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Abstract. The combined use of standard interfaces and formal meth-
ods is currently under investigation by Shift2Rail, a joint undertaking
between railway stakeholders and the EU. Standard interfaces are use-
ful to increase market competition and standardization whilst reducing
long-term life cycle costs. Formal methods are needed to achieve interop-
erability and safety of standard interfaces and are one of the targets of the
4SECURail project funded by Shift2Rail. This paper presents the mod-
elling and analysis of the selected case study of the 4SECURail project:
the Safe Application Intermediate sub-layer of the UNISIG RBC/RBC
Safe Communication Interface. The adopted formal method is Statisti-
cal Model Checking of a network of Stochastic Priced Timed Automata,
as provided by the UppAAL SMC tool. The main contributions are: (i)
rigorous complete and publicly available models of an official interface
specification already in operation, (ii) identification of safety and in-
teroperability issues in the original specification using Statistical Model
Checking, (iii) quantification of costs for learning the adopted formal
method and developing the carried out analysis.

1 Introduction

Despite the large number of successful applications of formal methods in the
railway domain [14], no universally accepted technology has emerged. Indeed, if
applicable standards (e.g. CENELEC EN 50128 for the development of software
for railway control and protection systems) mention formal methods as highly
recommended practices [13], they do not provide clear guidelines on how to use
them in a cost-effective way. The absence of a clear idea of which benefits can
result from the adoption of formal methods is one of the aspects that act as an
obstacle to the widespread use of formal methods [16}|17]. This is witnessed also
by the current efforts undertaken by Shift2Rail.

The Shift2Rail Joint Undertaking was established in 2014 under Horizon
2020 R&I program for pursuing research and innovation activities in the railway
domain. As mentioned in the technology demonstrator TD2.7 “Formal methods
and standardisation for smart signalling systems”, Shift2Rail “has identified the
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use of formal methods and standard interfaces as two key concepts to enable re-
ducing the time it takes to develop and deliver railway signalling systems, and to
reduce costs for procurement, development and maintenance. Formal methods
are needed to ensure correct behaviour, interoperability and safety, and stan-
dard interfaces are needed to increase market competition and standardization,
reducing long-term life cycle costs” [24]. One of the two workstreams of the 4SE-
CURail (FORmal Methods and CSIRT for the RAILway sector) project deals
with investigating the benefits of a formal method approach to the specifica-
tion of standard interfaces. Moreover, 4SECURail aims to perform a costs and
benefits analysis for the adoption of formal methods in the railway environment.

In this paper we present recent efforts in the context of the 4SECURail
project. We present the formal modelling and analysis of the selected case study
of the project that is the UNISIG Subset-098 - RBC/RBC (Radio Block Centre)
Safe Communication Interface [25], and in particular the Safe Application Inter-
mediate (SAI) sub-layer, concerning the protection against specific threats iden-
tified by CENELEC standards [12]. We exploit formal methods to build a fully
defined mathematical model, in particular a network of Stochastic Priced Timed
Automata. We verify the specified protection mechanisms against safety require-
ments identified by CENELEC standards, that are formalized using temporal
logics. Our model enhances the existing standard interface with unambiguous,
fine-grained modelling of the natural language requirements. The model can be
exploited as starting point for other model-based activities such as model-based
development or model-based testing. The identified benefits are also represented
by a series of issues that emerged from the formal verification, mostly due to
undefined or ambiguous aspects, tampering both safety and interoperability of
the system. We also traced the costs in terms of man-hours needed to learn for-
mal methods and to develop the model and analysis presented. Such data can be
validated against publicly available documents and regulations [27]. All models
and logs of experiments are publicly available at [22].

Related work A subset of authors have experience in applying UPPAAL to study
the upcoming ERTMS/ETCS Level 3 specification in the context of the Shift2Rail
ASTRail project in [2,[3}f5l/6]. Whilst those papers are exploring new requirements
of an envisioned system, here we verify an official specification (dated 2012) al-
ready realised. Concerning the Shift2Rail 4SECURAail project, in [4] the design
of a formal methods demonstrator is discussed, which is based upon behavioural
UML models. Here we provide a further contribution by adopting UppPAAL SMC.
In [19] the handover in Communication Based Train Control systems is analysed
with UrPPAAL SMC and a novel method of probability evaluation. Similar to our
work, they consider probabilistic failures (with probability weights set to 1079),
assuming the presence of probabilistic communication failures. They analyse the
scenarios of handover request and border point crossing from the front and rear
end of a train, to show that the overall probability of a successful handover
is high (0.99985). In [9] the RBC/RBC handover is analysed using run-time
monitoring algorithms enforcing modal sequence charts. They report a concrete
accident scenario where two trains collided. The accident was due to incorrect
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interactions between interlocking and RBC, where basically the trains move-
ment authority were independently generated by both the RBC (using Level 3)
and the track circuits (using Level 2), thus unfortunately allocating the same
track portion to two different trains. Compared to these papers, we study the
current ERTMS/ETCS Level 2 handover. We do not focus on the exchange of
application messages (e.g. crossing the border), but on a lower level, ensuring
protection against threats due to open radio communications. Moreover, we do
not focus on providing a precise evaluation of the probability of the handover
to fail, nor to provide run-time monitors. We provide a qualitative analysis of
the requirements in [25], identifying both safety and interoperability issues in
the current operating specification. We use SMC to scale to the real-world case
study size of our model, and probabilities of communications errors are inflated
to drive the simulations toward faulty scenarios to analyse the protections.

