
Hiding Sequences

Osman Abul Maurizio Atzori Francesco Bonchi Fosca Giannotti

Pisa KDD Laboratory

ISTI - CNR, Area della Ricerca di Pisa

Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy

e-mail: {name.surname}@isti.cnr.it

Abstract

The process of discovering relevant patterns holding in
a database, was first indicated as a threat to database se-
curity by O’ Leary in [20]. Since then, many different
approaches for knowledge hiding have emerged over the
years, mainly in the context of association rules and fre-
quent itemsets mining. Following many real-world data
and applications demands, in this paper we shift the prob-
lem of knowledge hiding to contexts where both the data
and the extracted knowledge have a sequential structure.
We provide problem statement, some theoretical issues
including NP-hardness of the problem, a polynomial san-
itization algorithm and an experimental evaluation. Fi-
nally we discuss possible extensions that will allow to use
this work as a basic building block for more complex kinds
of patterns and applications.

1. Introduction

Privacy preserving data mining, i.e., the study of
data mining side-effects on privacy, has rapidly become
a hot and lively research area [8, 20, 3, 27], which has
seen the proliferation of many completely different ap-
proaches having different objectives, application con-
texts and using different techniques. The chronologi-
cally first approach in privacy preserving data mining
was aimed at avoiding the identification of the origi-
nal database rows (by means of data perturbation or
obfuscation) while at the same time allowing the re-
construction of the data distribution at an aggregate
level, and thus the production of valid mining mod-
els [3, 1, 10, 11, 23].

Another approach, named knowledge hiding, aims at
hiding some knowledge (i.e. rules/patterns) considered
sensitive, that could be inferred from the data which is
going to be published. This hiding is usually obtained

by sanitizing the database in input in such a way that
the sensitive knowledge can no longer be inferred, while
the original database is changed as less as possible.

A novel approach has recently emerged in privacy
preserving data mining, studying the privacy threats
(and possibly appropriate solutions) arising when pub-
lishing the data mining results themselves instead of the
data [16, 6, 5, 13].

Clearly, this is not meant to be an exhaus-
tive overview of the existing approaches. The aim is
to show that there is a large variety of different ap-
proaches, that however have a common aspect: the
kind of data and patterns considered. Due to the in-
herent challenges of protecting privacy while discover-
ing knowledge, most of the work so far has focussed
on simple, flat relations and on classical data min-
ing tasks, such as decision trees, clustering, associa-
tion rules and frequent itemsets. But nowadays, the
real-world applications call for more advanced analy-
sis of more structured and more complex data.

Consider spatio-temporal geo-referenced data daily
collected by telecommunication companies exploiting
mobile phones and other location-aware devices. The
increasing availability of space-time trajectories of these
personal devices and their human companions is ex-
pected to enable novel classes of applications, where
the discovery of consumable, concise, and applicable
knowledge is the key step. These mobile trajectories
contain detailed information about personal and ve-
hicular mobile behaviour, and therefore offer interest-
ing practical opportunities to find behavioral patterns,
to be used for instance in traffic and sustainable mo-
bility management, e.g., to study the accessibility to
services. Clearly, in these applications privacy is a con-
cern, since location data enables intrusive inferences,
which may reveal habits, social customs, religious and
sexual preferences of individuals, and can be used for
unauthorized advertisement and user profiling.

Similarly, consider web usage log data that contain
traces of sequences of actions taken by a user, or bio-
medical patient data that usually contain clinical mea-
sures at different moment in time.

In each of these applications, (i) both the data and
the kind of patterns of interest have some structure
(i.e., sequences in time), (ii) there exist substantial pri-
vacy threats, as well as (iii) evident potential useful-
ness of knowledge discovered from these data. There-
fore, privacy preserving data mining, in order to move
towards maturity, should close the gap between the
theory developed so far and the real-world data and
applications. As a preliminary step in this direction,
in this paper we shift the problem of knowledge hid-
ing from the usual frequent itemsets, to contexts where
both the data and the extracted knowledge have a se-
quential structure. We do not believe that this simple
work alone could close the gap towards real-world ap-
plications. We believe instead, that it could represent a
basilar building block that must be further developed
and instantiated to the various application domains:
in Section 7, for instance, we discuss the case of mo-
bility data analysis, where both the data and the pat-
terns extracted are trajectories, i.e., a sequence of po-
sitions (spatial locations) that are temporally close to
each other and pertain to the same individual.

2. Related Work

Many different approaches for knowledge hiding
have emerged over the years, mainly in the context of
association rules and frequent itemsets mining, but to
the best of our knowledge, no work has yet addressed
the problem of hiding sequential patterns.

A first work attacking the problem of limiting dis-
closure of sensitive rules by reducing their significance,
while leaving unaltered or minimally affecting the sig-
nificance of others, non-sensitive rules is [4]. One of
the most important contributions of this paper is the
proof that finding an optimal sanitization of a dataset
is NP-hard. A heuristic is thus proposed: greedy search
is performed for each sensitive itemset through its an-
cestors, selecting at each level the parent with the max-
imum support and setting it as the new itemset to be
hidden. At the end of the process, a singleton items is
selected. The algorithm searches through the common
list of transactions that support both the selected item
and the initial sensitive itemset to identify the trans-
action that affects the minimum number of 2-itemsets,
and removes the selected item from this transaction.
Then it propagates the results of this modification to
the graph of frequent itemsets.

In the work [9] the objective is to hide individual

sensitive rules instead of all rules produced by some
sensitive itemsets. The authors propose three strate-
gies which aim at either hiding the frequent sets that
participate in these rules, or reducing the rules’ im-
portance by setting their confidence below the mini-
mum confidence threshold. The decrement of the con-
fidence of a rule is achieved by either increasing the
support of the rule’s antecedent through transactions
that partially support it, or decreasing the support of
the rule’s consequent in transactions supporting both
the antecedent and the consequent. For all three ap-
proaches the authors make the assumption that only
rules supported by disjoint itemsets must be hidden.
An extension of the work in [9] is presented in [28].

