear the SCB related to the dead

station

My log. number = MALN-17

s my log.
YES v 19

NO

number the
highest?

HOLE t= zero?

N
/
different from O

in my SCB status, seton
the Change Logical Number
bit (IS_CLNP)

in RXCB set:

Inform the UP process to z )
my current logical number = hole

send the Change Logical Num.

control message

26



Receiving of a "Change Logical Number” conirol message (master):

routine

NEWLOG = new logical number

MNote: SLOG = current logical number

Get the address of the SCB related to SLOG:
OLDSCB = address of the "slog" SCB

N

Get the address of the SCB related to NEWLOG -
NEWSCB = address of the "newlog"” SCB

In the NEWSCB status.....

YES
IS_ACTIVE

bit on ? ( duplicated message )

AN
/|

Copy all the locations of the SCB related to SLOG
in the locations of the SCB related to NEWLOG

/@j@’@

ountl

In the next Ref. Burst set
MALN = SLOG

Ve

Clear the "hole™ area in the next
reference burst to be sent

s

Clear 31l the NO

(IS_DRQP bit on in the
oLbsCB "OLDSCB" status? )

RETURE

enqueued
in DRO?

YES

MO

7

Adjust "next" and "back "
datagram pointers so

that NEWSCB results
enqueued in DRQ

N h
(IS_SREQP bit on in the
oLDSCB "OLDSCB" status?)

Jocations in
OLDSCR

1

enqueued
in SRO/ YES
7

b7

Adjust "next” and "back™
stream pointers so that
now NEWSCB results
enqueved in SRO

27




Receiving of a Mew Born request: BRAIBWEGDREE routine

(NBQ empty ?)
YES

Get the number of entries

in the New Born gqueue

N

>

in the received

N

message...

NO

More
N

Phy .addr.

elements in
NBO

= "new born’
(new msq)

(msg already

received) YES

Get the address of the
next element (STATEL)
in NBQ

s
N

Dequeue a station element
(STATEL) from the FSQ

Fill the physical address
field with that one of the

new born station

N

Enqueue the STATEL so
filled at the end of the
New Born Queue (NBQ)

28



HEERITE

NO

MASTER

N

YES

Is this g new
user of the DRQ
queue

Engqueue the correct SCB
in DRQ

Set on the IS_DREQP bit
in the selected SCB status

NO (old user)

N
s

Increment the hello msg
counter in the selected SCB

yd
~

N
Set the "backlog” value in the
SCB equsl to the received request
value

Update "drfn” (the number of the frame
in which the request was received) in the
selected SCB

RETURRA

29




Behaviour on receiving of a stream request:

Am | NO

routine

BTREO-REEEIVE

master

increment the hello counter in the SCB
corresponding to the logical number of

the sending station

Is this &

new stream reques MO

in the Stream Reques?

alread
queue (SRQ) ? v

1 Total stream requests =

Set:

total stream requests -

present )
old stream request (of this user)
>
\&
Is the new
YES
request = zero ?
Total stream
requesis > =
UPPER LIMIT ?
LIMIT N
|
Dequeye the SCB
from the SRQ
N\
|
/N Set off the !S.DREDP‘§
. bit in the SCB status |
Enqueue the SCB corresponding ;
to the logical number of the
sending station in the Stream
Request queue (SRQ)

~i ™,
s

Set on the IS_SREQP bit
in the SCB status

30



Set .

AYAILABLE space for
assignment = UPPER LIMIT -
- total stream requests

Mew request

NO

>= AVAILABLE ?

Set :
N request = AVAILABLE

YES (<=)

N

Set :

Total stream requests = total stream requests + (new) request

Z
N

Update the stream request field in the SCB

corresponding to the sending station

N

Store in this SCB also the number of the frame

in which the stream request was recejved

o

RETURD







Section II

Second section: the UP process implementation

The behaviour of the transmitting side (UP process) of the new
satellite bridge, running the FODA-TDMA satellite access scheme,
is documented in this section.

The UP process working areas and some particular behaviours are
described.

The flow-charts of the most significative routines are presented

in order to make easier the understanding of the process and the
reading of the software.