Structure of the paper UPPAAL SMC and the case study are briefly introduced
in Section [2] The model and the analysis are in, respectively, Section [3] and
Section [d] Section [5] concludes the paper.

2 Background

Statistical Model Checking and Uppaal Statistical Model Checking [1}20]
(SMC) is concerned with running a controlled number of (probabilistically dis-
tributed) simulations of a system model to obtain a statistical evaluation (with
a predefined level of statistical confidence) of some formula . The Monte Carlo
estimation with Chernoff-Hoeffding bound executes N = [(In(2) —In(«))/(2€2)]
simulations p;, i € 1...N, to provide the interval [p’ — ¢,p’ + €] with confidence
1—«, where p’ = (#{p; | piE¥})/N, ie., Pr(|p' —p| <€) > 1— « where p is the
unknown value of ¢ being estimated statistically [20]. SMC offers advantages
over exhaustive (probabilistic) model checking. Most importantly: SMC scales
better, since there is no need to generate and possibly explore the full state space
of the model under scrutiny, thus avoiding the combinatorial state-space explo-
sion problem typical of model checking. Indeed, the parameter N is independent
from the size of the state-space. Moreover, the required simulations can easily
run in parallel. This comes at a price: contrary to exhaustive model checking,
exact results are out of reach, especially for formulae evaluated with very low
probability, called rare events. Another advantage of SMC is its uptake in indus-
try: compared to model checking, SMC is very simple to implement, understand
and use, due to the widespread adoption of Monte Carlo simulation.

UpPPAAL SMC [11] extends UPPAAL 7], a well-known toolbox for the verifica-
tion of real-time systems modelled by (extended) timed automata. UPPAAL SMC
models are network of Stochastic Priced Timed Automata: Timed Automata are
finite state automata enhanced with real-time modelling through clock variables;
their stochastic extension replaces non-determinism with probabilistic choices
and time delays with probability distributions (uniform for bounded time and
exponential for unbounded time). These automata may communicate via (broad-
cast) channels and shared variables. UPPAAL SMC allows to check (quantitative)
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properties over simulation runs of a UPPAAL SMC model. These properties must
be expressed in a dialect of the Metric Interval Temporal Logic (MITL) [§]. In
particular, all formulae ¢; evaluated in Section [ follow a specific form, which
is the probability that the configuration identified by the propositional formula
conf is reached before bound units of time, written Pr [<=bound] (<>conf).

RBC/RBC Safe Communication Interface The selected case study
is the RBC/RBC handover interface as specified by UNISIG Subset-098 —
RBC/RBC Safe Communication Interface in [25], which provides a public stan-
dardized interface that specifies the requirements for the handover protocol be-
tween neighbouring RBCs in natural language.

Each RBC supervises all the trains moving within its responsibility area.
The handover procedure is used to manage the interchange of train supervision
between two neighbouring RBCs. This protocol is based on a layered structure.
The higher layer corresponds to an application process that addresses high-
level functionalities, such as the generation and the reception of information to
communicate with peer RBC entities, or the re-establishment of the safe con-
nection when it is lost due to errors in lower layers. This layer communicates
with an underlying layer, the Safety Functional Module (SFM) which specifies
the requirements related to the safety of the communications. The SFM layer
consists of two distinct sub-layers, the SAI (Safe Application Intermediate) sub-
layer and the Euroradio SL (Euroradio Safety Layer), and their combination
provides a safe protection strategy for the open transmission system. The SAI
layer provides adequate protection against the threats identified by CENELEC
and specified in the EN 50159 European Standard [12], specifically: repetition (a
message already sent is sent again in the message stream); deletion (a message
is removed from the message stream); insertion (an additional message is im-
planted in the message stream) and re-sequencing (the ordering of messages in
a stream is changed). The Euroradio SL protects the system against corruption,
masquerade and insertion threats. The SAI sub-layer protection is achieved with
a sequence number for deletion, re-sequencing and repetition threats. Basically,
it consists of inserting a consecutive number to each message and computing the
difference between such numbers. The delay defence technique is achieved with
the TTS (Triple Time Stamp) procedure, consisting in storing in each message
three timestamps information for checking that the transmission delay is within
a computed offset. An alternative delay defense technique in [25], namely, the
execution cycle, is not addressed in our model. Due to lack of space, we refer
to [121/201/25] for more details on, respectively, SMC, Subset-098 and EN 50159.