In [24, 25] the notion of “unknowns” is introduced
as a mean to prevent discovery of association rules. An
efficient, scalable, one-scan, heuristic algorithm, called
Sliding Window Algorithm (SWA) is introduced in [21].
An important contribution of this work is the extension
of the notion of a disclosure threshold : instead of using
a unique threshold for the entire sanitization process,
a distinct threshold is given for each sensitive rule.

The work in [22] propose two distortion-based
heuristic techniques for selectively hiding sensi-
tive rules. The hiding process may introduce a num-
ber of side effects, either by generating rules which
were previously unknown, or by eliminating exist-
ing non-sensitive rules. A technique for hiding “max-
imal” sensitive patterns using a correlation matrix
was introduced in [17]. Instead of selecting individ-
ual transactions and sanitizing them, the authors
propose a methodology for directly constructing a san-
itization matrix M by observing the relationship that
holds between sensitive patterns and non-sensitive
ones. This matrix is then multiplied by the origi-
nal database D, yielding a new sanitized database D′

which achieves to address the privacy concerns.

The use of border in frequent itemset hiding was first
introduced in [26], as a mean to track the impact of al-
tering transactions. To do so, they compute both the
positive and the negative borders of the itemsets lat-
tice. During the hiding process, instead of consider-
ing every non-sensitive frequent itemset, the proposed
methodology focuses on preserving the quality of the
border, which directly reflects the quality of the san-
itized database that is produced. A novel methodol-
ogy for frequent itemset hiding based on borders’ qual-
ity preservation, is also analyzed in [19]. In this paper,
the authors propose an integer programming optimiza-
tion algorithm for discovering the minimum number of
transactions that need to be sanitized to hide the sen-
sitive itemsets.

3. Hiding Sequential Patterns

In this section we first introduce some notation and
then we formally provide The Sequence Hiding Problem
statement. It is then proven that the problem of find-
ing an optimal sanitization is NP-Hard.

3.1. Problem Definition

In this paper we focus on the discovery of patterns
that are a simple sequence of symbols (or events, or po-
sitions). We will discuss in Section 7 how to extend the
proposed framework to the case of sequential patterns
according to the classical definition [2], i.e., sequences
of sets. Let D be a database of sequences, where each
T ∈ D is a finite sequence of symbols from an alpha-
bet Σ: T = 〈t1, . . . , tTn

〉 where ti ∈ Σ,∀i ∈ {1, . . . , Tn}.
We denote the set of all sequences as Σ∗. A sequence
U ∈ Σ∗ is a subsequence of a sequence V ∈ Σ∗, de-
noted U ⊑ V , if U can be obtained by deleting some
symbols from V . More formally, U = 〈u1, . . . , um〉 is
subsequence of V = 〈v1, . . . , vn〉 if there are m indices
i1 < . . . < im such that u1 = vi1 , . . . , um = vim

.
The support of a sequence S ∈ Σ∗ is the num-

ber of sequences in D that are supersequences of S:
supD(S) = | {T ∈ D |S ⊑ T} |.

The classical problem of mining frequent patterns
requires, given a database D and a minimum support
threshold σ, to compute all patterns that have a sup-
port larger than σ: F(D, σ) = {S ∈ Σ∗ | supD(S) ≥ σ}.

The sequence hiding problem instead is defined as
follows.

Problem 1 (The Sequence Hiding Problem)
Let Sh = {S1, . . . , Sn} with Si ∈ Σ∗,∀i ∈ {1, . . . , n},
be the set of sensitive sequences that must be hid-
den fromD. Given a disclosure thresholdψ, the Sequence
Hiding Problem requires to transform D in a data-
base D′ such that:

1. ∀Si ∈ Sh, supD′(Si) ≤ ψ;

2.
∑

S∈Σ∗\Sh
|supD(S)− supD′(S)| is minimized.

The problem requires to sanitize the input database
D in such a way that a set of sensitive patterns Sh is
hidden, while the most of the information in D is main-
tained. The resulting database D′, is the released one.

The first requirement asks all sensitive patterns to
be hidden in D′, i.e., they must have a support not
more than the given disclosure threshold.

The second requirement asks to minimize the san-
itization effects on all non-sensitive patterns (regard-
less of their frequency). Note that this is equivalent to
keep D′ as similar as possible to D. This is a very gen-
eral definition which does not say how the sanitization
is actually performed.

In the following, for sake of presentation, we assume:

1. to sanitize all occurrences of sensitive patterns,
i.e., ψ = 0;

2. to sanitize sequences in the input database by
means of an abstract operator, called marking that
replaces a selected symbol in a position with a spe-
cial symbol ∆ which is not in Σ.

In the following section we show that the problem of
sanitizing a sequence T ∈ D, introducing the smallest
number of ∆ is a NP-Hard problem. Before that, we
need to introduce the concept of matching set.

Definition 1 (Matching Set) Given two sequences
S ∈ Sh and T ∈ D, we define the matching set of S in
T , denotedMT

S , as the set of all sets with size |S| of in-
dices for which S ⊑ T . For instance, let S = 〈a, b, c〉
and T = 〈a, a, b, c, c, b, a, e〉, in this case we got
MT

S = {(1, 3, 4), (1, 3, 5), (2, 3, 4), (2, 3, 5)}. Moreover,
given a sequence T ∈ D we defineMT

Sh
=

⋃

S∈Sh
MT

S .