Section IX . 67



Section I

68



1. The UP process areas

1.1 The Window Descriptor Block (WDB)

bit-wide

e — — +

32 | pointer to previous | last
I WDB |
e — — +

32 | pointer to next WDB | next
| : |
o e +

32 | window type | wdbtype
| |
o +

8 | frame number | frame_nr
| |
e +

8 ] counter of the | chunks_count
| enqueued chunks ]
e e +

16 | window start time | start_time
| (in bytes) |

~~~~~~ fommmm— e m— e m e —— e —————~———-—-16 bytes boundary

16 | available length | av_len
I (in bytes) [
o e e +

16 | +total length | tot_len
| (in bytes) I
N +

32 | pointer to the last | lastchunk
| enqueued chunk |
e — +
| [
| PREAMBLE]
o e +

WDBTAB is the table of the WDBs. They are built in a circular way
(pointer to the next and backpointer to the previous). In the TXCB
area (see following), the pointer to the first used WDB and the
pointer to the first free WDB are maintained. This structure 1is
used in order to save time.

The number of active WDBs is always less than the maximum number
of WDBs in WDBTAB in order to avoid the overlapping between the
head and the tail of the circular queue.

Section II 69

1.1.1 The PREAMBLE field

bit-wide

16

16

32

32

32

32

32

Section II

______________________ +
preamble len]

|

______________________ +
preamble code |

!

______________________ +
pointer. to the |
control sub-burst |
______________________ +
CBTRS field !

|
______________________ +
CBTRS field |

|
______________________ +
______________________ +
CBTRS field |

|
______________________ +
unique word (UW) |

: !
______________________ +

p_1len

p_code

csb_ptr

cbtrs(0)

cbtrs(l)

cbtrs (CBTRS_COUNT=6)

Uw

70

1.1.2 The Control sub

bit-wide
+ —————————
16 | control
] le
+ _________
16 | control
| code
+ —————————
32 | pointer
| data
+ _________
16 | counter
| of sub-b
+ _________
16 | contr
I
+ _________
16 | contr
|
+ —————————
+ _________
16] contr
|
+ —————————

-burst field

The control word format is the following:

e e T e e R e e e e e e e

lciclciciL]

cicieicieieieieieicicl

t—t—t—F—F—F—F—d—t—t—F—t—F—F—F—t—F

15

(@]
H

bottom 12 bits:

—
It

Section II

top 4 bits: sub-

0

burst encoding;

sub-surst word length.

_____________ +
sub-burst | c¢sb_1len
ngth |
_____________ +
sub-burst I csb_code
|
_____________ +
to the first | dsb_ptr
chunk |
————————————— +
of the number| sb_count
ursts |
_____________ +
ol word | cw(D)
I
_____________ "
ol word | cw(l)
|
_____________ +
————————————— +
ol word | cw(MAX_SB_COUNT=32)
|
_____________ +

bits

71

1.1.3 The window type sub-field

bbb gt —f—dmb—d et bt bttt —F—F ==t —F—F =t —F—t—F—F =ttt
lexlxlxlxlxlxlxlxlxlxlxlxlxlxlexIxIxlexlxlxlTlxlxlxlwlDISlCIRl
P SIS TOT TR TSNP R RO U T S S DR ST RPUESE S LB B S B S S S S

31 2 87 65 63210
where:

R = is_RB bit: Reference Burst window (dummy or real);

C = is_CS bit: Control window;

S = is_ST bit: Stream window;

D = is_GD bit: Datagram window;

W = waiting_for_stream bit}

T = is_STARTED bit: window already started;

X = spare bits.

Section I1

72

1.2 The transmission chunk

bit-wide

et +

16 | data word length | tc_len
I |
e +

16 | data coding] tc_code
I |
o +

32 | pointer to next | tc_ptr
| chunk |
T +

|] tc_data

I | (CHUNK_SIZE = 128 words)

] data part of the | Really used only 126 words
] chunk | (HARDWARE_DATACKSIZE)
| |
I |
! |

The format of the transmission chunk is different from that one
of the receiving chunk and the total length could be longer than
130 16-bit words because different are the hardware requirements.
However, for semplicity, the CHUNK_SIZE value has been fixed equal
to the one used in the Down process, and data are really filled
in for HARDWARE_DATCKSIZE words.

The chunk data part can be:

a frame Counter
or

a reference Burst
or

an header
or ,

a control sub-burst
or
user data

section II ' 73

1.3 The chunk containing the fixed part of the

Reference Burst (the RBFIX area)

bit-wide
+ ________________________
16] word length of the
I data
+ ________________________
16 o data coding
I
+ ________________________
32 [pointer to the chunk of
[the R.B. variable part
+ ________________________
|
192 | Fixed part of the
(22 bytes)| Reference Burst
| (see 1.7.5 of the
| Down description)
+ ————————————————————————
|
512 | Max number of stream
(64 bytes)| allocations in the
| superframe
I
+ ________________________
32 i back pointer to the
| window
ek e e o e e o o o e i o o e

Section II

len

code

rbv_ptr

fixed

st_alloc

wdb_ptr

746

1.4 The chunk containing the variable part of the
Reference Burst (the RBVAR area)

bit-wide
it +
16] word length of the | 1len
| data I
o +
16 | data coding | code
[|
o +
32] pointer to the null | rbvc_ptr
I chunk I
ittt +
I |
352 | Max number of datagram]|
(44 bytes)| allocations | dg_alloc

| (plus extra 32 bits) |
| in a frame]

Fach datagram allocation has the following format:

bit-wide
e e
16 Istation physical address]|
] (rigth justified) |
o e +
16 | starting time]
| (in bytes) |
e — +

Section II 75

1.5 The TX Control Block (TXCB)

bit-wide
o e +
8 | next frame number |
| |
o e +
8] active station counter |
|rounded to next mult. of 4 |
e e +
8 | next available logical |
| |
o e e +
8 | my logical number]
I I
o e +
8 | current speed |
| |
o e +
8 * alignment *
* %
e et +
16 | bit adjustment for master |
| |
e e e +
66 | my stream assignment |
(8 bytes) | table |
—————— o e — — —
16 | R.B. start time. |
l (in bytes) . |
o o s e — +
16 | R.B. window length]
] l
o +
16 | control Slot Window]
| start time |
o e +
16 | control Slot Window |
I byte length |
o +
8 | control Slot step !
| |
e +
8 | next frame in which a i
| control slot is assigned |
o e +
8 | available stream channels]|
! |
T +
8 * alignment *
% %
S o e +

Section II

nextframe]

filled
by
PIO

naln |

ac_count

asln

speed

I
I
l
l
I
I
I
I
I
l
l
|
I
I
I

16 bytes boundary

RB_start
RB_len
CS.w_start
CS.w_len
CS_step
CS_nextframe

av_STch_count

76

+

128 [
(16 bytes)|
+

32 !
|

+

32 |
|

+

16 |
I

+

8 |
|

+

8 [
I

+

32 |
|

+

32 |
I

+

8 |
|

+

8 *
B3

-+

Section II

___________________________ +
Stream Window Table |

|
___________________________ +
status field I

|
___________________________ +
action field |

|
___________________________ +
buffer identifier]
counter |
___________________________ +
time to perform the |
traffic update |
___________________________ +
time to update the]
datagram request |
___________________________ +
pointer to first wdb |
|
___________________________ +
pointer to first free |
wdb I
___________________________ +
counter of the outstanding]
wdb |
___________________________ +
alignment *

X

swtab

status

action

bufid

tu_nextframe

DG_nextframe

wdbhead

wdbtail

wdbcount

77

1.5.1 My stream assignment table (SATAB sub-field)

bit-wide

e e +

8 | start slot number | start_slot
| (for frame #0s)]
o e — — +

8 | number of slots | slots_count
I |
e — +

8] start slot number | start_slot
| (for frame #1ls) |
e — +

8 | number of slots | slots_count
[|
o e — +

8 | start slot number | start_slot
| (for frame #2s)]
o —— — — +

8] number of slots | slots_count
| |
o +

8 | start slot number] start_slot
| (for frame #3s) |
e et _

8] number of slots | slots_count
! I
o o o e e — +

Section Il 78

1.5.2 The Stream Window Table (SWTAB sub-field)

bit-wide

e e +

16 | window start time | w_start
] {(window of frames #0s)]
o +

16 | window byte length] w_len
I |
e +

16 | window start time] w_start
[(window of frames #1s)]
o +

16 | window bvte length | w_1len
| [
o +

16] window start time | w_start
| (window of frames #2s)]
e +

16 | window byte length | w_len
I |
o — — +

16] window start time | w_start
] (window of frames #3s) |
o e +

16 | window byte length ! w_len
| : i
gy +

Section II 79

1.5.3 The status sub-field

S S ST S S U QU O U QUG S SRS S R RS R R M
IxIKINIxIxIx|ITIRIFIM]
bbbt bbbt d bt bt —F—F—F—F— b — b=t —F =t —F—+—F

31

8 7 32180

where:

is_master bit: the station is acting as master;
is_SFenable bit: enable superframe;

is_RBenable bit: enable reference burst;
is_txpending bit: transmission pending;

is_NFupdating bit: when off, the next frame number
("nextframe”™ field of the TXCB) has already been updated.

is_rbsent bit: when on, a reference burst EOB has been re-
ceived. It is set off in the tx_te() routine if found on when
a timer interrupt occurs. If found off, the "skipped_rb"
field in the tx statistic area is increased.

spare bit.

Section II 80

1.5.4 The action sub-=field

e e e e e e e s T e s e S e e S T e S e S S R N et o &
IxixIxIxIxIx|IxIRICISIDIHIN]
R e R ik St e T s S S S e s A A S S e S e S A S

31+

5 4 3 2 1 0- bit

where:

N

]

is_sendnewborn bit: the new born control message must be sent
by the slave station;

is_sendhello bit: the hello control message must be sent;
is_sendDGreq bit: the datagram request must be sent;
is_sendSTreq bit: the stream request must be sent;

is_sendcln bit: the change 1logical number control message

must be sent’

is_phyarrived bit: the station physical address and the tx
(slave) station offset have been received via PI0O message.
The traffic generator can be started, if selected.

spare bit.

Section II 81

1.6 DAB, SITEINF and FRAME_AREA

These three areas are filled by PIO on the base of the control
codes MY _DATAG_ALLOC, PHY_SITE and DOWN_FRAME respectively.

They are filled with the datagram allocations for my station, with
the station physical address and relative tx slave station offset
value and with the current frame number used by the down process,

respectively.

DAB
o e +
8 | number of the reference burst]| dw_frame
| containing my allocations |
o e e — e — +
8] number of my datagram entries]| dw_count
| |
o e f e —
16 | 1st datagram starting time | |
[! |
e — +]
16 | relative length (multiple of | |
| 8 bits) I v
b + datab (MAX_DW_COUNT)
16 | 2nd datagram starting time]
| » I
o e +
16 | relative length (multiple of]
1 8 bits3 - I
o o o e — +
16 i . I
| . |
| . |
16 I . |
[. [
o e +

Section II 82

SITEINF
Ry
8 | my physical address
[
e e
8 ! spare
|
o
16 | my tx (slave) station offset
!
o
FRAME__AREA
e
8 | current frame number used
| in the down process
e
8 | spare
|
e

Section II

phya

site_spare

tx_stoff

rx_frame

rx_spare

83

1.7 TXSTAT (TX STATistic block)

The TX statistic block is defined 246 words long. Each word is a

counter,

IN

16

16

16

16

16

16

Section II

a part the very last one.

|[times in which the transmission]|
fof a R.B. has been skipped |

o +
| I
l I
o +
o e +
| l
| |
o e +

| delay (in msec) of the |
| delay measurement .packet |

spurious_pio (0)

duplicated_
window (1)

skipped_rb (2)

delay (23)

84

@

2. Mastersslave behaviour

The Up process always acts as master,; i.e. it always prepares the
window for sending the reference burst at the beginning of each

frame. If it is really master, a real reference burst will be
transmitted in that window (data length different from zero)d); 1if
slave, a dummy reference burst (data length = 0) 1is sent.

At the starting time, the Up process starts sending dummy refer-—
ence bursts, till when PI0O messages from the Down process change
the situation (see chapter 6. of section I).

In fact, if a MASTER_SRB PI0O message is received, the station 1is
automatically declared master, and a real superframe reference
burst (received by the Down process) is transmitted in the refer-—
ence burst window. In this case the logical number assigned to