3 The model

We now discuss the model of the case study. Due to lack of space, some aspects
will not be detailed. The model is defined through template automata. Each
template automaton may have a set of parameters and local declarations of
constants, variables, user functions and clocks. Global declarations are instead
accessible from all the templates and can include clocks, constants, variables,
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functions and channels. The templates are parameterised with an identifier id
to identify which device each template belongs to, i.e. the Initiator or the Re-
sponder device. The system is defined as a network of processes that interact
with each other in parallel; a process is instantiated from a template where all
its parameters, if any, are set. The synchronizations between different processes
of the system are obtained through broadcast channels, which are required to
perform statistical model checking. All the safety service primitives specified in
the requirements are modelled as arrays of channels where the indexing allows to
identify the synchronized process. Since UPPAAL channel synchronization does
not support value passing, this is encoded with the use of global shared variables.
State invariants are used to ensure that the communications through shared vari-
ables used for the value-passing are atomic. This implies that signals are always
received and never lost, overcoming the undetected loss of messages.

The system is composed of two communicating devices, an Initiator device
that sends the request to establish a connection and a Responder device that
receives the connection request. When referring to the partner device, we con-
sider the Responder device as the partner of the Initiator device, and vice versa.
In Figure [I} the overall architecture of the system is shown. Only one compo-
nent (i.e. the initiator or the responder) is displayed whilst the other is specular.
Each device is modelled using three modules: the SAI User, the SAI and the
Euroradio SL modules. The SAI User and SAI modules are adjacent and can
communicate with each other. The same applies also to the SAI and Euroradio
SL modules. Both the Initiator and the Responder devices are composed of all
these three modules. Finally, the Euroradio SL. modules of both devices can re-
ceive failure notifications from the Communication System module, a component
of the system that abstracts both the Euroradio SL lower layers and the phys-
ical transmission system. In particular, this component models the occurrence
of a disruptive connection release communicated to both the Initiator and the
Responder devices, as specified in the requirements.

The communications between adjacent modules of the same device are mod-
elled using channels synchronizations. Instead, the two partner devices interact
asynchronously using two queues of messages. Their interactions are affected
by stochastic delays, simulating the transmission delays that characterize the
radio communications. UPPAAL does not natively support asynchronous com-
munication through queues, which are implemented in the model using arrays.
Probabilistic failures are used to simulate communication errors and are im-
plemented by functions modifying data in the arrays (e.g., removing, swapping
elements). These injected faults are not to be confused with the low-level chan-
nels synchronizations that are guaranteed by invariants to be received.

While both the SAI User module and the Euroradio module functionalities
are implemented through single templates, the SAT module is split into multiple
sub-modules to reduce the complexity of each of them. Indeed, the responsi-
bilities of both the SAI User and the Euroradio modules were abstracted away
and only the interface with the SAI is implemented. They are the external enti-
ties interacting with the SAI module target of our model, whose functionalities
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Fig. 1. The model architecture, the partner device is specular to the one displayed

are instead completely modelled. The SAI module is divided into different sub-
modules. The TTS technique is implemented in the TTS initialisation and the
TTS update procedure modules. The following list shows the templates that
make up a single device:

The SAI_User template abstracts the SAI User module behaviour, implement-
ing the triggering of a connection and periodically sending Application mes-
sages. It is instantiated specifying the SAI_id parameter and the initiator
parameter;

The Euroradio_SL_Env template abstracts the Euroradio SL module behaviour
implementing the stochastically delayed message exchange with the partner
device. It is instantiated by specifying the id parameter and the receiver
parameter;

The SAI_Conn_Ini/SAI Conn_Res templates model the connection estab-
lishment according to the role of the device. The templates are instantiated
specifying the id parameter corresponding to the device they belong to;

The SAI_TTS Init_Ini/SAI_TTS_Init_Res templates model the TTS ini-
tialisation, depending on the role of the device. They exchange messages to
estimate the minimum and maximum offset delay of messages. Their param-
eter is the same as SAI_Conn_Ini/SAI_Conn_Res;