The notion of matching set is important to iden-
tify the point in the input database where the sanitiza-
tion process should act. Clearly, if for a given sequence
T ∈ D there is no match, i.e., MT

Sh
= ∅, then T does

not support any sensitive sequence and thus it can be
disclosed as it is. Otherwise it should be transformed
such that all the matches in MT

Sh
are removed. Given

a sequence T ∈ D such that MT
S 6= ∅, we need to in-

troduce a certain number of ∆ symbols in T in such a
way that it is sanitized.

3.2. Optimal Sanitization is NP-Hard

We now prove that the problem of identifying the
smallest possible set of positions to be sanitized by re-
placing their symbol with ∆ is a NP-Hard problem.

Problem 2 (Sequence Sanitization) Given: A se-
quence T and a set of patterns Sh to be hidden. Objec-
tive: Find a set of position indices of T such that, re-
placing the symbols in the positions with ∆ results in
MT

Sh
= ∅.

Theorem 1 Optimal Sequence Sanitization Problem is
NP-Hard.

Proof: We prove that our problem is NP-Hard by
means of a reduction from the Hitting Set Prob-

lem (page 222 of the book by Garey and Johnson on
NP-completeness [14]): given a setE and an a set of sub-
sets C of it, find a smallest subset E′ of E such that E′

contains at least one element from every C.
To make the reduction easy we assume (without loss of

generality) that each x ∈ C is a pair of distinct elements.
The hitting set problem is NP-hard in this special form
too. Without loss of generality let E = {1, 2, . . . , n}.

The instance of the sequence sanitization problem is
obtained as follows. Let Σ = {p1, p2, . . . , pn}, where n =
|E|; T = 〈p1, p2, . . . , pn〉; and Sh = {S1, S2, . . . , S|C|}
where Si is constructed solely from i’th element (let’s de-
note it Ci) of C as follows: Ci = (j, k) (this is by the as-
sumption) where j, k ∈ E and j < k, then Si = 〈pj , pk〉.

Now we show that the reduction above takes polyno-
mial time and it is correct. Clearly the construction takes
polynomial time, in fact it takes O(n+ |C|) time, so lin-
ear in the HittingSetProblem size. Nowwe show op-
timum solution for Optimal Sequence Sanitization Prob-
lem is exactly the optimum solution for E′ for Hitting

Set Problem. The notion of matching set serves in cre-
ating one to one correspondence and provides handling
proof of both directions together.

The proof is based on the fact that the solution to Hit-

ting Set ProblemE′ is equal to the indices of marking
symbols introduced in optimal solution of Sequence Sani-
tization Problem as shown next. Note that size of match-
ing set is |C| and each Ci contributes exactly 1 to this
matching set by the construction. Now consider moving
an element j toE′, this in effect removes subsets ofC con-
taining j from further consideration. This corresponds
to marking position j of T and this clearly removes all
matchings having the position j either as a start or end
position. When we continue the process this way, at the
end the setC in effect becomes empty and this also means
that the matching setMT

Sh
is also empty. �

Since the Optimal Sequence Sanitization Problem is
NP-Hard we do not expect to find an optimal efficient
solution. In other words, we need to resort to heuris-
tics, as done in the next section.

4. A Polynomial Sanitization Algorithm

In this section we define a two-stage sanitization al-
gorithm for hiding a set of sensitive sequences Sh from
a database D. During the first stage, the sequences in
the input database are sanitized introducing the nec-
essary ∆ symbols. During the second stage, we either
delete ∆s or replace them with symbols from Σ. When
the latter approach is chosen, we must take care of the
possibility of re-generating fake patterns and also re-
generating sensitive patterns.

In this paper, we do not consider neither deletion of
∆s, nor replacement, we just focus on the marking op-
eration. Let us point out that the second stage can be
skipped totally in case we allow existence of marking
symbols ∆ in D′: in this case, these symbols may be in-
terpreted as missing values. Note that the marking op-
eration here does not create new subsequences, thus
there is no fake patterns introduced by this process.

Therefore, in the rest of this section we focus on
the first stage, i.e, sanitizing by marking. Here we got

two problems to address: on the local scale, given a se-
quence T ∈ D, how to choose the positions to mark,
and on the global scale, which sequences T ∈ D to san-
itize. One heuristic is provided for both problems.

Intuitively, if there are small number of matches
then the sanitization can be done with less distortion.
So, the size ofMT

Sh
is a crucial issue. Unfortunately this

number is exponential in the length of the sequence in
the worst case.

Lemma 1 (Size of Matching Set) The size of the
matching setMT

S is exponential in the length of sequence
T in the worst case.

Proof: Consider the case where S and T are sequences of
the same single symbol and nothing else. In this case we
got that |MT

S | =
(

|T |
|S|

)

. The middle binomial coefficient,

i.e., when k = n/2 is known for being the largest of the
binomial coefficients

(

n
k

)

, which can be approximated by
an application of Stirling’s formula as:

(

n
n
2

)

∼

√

2

π
n−1/22n

�

The key observation is that certain markings affect
the number of matchings while others do not. In the fol-
lowing we use the usual array notation for sequences:
i.e., S[i] to denote the element of S at position i (with
positions starting from 1).

Example 1 Consider again the case S = 〈a, b, c〉 and
T = 〈a, a, b, c, c, b, a, e〉. In this situation marking the
symbol e (T [8]) does not affect the matching set while
marking the symbol b in T [3] position will causeMT

S = ∅.
Note that the latter marking removes all the matching
which is equivalent of hiding all sensitive pattern in-
stances and thus provides sanitization. Also note that
marking T [1] reduces the number of matches without pro-
viding sanitization, while marking T [1] and T [2] together
provides sanitization.

Since there are many ways of providing sanitization
by choosing different positions for marking, we need to
choose the one with the minimum cost (the cost here
is the number of non sensitive subsequences which are
removed due to the marking). Our local heuristic is:

choose the marking position that is involved in
most matches.