the station is zero.

If a SLAVE_SRB message is received, the assigned logical number
is checked. If it is negative, the Up process assumes that the
station is slave and its logical number has not vet been assigned
by the master. So the "newborn™ control message is sent in the
control window computed on the base of the next available logical
number (which is preempted by the station).

The confirmation that the master has received the newborn control
message and that a valid logical number has been assigned is de-
tected by the Up process as soon as a positive "my" logical number
is passed from the Down process with another SLAVE_SRB control
message.

Section IIX 85

3. Interfacing between the Up process and the LAN handling task

Three queues

streamq for stream connections
interactq for high priority datagram
bulkaqa for low priority datagram

are used in the FODA system. They are filled by the LAN handler
task on the base of the type of traffic. The UP process gets data
from the queues for transmission on the base of the data priority.

In the queues the buffer elements (el) are enqueued. They, to-
gether with the buffer proper, are described in 8.1 and 8.2 of the
first section.

The following fields in the buffer proper (buf) and in the data
header (hdr) must be filled in by the LAN:

buf -->pkt pointer to the first byte of packet
data;

buf —-->checksum checksum value;

buf —-->bytecount number of bytes in data packet;

buf —-->b_dat pointer to first tx chunk in the chain;

buf -->chunk_count » number of the chunks enqueued to the
buffer;

buf —-->b_code coding level of the buffer;

buf -->b_head pointer to the header chunk C(hdrl;

hdr —-—>tc_code header level coding;

hdr —->tc_1len header length;

hdr —->dest destination (physical) address;

hdr —-=>h_port port label in bridge;

hdr -—->h_length length in bvtes of the basic block;

hdr ——>h_check basic block éhecksum;

hdr —->h_head header tvpe of basic block.

In addition, each chunk in the chunk chain must have the correct
size filled in. The sum of these chunks sizes must agree with both
"hytecount® and "h_length®™.

Section II 86

The various routines on the Up side are activated by calling thenm

directly:
tx_s_in

tx_i_in
tx_b_in

Section II

for stream traffic
for interactive traffic
for bulk traffic.

87

4. TX window, burst building and DMA I/0 handling time

| PIO EOB I I I l
| | R.B. dtg |]
I | +control | |
+stream
n-1 n n+l n+2

At the beginning of the transmission of frame n-1 (dummy or real
DMA EOB), the following windows for frame n are built by the UP
process:

-—-Reference in which a dummy (if slave) or a real (if

master) transmission of a reference burst
will be done;

and, if n less than 64

-—-Control if a control window is allowed in this
frame;
-—Stream if a stream window is allowed in this frame.

At the time PIO EOB, the time allocations for this station (which
have been received in the reference burst "h®) are received from
the Down process. The following windows for the frame n are built:

--Control if RBn is the Superframe Ref. Burst;
~-—Stream if RBn is the Superframe Ref. Burst;
~~Datagram if the station has any datagram allocation

for that frame.
At a suitable time, a little before the beginning of the trans-
mitting frame n, the eventual window in the frame n reserved for

the stream traffic is made available also for the datagram traf-
fic. The chosen time to do that is at the Tx timer interrupt.

The building of the bursts are attempted at the following times:

Section II 88

&

- after any window building;

- at the moment (described above), in which stream windows are
made available for datagram;

— on reception of a buffer from the local area network;

~ at the timer interrupt for building the reference burst (master

onlyJ.

The starting of the I/0 operation on the Tx DMA interface is per-
formed at the DMA EQOB of the previous operation. At this time the
window relative to the already transmitted burst is also dequeued.

I+ is supposed that at least one window is always present and one
DMA operation is enqueued to the interface (dummy reference
burst, if no real data are available).

The only exception is the starting of the reference burst trans-
mission in case of master. In this case the operation may be per-
formed only if the is_RBenable bit is set on in the TXCB status
field. Such a bit is set on only after that the datagram allo-
cations for that frame are received via PIO message from the Down
process. The PI0O message (see chapter 6. of the Down desription)
is any way received, even if no allocation is present. This pro-
cedure is necessary because, at the starting of the DMA process,
the FIFO (646 16-bit words) is filled immediately with the pream-
ble, the control sub-burst and part of the data su-burst, making
impossible any addition of further information to the burst.

Section II 89

5. PIO messages incoming from the Down process

As already described in the chapter 6. of the first section of this
manual, the PI0O communications are always done by the Down proc-
ess toward the Up process.

On the base of the PIO0 code, data are received directly in the
following areas (the PIO code and length not being passed):

MASTER_SRB the RBFIX area is filled with the fixed part
of the received superframe reference burst
(stream allocations included).
The TXM_SRB routine is entered.

MASTER_DALLOC the RBVAR area is filled with the global
datagram allocations.
The TXM_DA routine is entered.

MY_DATAG_ALLOC the DAB area is filled with the datagram
allocations relative +to +the station and
valid for next frame.

The TXS_DA routine is entered.

SLAVE_SRB the first 16 8-bit bytes of the TXCB area
are used to receive the information regard-
ing the received superframe reference
burst.

The TXS_SRB routine is entered.

SEND_CLN the CLN area is filled with the new logical
number the station is going to assume.
The TX_CLN routine is entered.

STOP_CLN no area is filled. The TX_SLN routine 1is
entered just to set off the "is_sendcln®™ bit
in the TXCB action field.

PHY_SITE the SITEINF area is filled with the station
physical address and the tx (slave) station
offset. This two values are alsoc copied in
the "thissite™ and in the "STATION_OFFSET®
global areas respectively.

The TX_SITE routine is entered.

DELAY_MEASUREMENT no area is filled. The TXD_MSR routine 1is
entered. This is a very special routine
written to display the delay of the FODA
system after the reception of the very spe-—
cial delay measurement packet (see Appendix
A).

DOWN_FRAME the FRAME_AREA area is filled with the cur-
rent frame number used in the down process
(synchronization of the frame numbers).
The TXS_DA routine is entered.

Section II 20

6. The transmitting chunks chain

The Up process has three queues (interactive, bulk and stream) to

receive data from the local area network.
When a buffer is enqueued in one of the three queues, the data

structure is the following:

ST + Fom o +

| Buffer [-->| I o +

| element | | Buffer |]-->| Header |

Fmm + | Proper | | chunk |
[| o +
| |
|] Fm + tom + tomm e ———
] |-->] data [|-->| data |..-->] data
| | | chunk | | chunk | | chunk
o + Fmm + e + o m e ———

and the buffer element is enqueued at the end of the selected
queue.

One chunk at a time, starting from the header chunk, is delinked
from the buffer and enqueued to the WDB relative to the transmit-
ting window in which the data will be transferred.

After each enqueuing, the field "tc_ptr™ of the chunk enqueued to
the WDB is loaded in such a way to point to the null chunk (a field

nnnnnnnnnnnn

more chunks.

Before the transmission, the word length field of each chunk must
be increased by 3 because of the TX hardware requirements.

I1f a chunk is too big for the current window (i.e. not all the data
can be transferred), an empty chunk is get and a copy of the header
is prepared for the next data chunks which have to be transferred.
Moreover, another chunk is get and the remaining data part of the
chunk which cannot be transferred is copied. Both the new chunks
are enqueued to the buffer proper.

When all the chunks of a buffer are transferred, the buffer proper
and the buffer element are released. When a buffer proper 1is re-
leased, a chunk is always assumed to be linked in the "b_head"®

position.

Section II 91

7. The transmitting coding values

The coding values required by the Tx hardware and their memory
allocations are the following:

Area containing | Coded | Unencoded | Memory allocations]
the code value | value | value | c=coded; u=unencoded|

I I |
Chunk containing | | ¢ = CSBCHUNK_CODING |
| | |
! | I

the control sub- 0x0004 ——— u = -—---
burst
————————————————— e e e e e — e — — =
Data coding in | | | |
the control sub- | 0x0 | 0x2000 | ¢ = CSBCW_CODING]
burst | I | u = CSBCW_UNCODING |
————————————————— T S e S 1
Data coding in] | 1 ¢ = DCHUNK_CODING]
the chunk | 0x0004 | 0x0 | u = DCHUNK_UNCODING I
————————————————— A e e e e e e e e — e =
Preamble | oxo I -—= | ¢ = PREAMBLE_CODING |
I I l u = --- I
————————————————— e p e — e —— e — - —

Section II 92

8. The Tx file organization in the C language implementation

The routines implementing the FODA-TDMA satellite access scheme
on the Up process are organized in files in the following way:

TX.H header file; it defines variables used by the
Up process only.

TXHARDW.H header file; it contains some definitions
relative to the hardware.

TXTEMPL .H header file; it contains the structures of the
areas defined by the Up process.

TX.X header file; it con{ains external references.

TXALLOC.C it contains the real allocations of the Tx
areas.

TXINI.C it contains the routines used at the initial-

jzation time:

TX_INI : main initialization program;
TXI_WDBQ_INI : to initialize the WDBs circu-
lar queue.

TXPIO.C it contains the routines entered when a PIO
read operation is completed:

TXS_DA on reception of the datagram allo-
cation of this station;

TXS_SRB on reception of the information
relative to the new superframe;

TXM_SRB on reception of the superframe ref-
erence burst to be transmitted;

TXM_DA on reception of the global datagram

allocations to be transmitted in
the reference burst;

TX_CLN on reception of the command to send
the change 1logical number control
message;

TX_SLN on reception of the command to stop
sending the change 1logical number
control message.

TXD_MSR on reception of the DMP on the down
side;

TX_SITE on reception of the information re-—
garding the station physical ad-
dress and the tx slave station
offset.

TX_FRAME on reception of the current frame
number used on the down process.

TXTIM.C it contains all the routines invoked when a
timer interrupt occurs:

Section II 93

TXRING.C

TXDMA.C

TXWINDOW.C

TXBURST.C

Section II

TX_TE entered when a timer inter-
rupt occurs;

TX_CLEAR_WFS to clear the "Ywaiting for
: stream" condition in the
stream window of the current

frame,

it contains the routines invoked when data are
put in the appropriate queue from the LAN (in
this implementation a Cambridge Ring}:

TX_I_1IN entered by +the LAN software when
data are put in the interactive data
queue;

TX_B_IN entered by the LAN software when
data are put in the bulk data queue;

TX_S_IN entered by the LAN software when
data are put in the stream data
queue.

it contains the routines related to the DMA
operations:

TX_EOB entered on a DMA EOB opera-—
tion;