The SAI_Update_Req templates implement the offset estimations update re-
quests, to update the minimum and maximum offset delay. Its parameters
are the same as the SAI_Sender template;

The SAI_Update_Answ template models the TTS update procedure by send-
ing the offset estimations update answers to SAI_Update_Req. Its parameters
are the same as the SAI_Sender template;

The SAI_Sender template models the SAI defence techniques, by inserting
into each message the three timestamps of TTS and the sequence number,
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Fig. 2. The SAI Receiver template

implementing the message sending procedure. It is instantiated with the id
and the initiator parameters identifying its device and role;

The SAI_Receiver templates implement the check procedure for all the in-
coming messages. It has the same parameters as the SAI_Sender.

We discuss in details the template implementing the check of messages for the
protections and the fault injection implementing the various CENELEC threats.

SAI_Receiver The SAI_Receiver template implements the protection against
the repetition, deletion, resequencing and delay threats that can occur in a
transmission system, commanding itself the connection release if certain un-
safe conditions are met, and it is shown in Figure 2] It performs function-
alities related to the protection against delay, by checking the timestamps of
messages. In state Connected, if a data message from the partner device is re-
ceived (i.e. Sa_DATA indication[id]?), the last_received ts and last msg_ts
variables are updated. Then, the sequence number difference (referred to as
sn_diff) between the sequence number received in the message and the last
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sequence number stored in the last_sn variable is computed. Also the fresh-
ness of the received message (referred to as T_diff) is computed as the differ-
ence between the timestamp at the message reception (the last_msg_ts value
just updated) and the estimation of the message time transmission in term
of the SAT Receiver clock, i.e. the sum of the last received timestamp (the
last_received_ts value just updated) and the minimum offset estimation com-
puted by the Receiver device during the TTS initialization, with the extra de-
lay subtracted. The sn_diff computed values determine the SAI_Receiver be-
haviour according to the three outgoing transitions from state CheckDatalMsg.
If sndiff==1 and 0 < T.diff < T.max for an Application Message (i.e. a
message to the SAI User), the received data message is not affected by se-
quencing errors and the transmission delay is acceptable. Assuming that also
the conditions for no delay errors occur, the SAI_Receiver notifies its adjacent
SAI_User of the correct message reception through the SAT DATA indication,
moves first to the Correct location and then to the ValidateMsg location. Here,
according to the message type field of the received message, the SAI_Receiver
can forward a signal to the SAI_Update_Answ or the SAI_Update_Req tem-
plates respectively when concerning offset update request or offset update an-
swer messages. Otherwise, in case of an Application message, the Connected
location is entered without further actions. If sn_diff<0, the message is dis-
carded (location DiscardMsg) without notifying the SAI User. If sn_diff > 0
and the previous conditions are not verified (i.e. sn.diff # 1 or the transmis-
sion delay is not acceptable, i.e. either T_diff < 0 or T_diff > T._max), the
SAI_Receiver notifies the SAI_User, updates its error counter and then enters
the Error location. Here, if the maximum number of either successive errors
N_max_succ_err or lost messages N_.max_lost_msg is reached, the SAI_Receiver
immediately sends a safe connection release (i.e. tau_safe_conn_release) to the
SAI_Sender, which in turn sends a disconnect request to the peer entity, and from
location DisconnectIndication a SAI_DISCONNECT indication is sent to the
SAI_User to command the release of the connection. Instead, if the maximum
number of successive errors is not reached and the received message is a repeti-
tion of the last accepted message (i.e. sn_diff==0), or its transmission delay is
not acceptable, the message is discarded. Anyway, the message can be validated
if both its transmission delay and the number of lost messages are acceptable
(i.e. 0 < T diff < Tmax and 1<sn diff < N.max_lost_msg).

Moreover, from state Connected the SAI_Receiver synchronizes with the
Sa_DISCONNECT_indication signal from the Euroradio_SL_Env. When a discon-
nect indication is received, the SAI_Receiver forwards the communication to
the SAI_User before entering the Disconnected location and also all the other
SAI templates of the same device that by synchronizing through the channel
SAT_DISCONNECT_indication move to the Disconnected locations.