This operation is iterated until MT
Sh

= ∅. We denote
the number of matchings in which the ith position of
T is involved as δ(T [i]).

Example 2 Consider again the case S = 〈a, b, c〉 and
T = 〈a, a, b, c, c, b, a, e〉. We got that δ(T [1]) = 2,
δ(T [2]) = 2, δ(T [3]) = 4, and so on. So, we
choose position T [3] for marking (this causes
T = 〈a, a,∆, c, c, b, a, e〉). Since this selection re-
moves all matchings, no further iteration is needed.

The considered heuristic requires the matching set
MT

Sh
to be computed and then, for each position of

T , the number of occurrences in MT
Sh

counted. It is

shown (Lemma 1) that the size of MT
Sh

may grow ex-
ponentially and the time required to produce this set
is thus also exponential. So, the procedure of generat-
ing this set and then counting occurrences is not feasi-
ble. However, we note that the heuristic only requires
the knowledge of number of matching each position is
involved in, and not necessarily theMT

Sh
itself. Fortu-

nately, this can be computed in polynomial time as ar-
ticulated next.

Lemma 2 (Computation of matching set size)
The computation ofmatching set size can be done in poly-
nomial time.

Proof: Consider S ∈ Sh of length m and T ∈ D of
length n. Let P 1..n

1..m denote the size ofMT
S , and, for in-

stance P 1..n−1
1..m denote the size of the matching set when

the last element of T is removed. It is clear that if S[m] 6=
T [n], then P 1..n

1..m = P 1..n−1
1..m . On the other hand, when

S[m] 6= T [n], then P 1..n
1..m = P 1..n−1

1..m + P 1..n−1
1..m−1. The last

equation holds since, there are two options either match
last symbols or not and these two events are disjoint and
exhaustive. In the boundary conditions, P j

0 = 1,∀j ∈
{0, 1, 2, . . . , n} and P 0

i = 0,∀i ∈ {0, 1, 2, . . . ,m}. By
employing dynamic programming, an algorithm with the
complexity of O(n ∗m) can be obtained. �

The key issue now is how to compute δ(T [i]) for each
position i in T .

Theorem 2 Computing δ(T [i]) for each position i in T ,
can be done in polynomial time.

Proof: It is sufficient to show that this can be done in
polynomial time for any given position i. All matchings
inMT

Sh
can be dichotomized based on whether including

i or not. Consider T ′ = T \ T [i], i.e., t from which we re-
move the ith element. The proof is based on two observa-
tions; 1) the set of matchings not involving i in the orig-
inal matching set does not change 2) deletion of an ele-
ment does not create any new subsequence.

So, δ(T [i]) can be computed as
∣

∣MT
Sh

∣

∣−
∣

∣

∣
MT ′

Sh

∣

∣

∣
. �

In the case ψ = 0 (sensitive sequences must be com-
pletely removed from D), we apply the same algorithm
considered above for all sequences in D. Otherwise, we
have to select the set of sequences to be sanitized. We
rely on the following global heuristic:

sort the sequences in D in ascending order of
matching set size, and remove all matchings in
top |D| − ψ input sequences.

We consider size of matching set as a sorting crite-
ria because if the matching set is small then we can
sanitize the respective sequence with less distortion.

Algorithm 1 Sequence Hiding Algorithm

Input: D, Sh, ψ
Output: D′

1: D′ ← ∅
2: for all T ∈ D do
3: Compute size of MT

Sh

4: D ← Sort D in ascending order w.r.t.MT
Sh

5: Dsanitize ← Top |D| − ψ sequences in D
6: for all T ∈ Dsanitize do
7: T ′ ← Sanitize(T,Sh)
8: D′ ← D′

⋃

T ′

9: D′ ← D′
⋃

(D \ Dsanitize)
10: D′ ← ReplaceMarkingSymbol(D′,Sh, ψ)

Algorithm 1 summarizes the method that we intro-
duced. It computes the matching set size for all T ∈ D
using the strategy described in Lemma 2, and then it
sorts the sequences in ascending order. The first |D|−ψ
sequences in the order are selected to be sanitized.

The sanitization procedure Sanitize(T,Sh) elimi-
nates all occurrences of Sh within a sequence T by in-
troducing the ∆ symbol in some chosen positions. The
positions are selected according to our heuristic: i.e.,
first select the position with the largest δ(T [i]). There-
fore for each position i of T it computes δ(T [i]) us-
ing the algorithm described in the proof of Theorem 2,
then select the best position and sanitize it by chang-
ing the actual symbol with ∆. The process is iterated
untilMT

Sh
= ∅.

5. Handling Constraints

Sensitive patterns to be hidden can be further spec-
ified by means of constraints, such as the usual min-
imum gap, maximum gap and maximum window con-
straints. We denote minimum and maximum gap con-
straints by putting two integers on an arrow:→Mg

mg such
that Mg ≥ mg, where Mg is maximum gap and mg
is minimum gap. For instance, we could consider sensi-
tive the pattern a→0 b→6

2 c, i.e., a directly followed by
b, which in turn is followed by c after at least 2 and at
most 6 other events. Let us consider again the input se-
quence T = 〈a, a, b, c, c, b, a, e〉: while it was supporting
the pattern 〈a, b, c〉 (with a matching set of cardinal-
ity 4), it is not supporting the pattern a→0 b→6

2 c due
to the minimum gap constraint b →2 c. In fact, c ap-
pears after b only with a gap of 0 or 1.