TX_START_DMA entered to start a DMA opera-
tion.

it contains the window building routines:

TX_RBWB to build a reference burst

window;

TX_CSWB to build a control slot
window;

TX_STWB to build a stream window;

TX_WINDOW_SETUP to build a datagram window
of the specified type.

it contains the burst building routines:

TX_RBB to build the reference
burst;

TX_AC to add control dinformation
to a burst;

TX_DGBB to build a datagram burst;

TX_STBB to built a stream burst;

TX_ADD_FRAGMENT +to add a fragment to a burst;

TX_HEADER_CHAIN +to add an header chunk to the
burst chunk chain;

TX_CHAIN_CHUNK to add a data chunk to a
burst chunk chain;

TX_PREPARE_HEADER to prepare a new header for
a subsequent fragment of the
same buffer;

FILL_HDR_FIELDS to fill the fields of a new
header.

94

&

TXCONFIG.C

TXMSGH.C

TXFRTG.C

TXASS.S

TXIN68K.S

UBU70.C

UuBU1l00.C

it contains the device configuration table and
the user task definition table for +the Up
process.

the "msghandler™ message handler task for the
Up process. Messages sent at interrupt level
are displayved on terminal and/or recorded in
a special file.

fixed rate traffic generator for the Up proc-—
ess. Mixed data are generated, on the base

of some operator specifications, simulating
their incoming from the attached LAN.

some assembler routines are here defined.

the assembler file linking the Up FODA soft-
ware to the C-EXEC nucleus.

files containing the M"upring™ LAN interface
task.

the "upuser™ task, handling the interface be-
tween the FODA system and the operator.

COMMON FILES

The following files contain definitions or allocations valid for
both the Down and the Up processes and for the software of the
local area network linked to the satellite TDMA controller:

UBC*.H

RXTX.H

RXTXALLGC.C

RXTXEXT.X

UB10/30/60.C

UB2060.C

UB2106.C

XC10A68K.C

XC1l1A68K.C

XC13DUMMY.C

Section II

header files; common definitions of variables
and structures are here defined.

header file; it defines variables and struc-
tures used by both the Down and the Up

processs.

it contains the routine ALLOC used to allocate
in memory common variables.

it contains common external references.
LAN interface common files.

queues and chunks handling routines.
PIA initialization.

routines relative to the LAN handler.
routines relative to the LAN handler.

routines relative to the LAN handler.

95

UBAL1.S PI0O handling assembler routines are here de-
fined:
pia_bin to read from PIO,
pia_bout to write on PIO.
96

Section IIX

&

9. The interrupt levels in the TX process

Section II

read DMA
PIO read

EOB --—-————

dummy DMA EOB -——----—

TIMER --

TERMINAL
LAN read

level
level
level
level
level
level

NN DU O

97

Section II

98

Fin@ Fif Hrocsssor

FIBI GCHIPLS

Timer Interrupt: T¥_TE routine

_Restart the timer|

f Allow free use of the eventual remaining
space inside next stream window

Is there any Handle the pending action

pending action ? (TX_AC routine invoked)

NO

Set on the is_NFupdating
bit in the txcb status

Is a dummy Get & TX chunk and store

in DUMMY_HDRCHUNK the
chunk address

header chunk available ?

YES

Handle the fixed rate
traffic generator and/or
the DMP sending (if selected)

Timer interrupt: TX_CLEAR_WFS routine

Get the address of the first
wDB '

NO

is_ST bit
onin WDB type
field (i.e. stream

window) ?

Is this WDB
the first free
WDB ?

Get address of next
wDB

YES

window YES

started

Set off the "waiting_for_stream”
bitin the WDB type field

Try to built a adatagram burst \@U@M

(TX_DGBB routine invoked)

The DMA EOB handling: TX_EOB routine

Clear the DMA
interrupt

; Clear the transmission pending
bit "is_txpending™in TXCB status

Get the address of the first WDB

J

Was the No
burst just sent a
Ref.Burst ? they were data

Increment next frame counter

inTXCB

Is time to

Is time to Update it end seton
the "is__sendDGreq”

bit ib TXCB status

update the traffic NO

data?

update the datagram
request?

Update CURRENT TRAFFIC | |

Is there
any data
window

Get next WDB

Start DMA on it

Dequeue the elready used
Ref.Burst wDB

Get address of first free WDB

Use the old WDB to build a Ref.Burst

Start DMA transfer on this old WDB

to transmit the RB

Set on the indication that a RB

Build on it & new Ref.Burst WDB

has been sent and that an hello

msg has to be sent

N

Are we
inside the same
superframe?

YES

tune up next timer interrupt

Try to build a Control Slot window

Try to build a Stream window

Set off the "is..SFenable”
bit in the TXCB status

Build a stream burst, if possible
(TX..STBB routine invoked)

\

N2

Build & detagram burst, if possible
(TX__DGBB routine invoked)

Crerurn X—

Get address of next WDB

V%

Dequeue the used WDB from
the WDB chain and decrement
the WDB counter

Start the DMA operation on the
new WDB

J

Release all the data chunks already
transmitted

Ring interrupt: TX_S_IN routine

Get the address of the last
buffer enqueued in the
stream queue

Try to build a stream burst
(TX_STBB routine invoked)

RETURN

Ring interrupt: TX_I_IN & TX_B_IN routines

Get the adress of the last
buffer enqueued

Compute the size in Elementary
Slots of the incoming buffer.
The coding of the data must be
considered.

Update the INCOMING_TRAFFIC and

the TX_BACKLOG val ues.

They are incremented of the previously
computed humber of E£.5.

Try to build a dategram burst
(TX_DGBB routine invoked)

RETURN

To add control to a burst: T¥_AC routine

Ge’('the address of the first WDB

In wdbtype fiel YES

&)

"waiting_for_sream"” bit
on?

I'n wdbtype fiel
“is_RB" biton ?

Get address of next WDB

too late to
add control

Set priority at
level 3

Address = addr.
of first free WDB ?

RETURN

Preamble N\ Vs | HDRCHUNK = address of the chunk|

containing the header

length 1= 0 2"

an header is not
- avaijlable te biggy
4 back control
information

SHDR = address of the beginning
| of the header data inside the
header ehumk

NO

is it a

NO

control
slot

HDRCHUNK = address of the
spare chunk which will be used
as header chunk

Set DUMMY_HDR =0
to indicate no spare chunks
available at the moment

Set the preamble length different from
Zero and prepare one word in the control
sub-burst for this header

Decrease the WDB available byte length:
wdb ->av.len = (CW_SIZE + HEADER_SIZE)

- | Fi1l the fields “len"
/1 and "code” of the - [

header chunk

Fill "teptr"” field in such a way
to point to the null chunk

Link this header chunk to the WDB
a3 first and only chunk

SHDR = address of the beginning of
the header partinside the header
chunk

Fill the satellite header fields
(FILL_HDR_FIELDS routine invoked)

Is the
"is_sendhello”
bitonin the TXCB

action ?

10

Seton the "IS_HELLO" bitin

(D—

the satellite header control byte

' Set off the "is..éendheﬂo" bitin the
s TXCB action field

NO

the bit "is_sendSTreq" on

Inthe
TXCB action field is

the bit "is_sendDGreq”
on 7?7

Compute the datagram request
(dgreq)

In the

Copuy dgreq in the satellite header
and set on the "IS_DGREQ" bitin
the control field

TXCB action field is

?

Set off the “is_sendDGreq" bit

in the TXCB action field

YES

compute the total
stream request (STREQ_AREA)

Copy the sream request in the
satellite header and set on the
"is_STREQ" bit in the control field

Set off the "is_sendSTreq" bit in the TXCB
action field

A\

11

TXCB action
field is the bit

NO

“is_sendcln”

Set the new logical number
in the "newlog” field of the
satellite header

Set on the IS_CLN bitin the
control field of the satellite
header

action field
"is_sendnewborn”

biton ?

Set on the IS_NEWBORN
bitin the control field
of the satellite header

NO

Set priority at level 3

12

&

Pio interrupt: TXS_SRB routine

Master

“myln” area

Get from the TXCB my current
logical number and put it inthe

x‘ NO-

Set the tx station offset

Compute the dummy Ref.Burst
starting time

YES

In the TXCB action field
seton the "is_sendnewborn” bit

In the TXCB action field set
off the "{s_sendnewborn"”
bit

Preempt my logical number:
myln = next available logical

number

Set "myln" equal to the logical
number that the master has
assigned to me

£

N

NV

N

Compute the control slot parameters

Compute the stream windows in the

/N

superframe >

13

In the txcb st on the Superframe
Enable flag (is_SFenable bit)

Try to built a control
window
(TX_CSWB routine invoked)

TRy to build a stream window
(TX_STWB routine invoked)

Try to build a stream burst
(TX_STBB routine invoked)

RETURN

14

NO

Set default: ~
TRAFFIC_TYPE = BULK_TRAFFIC

Get the buffer address (buf)

To add a fragment: TX_ADD_FRAGMENT routine

Get the address of the header chunk (hdr)

AN

Chain the header chunk to the burst
(TX_HEADER_CHAIN routine invoked)

queue

queue

YES

streamg

TRAFFIC_TYPE =
STREAM_TRAFFIC

interactq
default
WV
TRAFFIC_TYPE =
INTERACTIVE_TRAFFIC
N
7

0

15

Fill the satellite header part of the header
(FILL_HDR_FIELDS routine invoked)

| CHUNKP = address of the first chunk
of data -. : S

Is there
still available space in
this window to contain
also this chunk

YES

Chain the “chunkp” chunk to the burst

Decrement the number of the chunks enqueued
to the buffer

Decrement from the available window (byte) space
the "chunk_size" (i.e. the data byte size * the data
encoding)

Increment the number of the transferred bytes:
out_count = out_count + chunk.size

Is the buffer NO

finished ?

Seton the “IS_END" bit
in the fragment field of shdr

Get 8 new chunk and store the
address in the buffer "b_head"
field

A\

CHUNKP = address
of the next data
chunk in the buffer

window already
started or in any

case is it too

no time to chain more
chunks to the burst

YES

Dequeue the buffer proper
(UB13deq routine invoked)

Release the buffer element
(UB16qonfree routine
invoked)

the burst fragment
size in Elementary
Slots units

Set to zero the window available length

Get a new chunk in which to copy the old satellite
header (tx_prepare_header) and store its address
in the "b_head" field for the next transmission

Update the buffer "b_posn" field to point to the
first data chunk which will be transmitted

next time

17

Set the size of this chunk (chunk_size)

RETURN the burst
fragment size in Elentary
Slots units

Get a new chunk and prepare

it as header of the next
transmission

(TX_PREPARE HEADER routine)

equal to the window available length

Save the pointer to the next chunk

Chain the "chunkp” chunk to the burst (in
the wdb)

Set to zero the window available length

Increment the counter of the transferred bytes:
out_count = out_count + chunk_size

Newchunk = address of a new chunk

Copy in newchunk the
data part which has still

to be transmitted

Store this address in the "b_dat" buffer field and set the data
encoding. Moreover, set the length as difference between the
original length inchunkp and the transmitted part

18

@

Section III

Third section: the‘fixed rate traffic generator

In this section a fixed rate traffic generator is described. It

has been written in C language and the software added on the Up
process in arder to test the access scheme with different traffic

conditions.

Section IIX 99

Section III 100

The fixed rate traffic generator

1. The environment

The term "FODA system"” indicates the satellite bridge TDMA controller
running the FODA-TDMA satellite access scheme.
The TDMA controller is essentially composed by:

= & microprocessor MOTOROLA 68000 having the functions of receijver