Fault_Injector The Fault_Injector template shown in Figure |3 models all the pos-
sible threats that can affect the communication system. This template acts as a
fault injector in the signal queue of the two communicating devices, determin-
ing the occurrence of communication errors or simulating transmission problems
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that could lead to unacceptable delays. This could also be considered as a model
of an external attacker artificially injecting failures |[12]. This template provides a
minimum waiting time to model the probability of occurrence. Two probabilistic
branches decide whether the attempt to perform a fault injection is successful or
not. By fine-tuning the fault and noFault weights associated with the proba-
bilistic branches, the probability of the desired fault occurrence can be adjusted.
Only if the signal queue of the non-
deterministically chosen device to per-
form the fault injection is not empty,  _______________________________
all the devices are connected and the
attempt is successful, a probabilis-
tic branching decides which threat
to perform. The possible threats are:

msgDeIay[id]:=-rr-18r;1De-Ia-lyinj_ec-té-d,
=0

shiftFirstSiglid.n_pos),

deletion threat (the first signal of t:=0

the queue is removed), repetition e e

threat (the first signal is repeated if repeatFirstSiglid), |
t=0 !

the queue is not full, otherwise no

repetition is performed), resequenc- |77 TTTTTTTTTTTTTTTTTTOOON déletion
ing threat (the first signal is shifted de'eteFirStSi%Fifg
of one or two positions inside the DoFéuIt
queue, if at least another signal is

present, otherwise no re-sequencing 3;:;;'-'|t|"'.if'iti'3""Ff-5'tf 'i
threat (the msgDelay variable of the

selected device is updated with the
msgDelayInjected value).

The transmission delay is based on s ;
the update of the msgDelay variable,
which defines the rate for the expo-
nential distribution of the edge per-
forming the signal dequeue. The in-
jected rate is lower than the standard
rate assigned to msgDelay, and during the sampling of the exact delay, the
smaller the rate is specified, the longer the delay is preferred. Hence, with the
injected rate it is possible to simulate a longer transmission delay, increasing the
probability to exceed the validity time for the incoming messages.

is performed), and transmission delay @ b

Fig. 3. The Fault_Injector template

4 The analysis

In this section we discuss the analysis of the model and the issues found. As
required by Subset-039 [26] (ref. 4.2.1.2) only one RBC/RBC communication
between a pair of RBCs must be active at one time. Thus, we focus on analysing
a single pair of communicating devices. The specification suggests which parame-
ters values to use with particular systems (for example highly-available systems),
whereas the definition of other parameters is left to the specific application set-
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tings. Our experiments consider a high probability of fault injection success, and
diminishing the rates allows to model longer delays. This allows to observe faults
with fewer simulations, thus quickly verifying the defence techniques against such
faults. Finally, the configuration of certain parameters is done according to the
need for a stable connection where both the probability of the SAI_User to send a
disconnection request, the Communication_System to perform a disruptive con-
nection release and the Euroradio_SL_Env to fail are very low. We remark that
the purpose of our analysis is not the accurate quantification of measures such
as performance or reliability. This would require a realistic, less extreme set-up
of parameters with lower fault probabilities and time-expensive verification. We
address the qualitative verification of the protection mechanisms. Nonetheless,
threats for open systems |12] are also considering attackers artificially injecting
faults into the communication system.

All the verified properties are related to the probability estimation of the
occurrence of a specific hazard. If the probability of occurrence of the hazards is
close to zero (i.e. p’ = 0, see Sect. [2)) the model satisfies its safety requirements
with a certain degree of confidence (1 —«) dictated by the parameters of the sta-
tistical model checker (probability of false negatives o = 0.0005 and probability
uncertainty € = 0.005). We recall that all evaluated formulae are of the form:

p; = Pr[<=bound] (<>conf_i).

We set msg_freq=8 time units (i.e. the period in which SAI User attempts to
send a new Application message) and bound=1000 (i.e. trace length), thus allow-
ing to perform faster simulations but still inclusive of a non-negligible message
exchange. With this formula “template” only the logical conditions are left to
be specified thus making easier the formalisation of the properties also for users
not expert in temporal logics. In the following we only provide the specific con-
figuration conditions conf_i of each formula indexed by ¢, and for improving
readability we use the names of the templates, even though the names of the
corresponding instantiations have been used in UPPAAL.

Model checking We start by checking some properties that the model should
meet and that are not related to the specification. Only for these formulae, we
set o and € to 0.05 to have a faster evaluation (IN=738, see Sect. . Firstly, since
the queue of messages is bounded, an excessive message delay could cause the
queue to be filled if the size of the queue is not properly set. To ensure that this
event does not occur, we measure the probability that there exists a full queue
within 1000 time units using conf_1 = exists(id: id_t) isQueueFull(id)).
The probability is evaluated to be close to zero (based on « and ).