It is worth noting that these constraints are not
specified on the patterns itself, but are on the oc-

currences of a pattern within an input sequence. In
other terms, a constraint is a function C : Σ∗ × Σ∗ →
{true, false} (or alternatively a function C : D× Sh →
{true, false}) . Note also that minimum and maximum
gap constraints are local constraints, that is satisfac-
tion of constraints in two different arrows in the same
pattern is independent. On the other hand, the maxi-
mum window constraints, i.e., the gap between the po-
sition of the first and the last symbol in the pattern
(denoted Ws), is a global constraint, which is satisfied
or not by the occurrence of the whole pattern in an in-
put sequence.

In the rest of this section we extend the framework
introduced in the previous sections, to handle this kind
of constraints. A fundamental step in our framework
is the computation of the size of the matching set. We
next describe how this computation changes when con-
straints are specified.

First we must introduce an auxiliary concept. Given
S ∈ Sh and T ∈ D let P j

k be the number of matches of
the prefix of length k of S ending exactly in T [j].

Example 3 Consider again T = 〈a, a, b, c, c, b, a, e〉
and S = 〈a, b, c〉. In this case we got that, for instance,
P 3

2 = 2, because the length 2 prefix of S (i.e., 〈a, b〉), has
2 matches ending exactly in T [3].

Lemma 3 P j
k can be computed in polynomial time.

Proof: The algorithm is by iterating on j and k. The base
cases are: P 0

0 = 1, P j>0
0 = 0 and P 0

k>0 = 0.

Computing Pj+1
k . This is zero if S[k] 6= T [j + 1]; but

if S[k] = T [j + 1], then P j+1
k =

∑

l=1..j P
l
k−1. The

last result is correct since it gives the total num-
ber of different partial matches of S[1, . . . , k − 1] to
T [1, . . . , j]. Note that, by construction, no match is
counted twice.

Computing Pj
k+1. This is the dual of the previous

case. That is, it is the sum of all distinct matches
of S[1, . . . , k] in T [1, . . . , j − 1]. By definition it is
P j

k+1 =
∑

l=1..j−1 P
l
k if S[k + 1] = T [j] and zero

otherwise.

The cost of whole procedure provided above is O(n2m).
That is we need to fill all entries of a n×m table and each
such operation requires at most n summations. �

Note that the computation in Lemma 3 produces
more information than the computation in Lemma 2.
This is because, it is always easy to get number of
matches just by summing the contributions of last
matches as these are disjoint and collectively exhaus-
tive events. Therefore, we use the computation in
Lemma 3 to push constraints in Algorithm 1.

Lemma 4 (Min and Max gap constraints)
The computation of number of matches ending ex-
actly at an index of T , in case of min and max gap
constraints, can be done using the same strategy em-
ployed in the proof of Lemma 3.

Proof: The key observation is that no constraint can in-
crease the number of unconstrained matches ending in
any position j of T . Let’s define Qj

k as the analog of

P j
k in the constrained case. It is clear that if P j

k = 0,

then Qj
k = 0 from the above observation. Let’s sup-

pose P j
k > 0, then we compute the corresponding entry

in Qj
k as follows. Note that, it is already the case that

S[k] = T [j], so it suffices to find and count all matches
of S[k − 1] in T [1, . . . , j − 1]. This in turn reduces to
S[k − 1] = T [l], l ∈ {1, 2, . . . , j − 1}. That is the in-
dex l shows the location of match for S[k − 1] on T . If
the respective min gap (mg) and max gap (Mg) con-
straints are specified, however, this corresponds to con-
strain the span of index l. Indeed, its new span is the set
{max((j − 1)−Mg, 1), . . . ,max(1, (j − 1)−mg)}. So,
Qj

k =
∑

l=(j−1)−Mg..(j−1)−mg Q
l
k−1. Note that the com-

putation of Q has the same complexity as P and its en-
tries are all same to respective entries ofP in case no min
gap and max gap constraints specified. �

The maximum window constraint can be forced to
find the number of matches for each position j of T . To
compute it, we will make use of the method described
in Lemma 3. The next Lemma formalizes this.

Lemma 5 (Max window constraint) The compu-
tation of number of matches ending exactly at an index
of T , in case of Max window constraint, can be done us-
ing the same strategy employed in the proof of Lemma 3.

Proof: The main observation is that for any ending in-
dex j of matching, the index of the first match should be
between l = j−Ws+1 (if it is negative or zero it is trun-
cated to 1) and j. If we construct the tableP (as described
in Lemma 3) for the T [l, . . . , j] and S, the entry P j−l−1

m

gives the number of matches ending at position T [j] un-
der the maximum window constraint. �

In the case of a conjunction of min/max gap and
maximum window constraints, we can just use table
Qj

k (specified in Lemma 4), instead of P j
k (specified

in Lemma 3), within the computation described in
Lemma 5.

6. Experimental Evaluation

In this section we report the experiments we con-
ducted in order to assess the effectiveness of the pro-
posed approach, in terms of distortion introduced by

the sanitization. We experimented on two datasets;
a real truck movement data used in [12], containing
273 trajectories, and a synthetic car movement data,
containing 300 trajectories, generated in our labora-
tory [15]. The former dataset is referred trucks and
the latter synthetic throughout. In both of these
datasets, the movement sequences are discretized us-
ing 10 by 10 grid where locations are indexed with
XiYj , where i, j ∈ {1, 2, . . . , 10}. Thus the trajecto-
ries are discretized in sequences over an alphabet Σ of
100 symbols. This discretization results in 20.1 (resp.
6.8) locations (symbols), on average, per trajectory for
trucks (resp. synthetic) datasets.