from satellite and running the RX part of the FODA access scheme. It is
equiped to send data to the attached local area network (DOWN machine);

= @ microprocessor MOTOROLA 68000 having the functions of sender to
the satellite and running the TX part of the FODA access scheme. It is
equiped to receive data from the attached local area network (UP machine).
Up and Down machines communicate via PIA interface.

- avariable bit rate modem;
~ avariable coding rate codec;

- the FODA-TDMA (Fifo ordered demand assignment-TDMA) satellite
access scheme.

The system is not restricted to fixed point-to-point links, but supports
the special requirements of distributed computing and information
dissemination.

A group of users shares the satellite Channel in time division multiple
access mode on a demand basis: that means that only when packets are to
be sent transmission time slots are actually allocated to a station. The
access to a satellite channel is given by the satellite bridge which
receives packets from individual users by @ LAN and transfers them over
the satellite channel to the addressed user or host.

The system not only provides computer data transmission facilities but
also voice or slow scan or compressed video communications.
These different services have their own ‘quality of service" parameters:

- required bit rate
- maximum tolerable bit error rate

section 1] 1

- priority of the service
- burstiness of the data.

The FODA access scheme has been designed and developed just to support
"stream” traffic (voice and immages) and "datagram” traffic (bulk and
interactive data), dynamically and according to the traffic requirements.
It is based on reservation of the bandwidth and the time is divided into
slots in which the various stations alternate their use of the entire
capacity of the channel. The assignment of the time slots for stream and
for datagram is made dynamically upon demand of the satellite channel
users (earth stations).

The assignment algorithm is different for stream and for datagram slots.
The TDMA controller receives data from the users attached to the
interconnected LANs, in order to send them to the satellite (Up machine).
The data received from the satellite are then sent to the target users,
transferring them via the attached LAN (Down machine).

Next figure shows the FODA system.

The data entering into the Up machine from the LAN are organized in 3
queues, here listed with increasing priority of transfer:

- bulkg for the bulk data,

- Interactq for the interactive data,

- streamq for the stream data.

As it is very difficult to test a so complex system in a real environment, a

traffic generator has been created inside the Up machine to test the
performances of the system in the worst situations of heavy traffic load.

section |11 2

From the
satellite

To the
satellite

HODEM

o

l CODEC

s

Down machine
running the RX part
of the Foda softwa-
re.

PlA UP machine running
mﬁ the TX part of the
FODA software+the

traffic generator.

Ta the LAN

LOCAL

section 111

e

From the LAN

AREA
NETWORK

2. Traffic generator description

A fixed rate traffic generator is here described. The fixed rate is realized
in such a way that, at each timer interrupt on the Up machine, the selected
quantity of data is generated, simulating its incoming from the attached
local area network.

The software of the traffic generator has been written in C language and it
is part of the software running on the Up machine.

It consists of the routines contained in the file TXFRTG . C plus some
instructions added in the UBUT00 . C file (routine UB10fuserhand) and in
the TXTIM . C (routine tx_te) file.

At the initialization phase, the operator is requested whether or not the
traffic generator facility must be started.

If yes, the operator is requested to specify a set of parameters on the base
of which the traffic generator is able to compute the global traffic load
requested in each frame and its distribution among stream, interactive and
bulk data.

Then, for each type of traffic, the buffer of the correct length is generated
and enqueued in the relative queue, simulating the arrival of the data from
the LAN.

The command "t" allows the real start of the traffic generation.

A special command “f" has been introduced to stop the traffic generator.
This command allows an eventual restarting, via another "t" command” of
the traffic generator running with the last specified parameters.

Another new command “a" allows a restarting of the traffic generator
with new parameters (the operator is again requested to specify the
parameters for the traffic generator). The "f" command is included in it.

The software essentially consists in the following set of routines
(contained in the TXFRTG . C file which uses the TXFRTG . H header file):

- TG_PREPARE : it requests the user to specify the parameters necessary
to the traffic generator. The routines TG_INl and TG_COMPUTE are invoked

by this routine.

- TG_INI : it initializes the fields of the frtg areas;

SAN

ection |1l

~ TG_.COMPUTE : on the base of the values of the parameters specified by
the operator, it computes which is the global traffic load and its
distribution among stream, interactive and bulk data in each frame.

The three previous routines are executed at task level, being invoked by
the "upuser” task (UB101userhand routine), normally used to enter dats
from the operator console.

= TG_BURSTS : on the base of the resulting traffic load distribution, it
prepares, at each TX timer interrupt, the required data bursts.

This routine is executed at the TX timer interrupt level, being invoked by
the tx_te routine.

This routine is executed when all the other normal actions (which have to
be done at the timer interrupt) have already been done. As soon as this
routine is entered, the priority is lowered to zero, just to allow to be
interrupted by another timer interrupt. This will happen only if the
execution of the routine is longer than the time in between two

consecutive timer interrupts.

AR R DY

The data generated by the internal traffic generator are flagged as
TEST_DATA (hexadecimal OXffff) using the "h_length” field of the relative
satellite header, in order to be discarded when received by the Down
process.

During the sending of the data generated by the traffic generator, the
Delay Measurement Packet (DMP) may be sent, just once via the operator
command "m" or every a fixed number of frames specified by the operator
on issuing the "n" command.

The DMP is used to measure the delay of the FODA system on the base of
the traffic load. The delay is displayed (in msec) on the output terminal.

section |11 S

3. The used areas
frtg is an area containing the following information:

section 11l

I channel throughput in percentage

I
!

of the bit rate

stream data as percentage of the
channel

bulk data as percentage of the
channel

interactive data as percentage of
the channel

delay measurement packet bit
status

O-

| thpt_perc

| str_perc

I bulk_perc

I int_perc

| tgs_patt

| tgi_patt

| tgb_patt

[tgs_code

I tgi_code

[tgb_code

| tg—status

| dmp_status

The tg_st

atus field is so compound:

+15 3 2 1 o0-
DIC|B| A

A IS _TGSTARTED (bit O; value = 1); traffic generator is started:;

B 1S_TGSELECTED (bit I; value = 2); traffic generator facility
selected;

C IS_TGROUTINE (bit 2; value = 4); at the TX timer interrupt, the
routine to create the bursts (TG_BURSTS) must be invoked.

D

1S_TGRESTARTABLE (bit 3; value = 8); the traffic generator can
be restarted. '

The dmp_statuys field is so compound:

15+ 0-
e +
e T N
T e e +
A is_DMPSEND (bit 0;value = 1): send g delay measurement packet
every DMP_INTERVAL frames, as defined by the operator
entering the "n" command.
section |1 7

€

Other used areas are:

tg_bchunks : 8 bits; number of chunks constituting the bulk buffer;
tg_ichunks : 8 bits; number of chunks constituting the interactive buffer;
tg_schunks : 8 bits; number of chunks constituting the stream buffer;
tg_bel : 32 bits; address of the buffer element for the bulk data;

tg—iel : 32 bits; address of the buffer element for the interactive data;
tg_sel : 32 bits; address of the buffer element for the stream data;

tg_bwlength : 16 bits; number of 16-bits words constituting each bulk
chunk;

tg_iwlength : 16 bits; number of 16-bits words constituting each
interactive chunk;

tg—_swlength : 16 bits; number of 16-bits words constituting each stream
chunk;

FRTG_.STREQ : 16 bits; it contains the number of requested stream
channels.

section [l

3.1

In the TG_INI routine, the fields of the frtg area are initialized with the
following values:

frig.
frig.
frtg.
frtg.
frtg.
frtg.
fritg.
frtg.
frig.

frig

thpt_perc
str_perc
bulk_perc
int_perc
tgs—_patt
tgb_patt
tgi_patt
tgs_code
tgb_code
tgi_code

STREQ_AREA

section |1|

Default values

I

O OO

0
OXAAAA
0xBBBB
O0xCCCC

O A MO

4. Specification of the input parameters and their use

[f the traffic generator facility is selected, the operator is requested to
specify the:

- stream traffic as percentage of the channel,
- bulk traffic as percentage of the channel,
- interactive traffic as percentage of the channel.

At this point, the required throughput is computed as sum of the required
stream + bulk + interactive percentages and it is displayed on the monitor.

If the sum of the entered percentages is greater than 100, the frtg area
is re-initialized and the operator is requested again to enter the correct
percentages.

The input specifications continue with the requests of the:

- coding of the stream data;

- coding of the interactive data;

- coding of the bulk data.

For these last three parameters the default is displayed, which is assumed
if a carriage return is entered.

If the word pattern of the "stream” or "bulk” or "interactive” chunks has to
be changed, the operator must use the ope command to open the frtg area
(the address is in the TXSYS . MAP file) and change the required word
pattern(s) before to issue the go 8000 command to start the UP process.

On the base of the specified values, the following is computed
(TG_COMPUTE routine) for each frame:

- how many bytes have to be transmitted for each type of traffic.
The data coding is considered in this computation:

section 11l 10

data percentage * speed * 1024 Mbit/sec
bytes =

100 * 8 ¥ numb. of frames in 1 sec * coding

- how many chunks constitute the buffer, for each type of traffic:

bytes
chunks = rounded to next integer;
chunk size in bytes

- how many words constitute each chunk, for each type of traffic:

bytes
words = rounded to next integer;
chunks * 2

- the required stream channels (on 4 frames):

stream bytes * 4
channels = rounded to next integer;
stream channel byte size

section 111 11

5. Differences with the burst generator

In Appendix A a very simple burst generator is described.

Also in the traffic generator case, the selection of the facility is entered
via the UB10luserhand routine and the user is requested to specify the
parameters for the traffic load.

While the burst generator is based on that each time the operator enters a
particular command a burst is generated and entered into the system via
enqueuing the buffer in the appropriate queue, the fixed rate traffic
generator, once specified the traffic load characteristics, enqueues at
each TX timer interrupt the required buffers in the correct queues without