The next formula concerns the connection procedure, and in particular the
parameter T_conn max that is the maximum waiting time between two connec-
tion requests. The requirements specify that during the TTS initialization pro-
cedure, a T_start_max maximum waiting time for the incoming offset messages
from the Responder device is provided. Thus it is important to issue new connec-
tion requests only if the TTS initialization procedure has exceeded its time limit.
If this is not the case, a specific location ConnectionFailure is entered by the
SAI_TTS Init_Ini. Thus we set T_conn_max = cxT_start_max and we experimen-
tally find the threshold value for the constant ¢ beyond which the probability to
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enter the ConnectionFailure location is not close to zero. This is evaluated with
the formula conf 2=SAT TTS_ Init_Ini.ConnectionFailure performing several
experiments at the varying of the constant c. The degradation of the model
occurs for ¢<3, hence we set c=4. Concerning the possibility of undetected mes-
sage loss, we recall that we used state invariants to ensure that all synchronous
signals are received. Finally, we verify the high probability of fault injection that
happens when the Fault Injector template enters the DoFault location with the
formula conf _3=Fault_Injector.DoFault. The evaluation of 3 is evaluated
with a value close to one, thus meaning that at least one fault is always injected
in each simulation of the system.

Verifying Safety We now discuss the verification of the safety properties related
to the effectiveness of the defence techniques described in the specification and
implemented in our model. The hazards are modelled as “bad” configurations
(expressed by conf) of the system and have been identified by a manual review
of the model based on the requirements. We followed a schematic methodology
where first the probability of occurrence for a particular threat, among those
specified in the requirements, is evaluated. Then we evaluate the probability that
the system does not behave as expected when that particular threat occurs. This
second probability evaluation makes sense only if the first probability evaluation
is non-negligible (i.e. p’ > 0.1), thus meaning that the system is actually verified
when the threat has a non-negligible probability to occur. Note that identifying
the severity of each hazard is out of scope.

The first two analysed hazards concern the probability of either receiving a
correct message that is considered erroneous or treating a message affected by
some communication errors as a correct message. The ¢, formula checks if the
SAI_Receiver of both the Initiator and the Responder devices receives a correct
message, i.e. the configuration where the sequence number difference with the
previous message is 1 (sn_diff==1) and its delay is acceptable (T_diff > 0 &&
T_diff < T.max), and the system treats it as an error, i.e. the SAI_Receiver
template enters the Error the DiscardMsg location. Formula 5 checks if the
SAI_Receiver of both the Initiator and the Responder devices receives an erro-
neous Application Message, i.e. the sequence number difference with the pre-
vious message is not 1 (sn_diff!=1) or its delay is unacceptable (T_diff < O
|| T_diff > T._max), and the system considers it as a correct message, i.e. the
SAI_Receiver enters the Correct location. Note that this location is necessary
to distinguish the correct messages from the messages that are validated despite
the sequence number difference with the previously accepted message is different
from 1. Both ¢4 and ¢35 are evaluated with a value close to zero.

Concerning the threats that can occur in a communication system, we mea-
sure the probability of occurrence of six possible hazards caused by the CEN-
ELEC threats (formulae/subformulae with even id numbers), and we measure
the probability of the corresponding protection to fail (with odd id numbers).
Due to lack of space, we do not fully report the formulae. All the formulae are
predicating over locations and variables of the SAI Receiver (see Fig. [2). All
threats probabilities were evaluated with a non-negligible probability of occur-
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rence, confirming the fault injection. The corresponding probabilities of protec-
tion failure were all evaluated with values close to zero. Concerning the rese-
quencing threat we found two hazards. Condition conf_6 checks if a message
earlier than the last accepted one is received (sn_diff<0); and conf_7 checks if
under this condition the SAI_Receiver does not discard this message (does not
visit the location DiscardMsg). Another condition conf_8 checks if a message
with the same sequence number of the last accepted one is received, and conf_9
checks if it is validated (location ValidateMsg). For the resequencing threat we
found one hazard, and another one is obtained by combination with the de-
lay threat. Condition conf_10 (resp. conf_12) is satisfied if a message arrives
with both an acceptable (resp. unacceptable) delay and with a sequence number
difference between 2 and N.max lost msg. Condition conf_11 checks if under
conf_10 the message is discarded or accepted (resp. locations DiscardMsg or
Correct), whilst condition conf_13 checks if under conf_12 the error location
is not entered by the SAI_Receiver. Note that for entering such location, it is
required that both the delay is unacceptable and sn_diff is positive (see Fig. ,
thus the necessity of mixing the two threats. For the deletion threat condition
conf_14 checks if a message with a sequence number difference greater than
N_max_lost.msg is received, and conf_15 checks if it is discarded or validated.
In this case it was also required the possibility of tolerating one communication
error. Finally, for the delay threat we have one hazard: condition conf_16 checks
if a message with a correct sequence number (sn_diff=1) but with an unaccept-
able delay is received, and conf_17 checks if it is valid (location ValidateMsg).