Since there is no other algorithm for sequence sani-
tization in the literature, we measure the effectiveness
of the proposed algorithm against random sanitiza-
tion. Recall that the algorithm employs two orthogonal
heuristics: (i) for selecting the positions to be sanitized
within a given sequence; (ii) for selecting the subset of
sequences to be sanitized. We can easily employ ran-
dom settings along the two orthogonal dimensions to
get different algorithms. This way it becomes possible
to measure the individual and collective contribution
of the two heuristics proposed. To this end, we name
these four algorithms as HH (Heuristic-Heuristic), HR
(Heuristic-Random), RH (Random-Heuristic), and RR
(Random-Random). HR is interpreted as using the
heuristic in a given sequence sanitization but selecting
a random subset to be sanitized, and other 3 schemes
are defined accordingly.

It is worth noting that in random settings, the choice
of positions in a sequence, and the choice of sequences
to be sanitized, are not completely blind: the random
choice is actually performed only among reasonable
choices, i.e., positions and sequences that need to be
sanitized.

We tested three distortion measures as defined next:

• M1 (Data distortion): total number of marking
symbols in D′.

• M2 (Frequent Pattern Distortion):

|F(D, σ)| − |F(D′, σ)|

|F(D, σ)|

• M3 (Frequent Pattern Support Distortion):

1

|F(D′, σ)|

∑

S∈F(D′,σ)

supD(S)− supD′(S)

supD(S)

Note that the measure M1 focuses on the distortion
on the whole data, while measures M2 and M3 focus
only on the distortion on the frequent patterns. More-
over, M1 is an absolute measure while M2 and M3 are
relative measures ranging between 0 and 1.

In the experiments the sequences to be hidden are
Sh = {〈X6Y3,X7Y2〉 , 〈X4Y3,X5Y3〉} for the trucks

dataset and Sh = {〈X2Y7,X3Y7〉 , 〈X5Y7,X5Y6〉} for
the synthetic dataset. In the following we report the
support of these sensitive patterns: this is an impor-
tant information since it strongly influences the distor-
tion introduced by the sanitization.

D = trucks, |D| = 273

sup
D

(〈X6Y3, X7Y2〉) = 36
sup

D
(〈X4Y3, X5Y3〉) = 38

sup
D

(〈X6Y3, X7Y2〉 ∨ 〈X4Y3, X5Y3〉) = 66

D = synthetic, |D| = 300

sup
D

(〈X2Y7, X3Y7〉) = 99
sup

D
(〈X5Y7, X5Y6〉) = 172

sup
D

(〈X2Y7, X3Y7〉 ∨ 〈X5Y7, X5Y6〉) = 200

In Figure 1(a,. . . ,i) we report all experimental re-
sults where random cases are averaged over 10 runs.
The threshold on the X-axis is always the disclosure
threshold ψ. For the experiments on measures M2 and
M3 we always use a minimum frequency threshold
equivalent to the disclosure threshold: i.e., σ = ψ.

Figure 1(a) and (d) report the experimental results
for the M1 measures. They show that HH performs
consistently best and RR consistently worst for both
datasets at all thresholds. Comparing HR and RH re-
veals that up to a certain threshold, sequence level san-
itization heuristics is more important than heuristically
selecting the subset to be sanitized. And vice versa af-
ter that disclosure threshold. This shows the impor-
tance of heuristics at both level too.

The effects of constraints at different levels of thresh-
olds for HH algorithm and for M1 measure, are re-
ported in Figure 1(g),(h) and (i). The plots show that
constraints can help in reducing the unnecessary dis-
tortions. As it is clear from the figure, increasing level
of constraints result in less distortion as well. One no-
table exception to this is with MaxWindow constraint
at thresholds between 35 and 45 for no maxwindow and
and maxwindow=10. At first this could seem meaning-
less, since we expect that the constraints always reduce
distortion. Although this is almost always true (as in-
dicated by the results), it is not guaranteed due to im-
perfectness of the heuristics.

Figure 1(b),(c) report the M2 and M3 distortion
measures on the trucks dataset, while Figure 1(e),(f)
report the same measures on the synthetic dataset.
The results confirm that HH algorithm achieves the
best performance and RR achieves the worst for both
measures on the trucks dataset. This agrees with the
results obtained for measure M1. However, achieving
best performance for M1 do not imply the best perfor-
mance for M2 and M3 as results show (Figure 1(e),(f)).

TRUCKS Dataset

Threshold

0 10 20 30 40 50

D
is

to
rt

io
n

(M
1)

0

20

40

60

80

100

120

140

160

180

200

HH
HR
RH
RR

TRUCKS Dataset

Threshold

20 30 40 50 60 70

D
is

to
rt

io
n

(M
2)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

HH
HR
RH
RR

TRUCKS Dataset

Threshold

20 30 40 50 60 70

D
is

to
rt

io
n

(M
3)

0.00

0.01

0.02

0.03

0.04

0.05

HH
HR
RH
RR

(a) (b) (c)

Threshold

0 10 20 30 40 50

D
is

to
rt

io
n

(M
1)

160

180

200

220

240

260

280

300

HH
HR
RH
RR

SYNTHETIC Dataset

Threshold

20 30 40 50 60 70

D
is

to
rt

io
n

(M
2)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

HH
HR
RH
RR

SYNTHETIC Dataset

Threshold

20 30 40 50 60 70

D
is

to
rt

io
n

(M
3)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

HH
HR
RH
RR

SYNTHETIC Dataset

(d) (e) (f)

TRUCKS Dataset

Threshold

0 10 20 30 40 50

D
is

to
rt

io
n

(M
1)

0

20

40

60

80

100

120

NoMinGap
MinGap=5
MinGap=10
MinGap=15

TRUCKS Dataset

Threshold

0 10 20 30 40 50

D
is

to
rt

io
n

(M
1)

0

20

40

60

80

100

120

NoMaxGap
MaxGap=15
MaxGap=10
MaxGap=5

TRUCKS Dataset

Threshold

0 10 20 30 40 50

D
is

to
rt

io
n

(M
1)

0

20

40

60

80

100

120

NoMaxWindow
MaxWindow=10
MaxWindow=5
MaxWindow=2

(g) (h) (i)

Figure 1. Distortion empirical evaluation.