any other command by the operator.

In the traffic generator case, the traffic generation can be started and
stopped in any moment (sequence of "t" and "f" commands) and also a new
generation can be dynamically started with new parameters ("a"
command).

Moreover, also the commands of the burst generator can be in any case
used. Very important is the use of the "m" and the "n" commands, used
to create and to enter into the system the delay measurement packet in
order to measure the delay of the system.

section [l 12

6. The diagrams

6.1 Traffic generator facility selection

NO facility

selected ?

/N

YES TG_PREP ARE ()

Initialize the fields of the frtg area (TG_INI)

The operator is requested to enter the input
parameters. The required throughput is displayed

TG_COMPUTE()

On the base of the parameters specified by the user,

compute for each frame:

-how many bytes, for each type of traffic, have to be
trasmitied;

-how many chunks constitute the buffer for each type
of traffic;

-the word length of each chunk for each type of traffic;

-the number of requested stream channels.

Set on the indication that the traffic generator facility
has been selected:
is_TGSELECTED bit on

> STANDARD
INITIALIZATION

section [1] 13

6.2 User Commands

When everything is ready to create the buffers, nothing will happen till
that a "t" command is issued. This command can be used also by the
burst generator to enter the system the stream channel requests. If the
traffic generator facility has been selected, the "t" command acts to
indicate that, at each tx timer interrupt, some buffers have to be created.
Reassuming, to really start the traffic generator, the "t command
must be issued.

When the operator wants to stop the traffic generator, the "f* command
must be entered. In any case, it allows an eventual restarting of the
traffic generation, with the same last specified values, by means of
another "t" command.

If the operator wants to restart the traffic generator with new
parameters or simply he wants to modify the input parameters, the "a"
command must be issued. Better to use after a "f" command".

[f at the beginning the operator replied "n" (no) to the request whether or
not the traffic generator facility was required, he can modify his idea
entering the "a" command.

section I11 14

set on the indication that the traffic
f command
generator can be restartable

facilit Set on the indication that
t command y at each timer interrupt the
selected ?)
traffic generator has to create

the correct buffers:
is_TGROUTINE bit on

NO

A
N

FRTG_STREQ contains the number of stream channels

requested by the fixed rate traffic generator.

Enter this stream request into the system:
is_sendSTreq bit on in the txcb.action field

3 tat £inald nf thn £
Clear the status field of the f

rigand

(is_TGRESTARTABLE bit on).

(Re)-start the traffic generator asking
new parameters to the operator.

section Il

15

6.3 Actions at the TX timer interrupt

At the end, after the normal work, the "tx_te" routine checks whether or
not the internal traffic generation has to be started.

If yes (is_TGROUTINE bit on in frtg.tg_status) but if the is_TGSTARTED bit
is also on in the same status field, a message is printed on the output
terminal and the traffic generator is not started because the previous
bursts preparation has not yet finished.

If the "is_TGSTARTED" bit is off, the traffic generation can start and the
TG_BURSTS routine is invoked. It creates the stream buffer, the
interactive buffer and the bulk buffer (if the relative type of traffic was
selected) and puts them into the relative queues simulating the arrival of
the data from the attached local area network.

Before to check whether or not the traffic generator is requested, a check
is made to verify whether or not the DMP packet has to be sent every
DMP_INTERVAL frames. If yes, a special DMP counter is increased till its
value reaches DMP_INTERVAL. When equal, a DMP is created and put into
the bulk queue. The delay of the FODA system will be displayed on the
output terminal when the down process receives the DMP packet and alerts
the up process about this receiving.

The following diagrams refer only to the fixed rate traffic generator case.

section |1l 16

1s_TGROUTINE "\ O

RETURN

biton?

previous

tréffic generator not
requested to start

traffic qener.
alread? finished?
(isS_TGSTARTED
bit off)

NO Warning message

> to operator —‘>

?

YES TG_BURSTS()

AN

Set on the indication that the traffic generator
has started: is_TGSTARTED bit on in frtg status

stram traffic
required?

Create the stream buffer
composed by:

-tg—schunks number of chunks;
-tg—swlength words in each chunk_
-frtg.s_patt as word data pattern;
~frtg.s_code as data coding

NO

4
N

Enqueue the data in the streamq and
alert the Up processor that data have
entered into this queue

section I

17

Create the interactive buffer
composed by:

-tg_ichunks number of chunks;
-tg_iwlengths words in-each chunk;
-frtg.i_patt as data pattern;
-frtg.i—code as data coding.

Interactive
traffic 2

NO

Enqueue the buffer to the interactq
and alert the process that data have
entered into this queue

N

bulk Create the bulk buffer composed by:
-tg_bchunks number of chunks;
traffic YES -tg_bwlength words in each chunk;
required? -frtg.b_patt as word pattern;
-frtg.b_code as data coding

Engqueue the buffer to the bulkq queue
and alert the Up process that data have
entered into this queue

NO

N

Set off the indication that the traffic generator
is working:
isS_TGSTARTED bit of f

RETURN

section 111 : ; ' 18

APPENDICES

APPENDIX A

A Delay Measurement Packet (DMP) and a very SImDIe burst
generator on the Up process.

All the operator commands are handled on the Up process by the “upuser”
task (UB101userhand routine defined in the UBU100.C file) which, after the
initialization of some areas, enters in a wait state for reading user
commands from the input terminal.

This task can receive commands from the input terminal and can write on
the output terminal. It can invoke interrupt level routines but the
viceversa is not possible.

In order to measure the delay of the FODA system, a special packet, named
Delay Measurement Packet (DMP), has been created. It uses the
following memory areas, allocated on the Up process, which can be
dynamically opened and changed:

m_size : word length of the chunk containing the data of the

AMD -
v,

m_pattern : byte pattern of the DMP.

Moreover, a very simple burst generator has been implemented, which
uses the following areas allocated on the Up process:

b—ckn :number of chunks constituting the bulk burst;
b_wlength : wordlength of each bulk chunk;

b_pattern : byte pattern of each bulk chunk;

s..ckn : number of chunks for the stream burst;
s—wlength : wordlength of each stream chunk;
s_.pattern : byte pattern of each stream chunk;

i—ckn : humber of chunks for the interactive burst;

A-2

i_wlength : wordlength of each interactive chunk;

i_pattern : byte pattern of ea'ch interactive chunk.

A) Typing "m", a DMP is built. Memory can be opened at the Tx locations
“m_size” and "'m_pattern” to decide respectively the word length and
the byte pattern of the delay measurement packet.

The DMP will occupy in any case not more than one chunk.

The satellite header of the delay measurement packet contains the
special value “DMP_TRAFFIC" in the destination sub-address byte
(destsa) in order to be easily recognized by the RX software when the
packet will be received. At the moment the destsa byte is unused;
therefore it can be used for test purposes without introducing heavy

modifications in the standard software.

After the DMP packet has been built, it is enqueued to the bulk queue of
the TX processor (UB14qatend routine invoked). The global TX fields
m_area(0), m_area(1), m_area(2) and m_area(3) are respectively
filled with the frame counter value, the frame number value, the current
backlog value and the incoming traffic value stored on the TX side of the
satellite bridge after that the enqueuing of the DMP packet to the bulk
queue has already been done.

Then the tX_b_in routine is invoked, simulating the arriving from the LAN
into the TX bulk queue of a packet created to calculate the delay time in
between the enqueuing to TX of a packet and its new enqueuing to the LAN

on the RX side.

After the trransmission on satellite, the Down process recognizes the DMP
packet on the base of the particular value contained in the "destsa” byte of
the satemte header.

After the enqueuing of the DMP to the LAN handler task and the clearing of
the destsa byte of the satellite header, a one word PIO message

DELAY_MEASUREMENT is issued versus the Up process.

On receiving of this Pio message on the TX side, the txd_msr routine is
entered and the global areas m_area(4) and m_area(5) are filled
respectively with the frame counter and the frame number relative to the
DMP enqueuing to the LAN by the Down process but stored with the same
TX clock.

By entering a "d® command , the first 6 allocations of m_area are

displayed on the terminal connected with the Up processor.

Reassuming :
m_area(0) <----- TX frame counter at the Tx time;
m_area(1l) ¢<----- Tx frame number at the TxX time;
m_area(2) <----- TX backlog at the Tx time;
m_area(3) <----- TX incoming traffic at the Tx time;
m_area(4) ¢----- Tx frame counter at the Rx time;
m_area(5) ¢----- Tx frame number at the Rx time.

The DMP is always sent with destination physical address equal to that
one of the sending station. The DMP word length is 2 words in order to not

disturb the real traffic.

It is also possible to send a DMP}everg a certain number of frames chosen
by the operator by entering the "n" command. The frame interval is
requested and the input value is stored in the DMP_INTERVAL global
memory area. The command "h" is furnished to stop the effect of the "n" -

command.

B) Typing "b", a buffer of "b_ckn” chunks, each "b_wlength” words long
and with pattern equal to "b_pattern® is created and enqueued to the
bulk queue of the Up process. Then the tX_b_in routine is entered to

simulate the incoming from the LAN of a burst of bulk data.

C) Typing "s” , a buffer of “s_ckn" chunks, each "s_wlength" words
long and with pattern equal to "s_pattern” is created and enqueued to the
stream queue of the Up process. The BG_STREQ global area contains the
stream request for this type of test application.

Then the tXx_s_in routine is entered to simulate the incoming from the

LAN of a burst of stream data.

D) Typing "i", a buffer of "i_ckn” chunks, each "i_wlength® words long
and with pattern equal to "i_pattern” is created and enqueued to the
interactive queue of the Up

process. Then the tx_i_.in routine is entered to simulate the incoming

from the LAN of a burst of stream data.

E) Typing "g", a bulk burst + a stream burst + an interactive burst are

generated (b+s+i).

F) Typing "k", a bulk burst + a stream burst are generated (b+s).

G) Typing "w", an interactive burst + a stream burst are generated (i+s).

AppendiXx B

Some global memory areas

Here only some global memory locations are presented. They can be opened

on the Motorola 68000 by means of the ope " memory address”

and their value changed.

DRQ
SRQ

FSQ
SELQ
SCBTAB
NBQ
DSQ
CCB
RXCB
SRBINF

RBMYDA
MDALLOC

REFBURST
CLNAREA
SCLNAREA

NSB
STATION_OFFSET
MAX_RB_MISSED