We verified three additional safety properties for further validation of the
model. Condition cond_18 is used for ensuring that the TTS initialization is
completed before receiving any application message. Condition cond_19 verifies
that only correct messages are forwarded from the SAI to the user, and condi-
tion cond_20 verifies if the SAI module correctly commands the release of the
connection when reaching the maximum number of successive errors during the
message exchange with the partner device. These last three formulae are evalu-
ated in scenarios where the system can reach unsafe configurations due to the
fault injection of communication errors, and are all satisfied. The results pre-
sented so far meet our expectations, augmenting our confidence that both the
model and the adopted defence techniques are correct.

Issues detected We report the most relevant issues discovered with the
analysis, which have been confirmed by our industrial partners in the 4SECURail
project. Whilst some issues were already known and are due to negotiations
among the UNISIG members for compatibility with their legacy solutions, others
are new and will possibly lead to request for changes of the Subset-098.

Zero-crossing The first problem we met concerns the implementation of both
the sequence number defence and TTS technique. Indeed, in the Subset-098
specification, for both protection techniques (sequence number and TTS) it is
not specified how to behave in the presence of zero-crossing (i.e., overflow of the
assigned bytes), and the specification only considers the case without overflow.
We only detail the sequence number problem in the following. Through the
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formula @91, we verify if the above unsafe scenario is reachable for the SN_max
parameter (bound of the sequence number) set to a lower value, e.g. 100.

Condition conf_21 checks if the SAI_Receiver enters either the Error lo-
cation or the DiscardMsg location when receiving an incoming message (sig
l=empty-sig) with sequence number 0 (sig.msg.sn==0) and its last accepted
message had sequence number last_sn[id]==SN_max. This formula refers to the
scenario in which the Sender device performs the zero-crossing of the sequence
number. Even if the message stream is correct, the Receiver device behaves as if
a communication error occurred, an undesired scenario. The formula is evaluated
(where both the probability of false negatives « and the probability uncertainty
€ are set to 0.05) with p’ = 0.847987. An example of mitigation of this sequence
number zero-crossing problem is to force the release of the safe connection from
the SAI module when the maximum value for the sequence number is reached.
We refer to domain experts for more efficient solutions to this problem. Note
that without bounding the maximum number of consecutive lost messages, when
approaching the zero-crossing it is not possible to distinguish between the recep-
tion of an earlier message or the loss of consecutive messages. The Subset-098
leaves this aspect of the protection open, which could potentially lead to unsafe
scenarios in case of communication errors.

TTS initialisation We identified an undefined scenario of the system that
could lead to possible unsafe configurations if no specific actions are imple-
mented. Briefly, if during the TTS initialisation a specific notification message
(i.e. OffsetStart) sent to the Responder device is lost, the Responder is stuck un-
til a new connection request arrives from the Initiator. In the Subset-098, there
is no mention of this scenario: it is not included in the SAI initial procedures at
the error handling section (ref. 5.4.10.1.3 [25]) as no TTS initialization for the
Responder is started yet. Moreover, no communication with the SAI User can be
assumed, as the interactions between the SAI and the SAI User modules of the
Responder device start after the successful TTS initialization. In our model, in
this scenario the failed connection procedure is interrupted to restart a new one
from the beginning. Obviously, this implies that the Initiator must send again
a connection request. Another possible solution would be for the Responder to
answer again to the connection request.

TTS offset update Another undefined aspect concerns the type fields of the
offset update messages. It is only mentioned in ref. 5.4.8.7.3 and Figure 21 of [25]
that two messages are exchanged. Since the two communicating devices can both
start the update procedure and the two distinct update procedures can overlap,
it could be the case that one device, after sending a request for offset update,
cannot discern whether the received message is an answer to the previous request
or a new request of the same type. In our model, we re-used the TTS initializa-
tion message type fields to distinguish the two types of update messages, and in
particular the OffsetStart for the update request message and the Offset Answl
for the update answer message. These implementation choices were made neces-
sary to model a working offset update procedure despite the lack of details in the
specification. The fact that different suppliers could implement these aspects in-
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dependently could compromise the interoperability of their RBCs. Moreover, the
Subset-098 [25] does not specify the actions to perform in case the timestamps
of the offset update answer and request messages (used for relating them) do not
correspond, a condition necessary to update the offset estimation. We identified
two possible behaviours for the SAI module in this case: either it reissues a new
request without waiting, or it can wait for the right answer, and reissues a new
request only at the expiration of the timer. We opted for the second case. In-
deed, the first case could cause a loop where the answering device keeps sending
answer messages but they arrive when another request has already been sent,
so the timestamps would not correspond again. The subset leaves both imple-
mentations possible, whilst only the second case should be allowed for avoiding
unnecessary disconnections with errors.