Recall that the designed algorithm is aimed to reduce
M1 not M2 and M3. But, on the average, it is also ef-
fective in reducing M2 and M3.

7. Extensions

In this section we describe two straightforward ex-
tensions of our method, namely (i) sequential pattern
in the classical setting [2] (i.e., sequences of sets of
items), and (ii) sequences of events annotated with real
time tags. We then discuss a less straightforward road-
map, that we are pursuing in our ongoing work, to-
wards spatio-temporal patterns hiding.

7.1. Itemset Sequences

In principle it is easy to extend both the constrained
and unconstrained sequence hiding framework to item-
set sequences. In this case, each element in position
i of T ∈ D is not an item but a (non-empty) set of
items, usually called itemsets, and similarly, each el-
ement in position j of S ∈ Sh is not an item but a
(non-empty) set of items.

The main difference lies in how to find the matches
of a sequence S ∈ Sh in a input sequence T ∈ D. In
this case, it is not an equality test of items but a set
inclusion test, i.e. if S[j] ⊆ T [i] then we got a match.

Even though the computation of matching setMT
Sh

size under this extension is straightforward, the mark-

ing operation in the case of sequences of itemsets is
more challenging. This is because there can be many
possible alternatives for marking an itemset, in such
a way that the matching itemsets of a sensitive se-
quence are no longer subset. Thus our heuristic needs
to be modified for itemsets. One possible solution is
first choosing the position in T to sanitize using the
same heuristic proposed for simple sequences, and then,
choosing a subset of items for marking in this itemset
which reduces the matching set most. This is a two level
hierarchical heuristic and can be implemented by keep-
ing auxiliary data structures for each itemset in T ∈ D.

7.2. Events with Real-time Tags

As a step towards spatio-temporal knowledge hiding
we could consider sequences of events (either items or
itemsets), where each event is labelled with a time tag.
In this case we can simply rely on the min gap, max
gap and max window constraints discussed in Section
5. In the new scheme these constraints are expressed in
real times. The adaptation is straightforward, since our
basic method needs only the indices computed over T
for all three mentioned constraints. These indices can
be easily located using the associated real time tags.

7.3. Spatio-Temporal Patterns

A trajectory is the continuous movement data of a
mobile entity over a time course. Since trajectories may
contain sensitive patterns, they may need to be sani-
tized before being published.

The simplest form of trajectory pattern is obtained
by discretizing location information, and thus convert-
ing them to event sequences, similarly to what we have
done in our experiments. These event sequences, with
their associated time information can be treated as dis-
cussed in Section 7.2.

However, in general, more sophisticated form of
spatio-temporal patterns can be mined from trajec-
tory data [18, 7], for instance, without using prede-
fined space or time discretization, but extracting the
most interesting discretization as part of the knowl-
edge discovery task. Moreover, a real-world model can
be available as background knowledge: for instance, in
the case of mobility data, the geographic map and the
road network. Such background knowledge can be ex-
ploited to rediscover the hidden patterns, if the sani-
tization has not been performed properly, i.e., consid-
ering such background knowledge as a big constraint
that the sanitized data must satisfy.

Recapitulating, open issues that must be investi-
gated in order to move towards spatio-temporal knowl-
edge hiding, are:

• How to map the real-world background knowledge
to a mathematical model.

• Private pattern language: this language should
be expressive enough to define non-trivial spatio-
temporal patterns. Regular expressions with time
constraints can be a candidate.

• Basic operations for distortion: since the sanitiza-
tion requires removal of pattern occurrences, we
need some operations to do that. The simplest so-
lution is finding all pattern occurrences and re-
moving these trajectories as a whole. But there
are more elegant operations like swapping loca-
tions, swapping partial trajectories, replacing lo-
cations, shifting locations in time, generalizations
in time and space. Any sanitization operation cho-
sen should respect the constraint given by the real-
world background model.

8. Conclusion and Future Work

To the best of our knowledge, this is the first work
addressing the problem of knowledge hiding in sequen-
tial pattern mining. We have proven that the optimal
sequence hiding problem, sanitization is NP-Hard and,
thus we have introduced a heuristic algorithm which
aims less distortion while providing sanitization. The
algorithm is flexible in the sense that it allows a disclo-
sure threshold and three practical constrains (min gap,
max gap and max window) to be specified. The carried
out experiments demonstrate the effectiveness of the
approach. We discussed its straightforward extensions
to sequences of itemsets and sequences of events with
real time tags. We also explained the road-map that
we intend to follow towards spatio-temporal knowledge
hiding.

Other issues worth of further investigations are:

• Efficiency: the basic theory developed is consid-
ered in terms of effectiveness with straightforward
implementations. Efficient implementation is im-
portant especially for large datasets.

• Other alternatives heuristics such as: (i) auto-
correlation of sequence (high auto-correlation
means small number of distinct subsequences),
(ii) length of sequence (long sequences poten-
tially provide support to a larger number of
subsequences).

• Multiple disclosure thresholds: in case the sensi-
tivity level of patterns differs. Though there is a

very simple solution to this problem in the cur-
rent algorithm (just take the minimum of all), it
may be handled in a relatively novel way.

• Patterns as arbitrary regular expressions (REs):
the work presented in this paper is for a subclass
of REs. It is a particular interest to search for how
arbitrary REs can be used in this framework.

Acknowledgment. This work is supported by the EU
project GeoPKDD (IST-6FP-014915). Osman Abul is
fully supported by an ERCIM post-doc scholarship.
Authors wish to thank Mirco Nanni for the useful dis-
cussion on dynamic programming.