NOW_START_AS_MASTER

command

RX areas

datagram request queue

stream request queue

free station element queue

station element queue

table of the SCBs

new born stations queue

dowh station queue

channel control block

RX control block

information regarding the received
superframe reference burst

my datagram allocations as received in the
reference burst

the datagram allocations for all the active
stations

reference burst area

“change logical number” area

“stop sending the change logical number”
number of received sub-bursts

master station offset

max number of allowed missed reference
bursts

number of interrupt timer without receiving
reference bursts after which the station can
start as master.

A-7

st_off
cln

sin.
rbfix

txchb

dab

wdbtab
INCOMING_TRAFFIC
CURRENT_TRAFFIC
TX_.BACKLOG
null_chunk
AFTIME

ACTIME

CCTIME

CBTRS
PREAMBLE_CODING
CSBCHUNK_.CODING

CSBCW_CODING
CSBCW_UNCODING
DCHUNK_CODING
DCHUNK_UNCODING
FRTG_STREQ
BG_STREQ
VOICE_STREQ

STREQ_AREA

IX AREAS

current station offset

new logical number

dummy area

fixed part of the reference burst (datagram
allocations not included)

TX control block

datagram allocation block

window descriptor blocks table

the traffic incoming from the LAN

the current traffic

the backlog

address of an area containing zero

time to add a fragment

time to add a control data

time to chain a chunk

bit sequence for clock recovery

coding of the preamble

coding of the chunk containing the control
sub-burst

coded data control word

unencoded data control word

coding of the chunk containing coded data
coding of the chunk containing unencoded data
stream channels requested by the fixed rate
traffic generator test application

stream channels requested by the burst
generator test application

stream channels requested by the Cambridge
Ring voice application

total of the stream channels requested by all
the stream applications running in this
station.

RX/TX COMMON AREAS & FODA SYSTEM PARAMET-ERS

GT_SIZE
IF_GAP_SIZE
CSB_SIZE
NCTL_SLOT
CTL_DI |
CURRENTSPEED
ES
HALF_RATE
FULL_RATE

SFL
HEADER_CODING
RB_CODING
STREAM_DI
FRAME_SIZE
CBTRS_SIZE

UW_SIZE
HEADER_SIZE
PRB_SIZE
PRB_LEN

BURST_OVERHEAD

RB_OCCUPANCY

RB_SIZE

RB_SLOT_SIZE

CTL_SLOT-SIZE

CB_SIZE

CTL_SF_SIZE

RB_START_TIME

CTL_.START_TIME

byte guard time between bursts = 10 bytes

inter frames gap (in bytes) = 255 bytes

control sub-burst minimum byte length = 16 bytes
number of control slots in a frame = 4

bytes for the small data in the control slot = 64
megabytes per second = 2

bytes constituting an elementary slot = 16

1/2 coding rate

unencoded rate

number of frames constituting a superframe = 64
coding for the satellite header

coding for the reference burst

bytes for each stream channel = 256

bytes in a frame =

bytes for the CBTRS (Clock Bit Timing Recovery
Signal) = 36

bytes for the unique word = 4

bytes for the satellite header after coding
bytes for the preamble (CBTRS + UW)

word length +3 (hardware requirement) of the
preamble

bytes overhead of a burst (6T_SIZE + CSB_SIZE +
PRB+SIZE) = 66

byte occupancy of the reference burst after the
coding = 140

byte used to send a reference burst = PRB_SIZE +
RB_OCCUPANCY

byte size of the slot used to send the reference
burst

bytes size of each control slot. It must be
>=|IF_GAP_SIZE and <=BURST OVERHEAD +
HEADER_SIZE + CTL_DI

how many bytes can be sent in each control slot
= PRB_SIZE + CSB_SIZE + HEADER_SIZE + CTL_DI
bytes reserved for the whole control sub-frame
=4 * CTL_SLOT-SIZE

after how many bytes the reference burst starts
= [F_.GAP_SIZE

after how many bytes the control sub-frame

A-9

STR_START_TIME

STR_SLOT_SIZE

CW_SIZE
AMOUNT

ASS_MIN_SIZE
WDB_OVERHEAD
HDRLEN
RB_STRUC_SIZE

RBFIX_WLEN

starts = RB_LSTART_TIME + RB_SLOT_SIZE

after how many bytes the stream sub-frame
starts = CTL_START_-TIME + CTL_SF_SIZE

byte dimension of a stream slot = BURST_OVERHEAD
+ HEADER_SIZE + STREAM_DI

control word byte length = 4 |
minimum byte occupancy for sending an elementary
slot '

minimum byte assignment for datagram

bytes overhead for each transmitting window

real satellite header word length

real byte length of the fixed part of the reference
burst

real word length of the fixed part of the R.B.

A-10

.Appendix;C -

Some considerations about the master fault recovery
procedure. |

This procedure has not been implemented in the 2 Mbit/sec case bacause
hardware modifications are required. From the software point of view, its
implementation is very easly.

Here are reported some considerations.

In order to limit as much as possible troubles to the slave stations when
the master station falls down, a master fault recovery algorithm is
necessary.

The basic idea is that the possible must be done in order to continue at
least the stream transmissions.

When a master fault is detected, no datagram transmission is allowed
before that a new station starts as master.

When a new master station is active, the slave stations must send again
their datagram requests (a datagram congestion may appear in some
station in the time between the master silent and the new master start).

The rules the master fault recovery algorith is based on are:

1) The active station with the current lowest logical number is designed
to become the new master station.

2) A slave station must wait for a time

K * its current logical number
Tong, during which no reference burst is received, before to decide to start
as master because of the master fault. K is here a constant indicating a
fixed number of frames.

3) In order to be ready to become master, each slave station must save
the last received superframe reference burst (SRB) because it contains the
last valid stream assignments. |[f just a SRB is lost, the first valid
reference burst belonging to that superframe must be saved.

It is not necessary to copy the datagram allocations because they refer
only to a frame. Datagram allocations are in any case lost during the
master fault.

A-11

4) For the r'sam'e reason of point 3, each slave must m-aintain the qUeue'_of" ’

the stream requests (datagram are not necessary because the are lost in
any case) and perform the stream assignment algorithm as if it were
master. In_this way, each slave has an as much as possxble updated '
_situation of the stream requests and assignments. :
Of course,-nothing can be done to-avoid that a s]ave does” not receive a -
stream request which is instead received by other stations.

5) The slave station which has to become master, must:

- change its role from slave to master (set on the MASTER bit in the
rkcb.role area);

- initialize the DMA as master;

- assume the logical number O;

- take the scb #0, clearing the previously used scb.

It is necessary that the pointers to the streamgq present in the
previously used scb be correctly changed. The pointers to the
datagram queue must be cleared;

- clear the "missrbcounter” area in the rxcb;

- set its old logical number as "hole" in the SRB (the last saved
which will be the first sent);

- send the SRB to the UP process via the MASTER_SRB Pi0 message.
Also the datagram allocations must be passed to the Up process
via the MASTER_DALLOC PI0O message.

In this way the UP process realizes that now he must act as ma-
ster and that therefore its logical humber is zero.

Also the use of the control slot (which is handled by the logical
number) is affected by the fact that now the logical number must
be zero.

A-12

Appendix D

How to build the UP/DOWN Drocesses for the Motorola, 68000.
‘Amachme usma 8 PDPH S

This appendix is useful for those implementations of the FODA system
where the software developing machine is a PDP 11 running the RSX11M
operating system and the target machine is the Motorola 68000 using the
C-EXEC operating system Version 1.5.
The C-EXEC operating system is a portable operating system which is
produced by Whitesmiths. It consists of:

- a C-cross compiler;

- a linkage editor;

- various utility programs;

- the C-EXEC operating system as a number of objects modules linked

together in the LCEX . 68K library;
- a few essential routines given in source form.

The C-EXEC operating system is normally deveioped in a cross fashion.
Programs are developed on other hosts, linked together and then down
loaded into the target machine.

In the CNUCE implementation, we had the C-EXEC Version 1.5 system
running on a PDP11/70 machine under RSX11M V.4.0. The goal was to
produce on the PDP two down line loadable files (Up and Down processes)
for the Motorola 68000 machines.

In the CNUCE implementation, all the software necessary for the “satellite
bridge” experiment was under the following UICs:

(1,1) contains the LIBCYDS.68K C-Cross library;

(1,54) contains the following tasks:
LINK.TSK /task=..LNK to combine object files;
REL.TSK /task=..REL to examine object files;
HEX.TSK /task=..HEX to translate object file to ASCII format;
LRD.TSK /task=..LRD to order libraries;
LBY.TSK /task=..LIB to maintain libraries;
A68.TSK /task=..A68 the MC68B000 assembler;

‘P68.TSK. /task_ P68 the C code generator for: MCGBOOO S;

CPP TSK /task— .CPP preprocess’ defme and mclude used by the
, C compiler;

CP1.TSK /task=..CP1 to parse C programs.

- (5,2) contams all the files constltutmg the down hne loader from PDP
: to the Matorola;

(5,3) contains the whole software necessary to the “satellite bridge”

experiment. This UIC includes a big humber of files, so divided in
classes on the base of their use:

RX *.C files constituting the FODA Down process;
TX *.C files constituting the FODA Up process;
RXASS .S MC68000 assembler file for the FODA Down process;
TXASS .S MC68000 assembler file for the FODA Up process;
uBD *.C files necessary to the Down process;
UBT*.C files necessary to the Up process;
UBx*.C files common to the UP and the Down processes;
UBA1.S MC68000 assember common file;
XC10A68K.C ring driver (xc) iorb-handling routines;
XC11A68K.C ring driver (xc) interface routines;
XC13A68K.C ring driver (xc) dummy routines;
RXIN100.S C-EXEC startup code for the Down process;
TXIN100.S C-EXEC startup code for the Up process;

* H header files;
* X external references file (header file);
* R routine list header file;
MEASURE .* files for traffic measurements (test only);

SATLCEX .68K C-EXEC system library modified for the experiment;
ULIB .68K JMI Portable C library;
ULINK .0 module to provide the user interface to the C-EXEC;
UPBLD .CMD command file to 1ink the C-EXEC nucleus with the user

UP task. This CMD uses the following other CMDs:
TX1 .CMD

TX2 .CMD
TX3 .CMD
DOWNBLD.CMD command file to link the C-EXEC nucleus with the user

DOWN task. This CMD uses the following other CMDs:
RX1.CMD
RX2 .CMD

A-14

RX3 CMD

Some notes must be wr1tten about SATLCEX.68K, ULIB.68K and ULINK 0.
The.original C-EXEC system library was called LCEX.68K and, in the CNUCE
implementation it was put under the UIC (5,6). No sources of the library
~modules were furnished; the only sources were for the devices and the
clocks handling which optmnang can be added on the base of the system
configuration.
For the "satellite bridge™ experiment the LCEX.68K library was modified.
First of all, it was copied under the UIC (5,3) with the new nhame of
SATLCEX.68K, then 3 new modules were added at the end and a pre-existing
module was substituted.
The added modules are:
WAKE .0 (source WAKE .S);