Error tolerance Finally, we discuss the configuration choice of the maximum
number of successive errors (N_max_succ_err) parameter, which |25] specified to
have values either 1 or 2 (thus allowing a maximum tolerance of one error). By
analysing the model, we noted that a transmission delay causes a rejection of
the message, thus incrementing the error counter and triggering a subsequent
sequence number error due to the discarding of the previous message. This means
that the ability of the system to tolerate the occurrence of one communication
error is tied to the type of the error being detected: if the error is a transmission
delay, then the system is no longer able to accept the next incoming message as
correct, even if the tolerance is set to do so.

The formal verification step helped in identifying the problems reported in
this section, thus resulting very useful. It has been used to check the correctness
of the model by debugging modelling errors during its development, as well as
to formally validate the requirements of the system defined in the specification
and discovering corner cases where both protections are ineffective.

Quantifying the learning and development efforts We provide a rough
but indicative estimation of the costs for training and development. We consid-
ered the effort in terms of CFU (Crediti Formativi Universitari, corresponding
to ECTS — European Credit Transfer and Accumulation System — credits)
sustained by the third author for developing her Master thesis (containing the
presented results) under the supervision of the first two authors. The training in
formal methods has been provided during the Software Dependability university
course in Florence University, provided by the second author, where the basis for
the modelling aspects and the logic required to understand the model checking
algorithm have been studied, which are almost 7 CFU [15].

Concerning the work presented in this paper, it can be quantified in the 24
CFU of the Master thesis. There is no clear division between the modelling and
the verification phases because since the beginning of the modelling phase, a
constant activity of verification of the model was made. Indeed, useful coun-
terexamples from the verification allowed to debug modelling errors in the first
model prototypes. Considering that each CFU conventionally corresponds to 25
working hours, we can estimate an effort of 775 working hours to reach the re-
sult we described in this paper, starting from no knowledge of formal methods,
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which we report to adhere to the actual effort. Thus, an indicative division of the
working hours required for each activity is: Learning - 169 hours, Modelling and
Verification - 606 hours. These data can be validated by consulting the online
regulations of the Degree Course [27] and the Master thesis [23]. Finally, assum-
ing a fresh and already trained graduate as the third author, a fitting payment
(in Ttaly) could be a professionalising grant (assegno professionalizzante [10]).
In this specific case, she/he would have an annual gross cost of 21343 euro (as
per the time of writing this paper), with a cost per hour of 15.56 euro, which
roughly gives us a gross cost of 9400 euro for producing both the artifacts and
the analysis described in this paper.

5 Conclusion

We have formalised and analysed an existing industrial specification already in
operation: the UNISIG Subset-098 [25], and in particular the Safety Application
Intermediate sub-layer, whose goal is to protect the system from the CENELEC
50159 [12] threats of open transmission systems. The analysis has discovered
corner cases where the protections are not effective, due to unspecified scenarios
or ambiguous requirements. We discussed simple mitigations to such issues, not
detailed in the specification. Since different interpretations of these undefined
aspects could be given as well by different suppliers (especially for newcomers,
rather than the original members of the consortium that issued these subsets),
this could lead to non-interoperability between RBCs developed and provided
by different suppliers. This appears to be the current situation for this standard
interface, as reported in [21], where interoperability issues during the handover
procedure were encountered in the Milano-Bologna line containing three RBCs
produced by different suppliers (Alstom and Ansaldo) using the same require-
ments analysed in this paper. Finally, considering that formal methods are still
a subject of study in the field of railway industrial applications [141|18|, as wit-
nessed by several Shift2Rail projects, this paper represents a further contribution
to evaluate the usefulness in terms of costs of learning and development, as well
as benefits deriving from the adoption of formal methods in this domain. The
model and analysis for the various scenarios are publicly available in [22].

We argue that the benefits derived from the work described in this paper are
not only limited to the identified safety and interoperability issues. Indeed, the
provided formal model and the safety properties analysed can enrich the existing
documentation. By simply tuning the parameters to realistic, less extreme values
it is possible to have evaluations of other dependability aspects of the system
such as performance, reliability. The presented model could also be the starting
point for other model-based development approaches, e.g., by translating the SAT
models into state machines (e.g., RT-UML) for code generation or model-based
testing. A subset of the authors already provided a translation from RT-UML
machines to UPPAAL models in [2]. As future work it could also be of interest
to enrich the model with full formalisation of the other layers as well as the
execution cycle protection technique.
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