References

[1] D.AgrawalandC.C.Aggarwal. Onthedesignandquan-
tification of privacy preserving data mining algorithms.
In Proceedings of the 20th ACM Symposium on Princi-
ples of Database Systems (PODS 2001), pages 247–255,
2001.

[2] R. Agrawal and R. Srikant. Mining sequential patterns.
InEleventh International Conference onDataEngineer-
ing (ICDE’95), pages 3–14, Taipei, Taiwan, 1995.

[3] R. Agrawal and R. Srikant. Privacy-preserving data
mining. In Proceedings of the 2000 ACM SIGMOD In-
ternational Conference on Management of Data (SIG-
MOD 2000), pages 439–450, 2000.

[4] M.Atallah,E.Bertino,A.Elmagarmid,M. Ibrahim,and
V.S.Verykios. Disclosure limitationof sensitive rules. In
Proceedings of the 1999 IEEEKnowledge andDataEngi-
neering Exchange Workshop (KDEX’99), pages 45–52,
1999.

[5] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi.
Anonymity preserving pattern discovery. VLDB Jour-
nal. Accepted for publication 2006.

[6] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi.
Blocking anonymity threats raised by frequent itemset
mining. In Proceedings of the Fifth IEEE International
Conference on Data Mining (ICDM 2005), pages 561–
564, 2005.

[7] H. Cao, N. Mamoulis, and D. W. Cheung. Mining fre-
quent spatio-temporal sequential patterns. In Proceed-
ings of the 5th IEEE International Conference on Data
Mining (ICDM 2005), 27-30 November 2005, Houston,
Texas, USA.

[8] C. Clifton and D. Marks. Security and privacy implica-
tions of data mining. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of
Data (SIGMOD’96), pages 15–19, Feb. 1996.

[9] E. Dasseni, V. S. Verykios, A. K. Elmagarmid, and
E. Bertino. Hiding association rules by using confidence
and support. In Proceedings of the 4th International
Workshop on Information Hiding, pages 369–383, 2001.

[10] W. Du and Z. Zhan. Using randomized response tech-
niques for privacy-preserving data mining. In Proceed-
ings of the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD
2003), pages 505–510, 2003.

[11] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke.
Privacy preserving mining of association rules. In Pro-
ceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD 2002), pages 343–364, 2002.

[12] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodor-
idis. Nearest neighbor search on moving object trajec-
tories. In SSTD’05, 2005.

[13] A. Friedman, A. Schuster, and R. Wolff. k-anonymous
decision tree induction. In Proc. of PKDD ’06, pages
151–162, Berlin, Germany, 2006. Springer-Verlag.

[14] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1979.

[15] F. Giannotti, A. Mazzoni, S. Puntoni, and C. Renso.
Synthetic generation of cellular network position-
ing data. In 13th ACM International Sympo-
sium on Advances in Geografic Information Systems
(ACMGIS’05), Bremen, Germany, 2005.

[16] M. Kantarcioglu, J. Jin, and C. Clifton. When do
data mining results violate privacy? In Proceedings of
the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2004),
pages 599–604, 2004.

[17] G. Lee, C.-Y. Chang, and A. L. P. Chen. Hiding sen-
sitive patterns in association rules mining. In 28th An-
nual International Computer Software and Applications
Conference (COMPSAC 2004), pages 424–429, 2004.

[18] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y.Tao, andD.W.Cheung. Mining, indexing, andquery-
ing historical spatiotemporal data. In Proceedings of
the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2004).

[19] S. Menon, S. Sarkar, and S. Mukherjee. Maximizing ac-
curacy of shared databases when concealing sensitive
patterns. Information Systems Research, 16(3):256–
270, 2005.

[20] D. E. O’Leary. Knowledge discovery as a threat to data-
base security. In G. Piatetsky-Shapiro and W. J. Fraw-
ley, editors, Knowledge Discovery in Databases, pages
507–516. AAAI/MIT Press, 1991.

[21] S. R. M. Oliveira and O. R. Zäıane. Protecting sensi-
tive knowledge by data sanitization. In Proceedings of
the Third IEEE International Conference on Data Min-
ing (ICDM 2003), pages 211–218, 2003.

[22] E. D. Pontikakis, A. A. Tsitsonis, and V. S. Verykios.
An experimental study of distortion-based techniques
for association rule hiding. In Proceedings of the 18th
Conference on Database Security (DBSEC 2004), pages
325–339, 2004.

[23] S. Rizvi and J. R. Haritsa. Maintaining data privacy in
association rule mining. In Proceedings of the 28th In-
ternationalConference onVeryLargeDatabases (VLDB
2002), 2002.

[24] Y. Saygin, V. S. Verykios, and C. Clifton. Using un-
knowns to prevent discovery of association rules. ACM
SIGMOD Record, 30(4):45–54, 2001.

[25] Y. Saygin, V. S. Verykios, and A. K. Elmagarmid. Pri-
vacy preserving association rule mining. In Proceed-
ings of the 2002 International Workshop on Research Is-
sues in Data Engineering: Engineering E-Commerce/E-
Business Systems (RIDE 2002), 2002.

[26] X. Sun andP. S. Yu. Aborder-based approach for hiding
sensitive frequent itemsets. In Proceedings of the Fifth
IEEE International Conference on Data Mining (ICDM
2005), pages 426–433, 2005.

[27] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza,
Y. Saygin, and Y. Theodoridis. State-of-the-art in pri-
vacy preserving data mining. ACM SIGMOD Record,
33(1):50–57, 2004.

[28] V. S. Verykios, A. K. Emagarmid, E. Bertino, Y. Saygin,
and E. Dasseni. Association rule hiding. IEEE Transac-
tions on Knowledge and Data Engineering, 16(4):434–
447, 2004.