EC6850 .0 (source EC6850.C) for the 6850 boards;
CLK68K .0 (source CLK68K.C) for the clock handling

and the replaced module is SYSCFG.O . V

Wake.o is a module for the "wake" device which wakes up the ring handler
process when the VMI/1 interrupt occurs. VMI/1 is the Logica VTS
Cambridge Ring interface from Multibus to Polynet equipment.

The satellite bridge programs use the omnibyte 68000 board serial driver
OM6850 to drive the terminal line and the serial line between the two
bridge halves. This was done in the module EC6850.0.

To add or to replace modules in the SATLCEX .68 library, the LIB task was
used with the following commands:

set /uic=(5,3)

ins $1by/task=...1ib

1ib satlcex.68k -r wake.o
lib satlcex.68k -r ec6850.0
1ib satlcex.68k -r cik68k.o
1ib satlcex.68k -r syscfg.o

The ULIB.68K was only copied from its original UIC under the (5,3) UIC
but no changes were done. The same is for the object file ULINK.o whose
source was not provided.

APPENDIX E

This installation has been made on an IBM PC-AT. It is the current working
implementation of the FODA system at 2 Mbit/sec. As the previous
implementation was on a PDP11/70 machine, running the RSX11M V4.0
operating system and the Motorola operating system was a C-EXEC V.1.5,
this appendix is useful to describe how to pass from the PDP
implementation to the PC-AT implementation.

Note: / referred to @& directory, is used instead of the
“back-slash”.

1. THE DIRECTORIES

Three directories have been created on the IBM PC:

a) c:/c/ cdntaining the C-Cross compiler for the Motorola 68000;

b) c:/c-exec/ containing the C-EXEC operating system Release 2.1b
as given on the base of the "binary release”;

c) c:/foda/ containing the files necessary to link the FODA system to
the C-EXEC nucleus.
They are:
RX*.C source C files for the Down process;
RXASS.S source assembler file for the Down process;.
uBbD*.C other source C files for the Down process;
RXCONFIG.C file containing the driver configuration table

and the user process configuration for the
Down process.
In the previous version 1.5 of C-EXEC, this

A-16

- RXIN6BK.S . -

COTX*C

" TXASS.S.
UBU*.C
TXCONFIG.C

XIN6BK.S

UBA1.S
XC10A68K.C
XC11A68K.C
XC13DUMMY.C
uBn*.C

*H

*R

*X

HEAP.S

SATCXLIB.68K

ULINK.O

WAKE.C
0M6850.C

CLK68K.C
*TXT

*BAT

. file was calted U BD],C,

file containing ‘the linking of the down -

 process to the C-EXEC nucleus.

In the previous version 1.5 of C-EXEC, this
file was called UBD100.S
source C files for the up process

- source assembler file for the up proeess

other source C files for the up process;

file containing the driver configuration table
and the user process configuration for the

up process.

In the previous version 1.5 of C-EXEC, this
file was called UBU1.C;

file containing the 1linking of the up
process to the C-EXEC nucleus.

In the previous version 1.5 of C-EXEC, this
file was called UBU100.S;

common file; PlA interface;

common file;

common file;

common file;

common utility files;

header files;

header file; list of global routines;

header file; external definitions;

the "heap” file, solved at link time;

the standard C-EXEC library, with modules
added for the FODA requirements;

the file necessary to link the user files to the
C-EXEC nucleus during the link phase;

the obj is added in satcx1ib.68k;

the obj is added in satcxlib.68k. In the
version 1.5 of C-EXEC, this file was called
EC6850.C,

the obj is added in satcx1ib.68K;

text files.

RX1, RX2 , RX3 .TXT are used in the command
file to create the down process.

TX1, TX2, TX3 .TXT are used in the command
file to create the up process.

command files. In particular:

‘UPBLD = to create the FODA UP process ‘
QOWNBL to create the FODA DOWN process; o
CR68 to cross-compile for M68000 .C files:
cré8 namel name2 name3 ...
AS68 to assemble for M68000 .S fﬂes
8868 name namez name3 rteresseninsnesens

2. THE C-CROSS COMPILER FOR MOTOROLA 68000
The files on the original 2 diskettes have been copied under the directory
c:/c and the command file

2buildx

has been invoked to generate the C cross-compiler.

After the generation, the following tasks (.COMM) are of interest for us:

PP the C pre-prosessor

P1 the C parser

P268K the MC68000 C code generator

AS68K the MC68000 assembler

LINK the Whitesmiths linker

LIB the Whitesmiths librarian

HEX to convert object files to hex records
REL relocatable object modules inspector
LORD the library ordering process

and the libraries:
LIBU.68K UNIX style 1/0 library
LIBCCPM.68K the C library for CP/M-68K.

3. The C-EXEC operating system Release_2,1b

The furnished release of C-EXEC is 2.1b, so a lot of problems had to be
solved in the FODA system to pass from release 1.5 to release 2.1b.

1) The nucleus of the C-EXEC for our [BM PC-AT machine is in the file
c:/c-exec/omin68k.s. It has been copied under the c:/foda/ directory,

A-18

renamed |N68K S and duphcated mto two files, RXIN68K S and TXIN68K S
respectively. : :
In each of the two files, modmcatmns have been done to lmk the nucleus -’
of the C-EXEC respectwelg to the down process and to the up process.

The two files substItute the corr1soondent RXIN100.S and TXIN10O.S files
of the-1.5 version. . R
With respect to vers1,‘on 1.5, the file SYSCNFG;C (which, with
modifications, substituted thé original module in the satlcex.68K library)
does no more exist, but part of it is now included in IN68K.S.

In the IN68K.s file, note that the calling to the comint routine
has changed format with respect to C-EXEC version 1.5.

2) The C-EXEC system header files (*.h) have been copijed from
directory c:/c-exec/ to directory c:/foda/ with the following
modifications, where necessary:

STD.H replaces the previous one.
Pseudo-types used by the FODA system have
been added;

MACH.H replaces the previous one. Definitions added;
UPROCH replaces UTASK.H

DRIVER.H replaces DIO.H

TTY.H replaces DIO.H

DSTAT.H replaces DSTAT.H

DVCFG.H replaces DEV.H

[OCTL.H added

QUE.H added

3) The C-EXEC library is now called CXLIB.68BK (in Release 1.5 it was
called 1cex.68k).

It has been copied from c:/c-exec/ directory to c:/foda/ directory and
renamed into SATCXLIB.68K (instead of saticex.68k).

The following modules have been added to the library:

a) OM6850.C has been copied from directory c:/c-exec/ to
c:/foda/ and modifications have been added as
it was in module EC6850.C of version 1.5.
This module is the terminal driver.

A-19

b) WAKE.C

c) CLK68K.C

“already present in the FODA directory. o |
This module is for waking up other processes.

DIOH-==---=~~-~ >DRIVER.H + TTY:H

“An empty routine "wakdrv® for the “wake" V

driver handling has been added. It is referred
in the DVCFG table defined in the RX/TX
CONFIG.c file. The "wake" driver is not used at
the moment.

already present in the FODA directory.

This module substitutes the original module
OM6840.c for the clock handling because in
the FODA system the handling of the the
system clocks is the following:

clock 1 is used by the FODA system

clock 2 is used by the C-EXEC system.

No modifications apported.

The three previous files have been compiled (cr68 command file) and the
relative .o files have been added to satcx1ib.68k with the following

command:

1ib satcx1ib.68k -r name.o

4) Under the c:/foda/ directory, the files UBU1.C and UBD1.C have been
respectively renamed into TXCONFiG.C and RXCONFIiG.C and heavy
modifications have been apported to upgrade from release 1.5 to release

2.1b.

The Device Configuration Table has now been generalized in that: _

a) it contains no device type specific information;
b) major device number is replaced by a pointer to the device driver

entry point;

c) terminal driver buffer sizes are now in a TTY| structure;
d) queue buffer size is now in a QUEI structure;
e) the driver address table DRVTAB previously defined in

A=-20

SYSCONFIG.c) does no more exist.

The User Task Table is now referred to as the User Process Table and the
name of the associated structure has changed from UTASK to UPROC. The
header which must be.included to obtain the definition of UPROC has
changed from utask.h to uproc.h. -

The User Process Table no longer contains an index into the Device
Configuration Table for standard input, standard output and standard error
output for each process. Instead, the name of the device is used.

The priority of a process is defined by its relative position in the
user-defined process table, with the highest priority process in the first
table entry.

The 68000 version 2.1b of C-EXEC now runs entirely in supervisor mode.
This was done primarily to enhance performance. This also eliminates
problems on some systems in which processes running in user mode could
not access the 1/0 devices.

Refer to the following manuals:

1) C EXECUTIVE release 2.1b
Enhancements, changes and upgrade instructions.

2) C EXECUTIVE user manual chapter 7.

5) The routine "FILL" , defined in TXASS.s and in RXASS.s had to be
renamed in "WFILL" because "fill" was already a routined used by the
operating system. It provoked big troubles at the tty driver initialization!
Therefore, also the "COPY" routine has been renamed in "WCOPY", for
security purposes, being its name very common.

In total, the following changes have been made:

FILL ====m==mm=mn > WFILL
TXASS.s
RXASS.s
UBU100.c

COPY====m=mmmmme > WCOPY

TXASS.s

RXASS.s
TXBURST.c
UBD100.c
uBu100.c
4. USED COMMANDS
a) CR68 name! name2... to cross compile for M68000 C files;

b) AS68 name! name2.. to assemblefor M68000 S files;

c) UPBLD to link to the C-EXEC operating system the user files for
building the UP process;

d) DOWNBLD to link to the C-EXEC operating system the user files for
building the DOWN process;

e) SMARTERM to run the utility program to load on the UP/DOWN bridge
the UP/DOWN process created with the phase c/d.

The loadable modules are:

RXSYS.HEX on the down side of the satellite bridge;
TXSYS.HEX on the up side of the satellite bridge.

Before to start the transfer of the loadable module, on the selected side of
the satellite bridge the following command must be issued:

re; -x = <carriage return>. The receiving data are displayed
or
re; = <carriage return>. The receiving data are not displayed

in order to receive the loadable data.

REFERENCES

1) Beltrame R., Bonito A.B., Celandroni N., FerroE.: _
"FODA_TDMA. Final report on the new protocol for mixed traffic.
Theoretical study and first simulation results”, CNUCE Report C85-03,
June 1985, 2nd edition.

2) Adams C.J. et al.: "New Satellite Bridge", RAL paper, 1984.

3) Marconi Research Centre:
“Technical proposal for the new satellite bridge hardware for use in
project UNIVERSE", Y/212/5949, February 1983.

4) Whitesmiths Ltd: “C interface Manual for PDP11".
5) Whitesmiths Ltd: “C interface manual for MC68000".

6) Celandroni N., Ferro E.:
"FODA-TDMA satellite access scheme: description, implementation and
environment simulation.”, proceedings of the Tirrenia International
workshop on Digital Communications, Tirrenia (Pisa), September 14-16
1987. Also CNUCE Report C87-17.

7) Beltrame R., Celandroni N.:
“The performances of the FODA access scheme: theory and simulation
results”, CNUCE Report C86-19, December 1986.

8) JMI Software Consultants, Inc.
“C-EXECUTIVE Release 2.1b: Enhancements, changes and upgrade
instructions™.

9) JMI Software Consultants, Inc.
"C-EXECUTIVE Release 2.1 user manusl”,

R s B

	cnuce1988-10
	cnuce1988-10-1

