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Abstract

BACKGROUND: In Mediterranean grazed woodlands, microclimate changes induced by trees influence the growth and devel-
opment of the understory, although very little is known about its polyphenolic composition in relation to light intensity. We
investigated the bioactive compounds and antioxidant capacity of different legume-based swards and variations as a result of
full sunlight and partial shade. The research was carried out in a cork oak agrosilvopastoral system in Sardinia.

RESULTS: The highest values of (1,1-diphenyl-2-picrylhydrazyl) (DPPH) reached 7 mmol Trolox equivalent antioxidant capac-
ity 100 g−1 dry weight (DW), total phenolics 67.1 g gallic acid equivalent kg−1 DW and total flavonoids 7.5 g catechin equiva-
lent kg−1 DW. Compared to full sunlight, partial shade reduced DPPH values by 29% and 42%, and the total phenolic content
by 23% and 53% in 100% legume mixture and semi-natural pasture, respectively. Twelve phenolic compounds were detected:
chlorogenic acid in 80% legume mixture (partial shade) and verbascoside in pure sward of bladder clover (full sunlight) were
the most abundant.

CONCLUSION: Light intensity significantly affected antioxidant capacity, composition and levels of phenolic compounds. The
results of the present study provide new insights into the effects of light intensity on plant secondary metabolites from
legume-based swards, highlighting the important functions provided by agroforestry systems.
© 2018 Society of Chemical Industry

Keywords: understory; Trifolium spumosum; bioactive compounds; HPLC; sunlight; partial shade

INTRODUCTION
In Europe, traditional agroforestry systems with a high natural and
cultural value have been re-evaluated because of their important
effects on ecosystem services and biodiversity.1 Agroforestry sys-
tems include Mediterranean grazed woodlands, which are dom-
inated by oak species, such as in Iberian dehesas and montados
and Sardinian agrosilvopastoral farms.2

Plant assemblages vary from below-tree canopy areas to open
areas3 and, in some Mediterranean wood pastures, fodder crops
are also grown to enhance the herbage on offer.4 Forage mix-
tures mainly based on legume species or also including grasses
have been widely established to improve pasture productivity
and quality.5–8 Other than supporting livestock farming, cork pro-
duction and recreational activities, Mediterranean grazed wood-
lands provide a wide range of ecosystem services, such as carbon
sequestration, water conservation, control of nutrient leaching,
soil erosion and wildfires.9–12

Wood plants also modify the microclimate by reducing evapo-
transpiration and moderating extremes in soil temperatures and
daily photosynthetically active radiation. Microclimate changes
induced by woody plants influence the growth, development
and maturity of the understory vegetation and, consequently,

affect the quantity and quality of forage.13 Herbage produc-
tion usually decreases as light intensity decreases.14 By contrast,
Anderson and Moore15 found a higher production of the under-
story subjected to moderate light intensity in an annual pasture
vegetation growing under Pinus radiata D. Don. Kyriazopoulos
et al.16 reported similar results for natural herbaceous vegetation
growing under Prunus avium L. The challenge for managers is
thus to select the most appropriate forage species because this
has a significant impact on the success of the entire silvopas-
toral system. Kyriazopoulos et al.16 confirmed that grass–legume
mixtures are more productive and of a higher nutritive value
than pure grass stands under both full sun and moderate shade
conditions.
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Sistema Produzione Animale in Ambiente Mediterraneo, Traversa La Crucca 3,
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However, Mediterranean grazed woodlands should be regarded
not only as a primary forage supply but also as a valuable
and rich source of plant secondary metabolites, as reported
in ethno-pharmacology, ethnobotanical, and ethno-veterinary
studies.17–20

Among plant secondary metabolites, phenolics are a class of
commonly-found bioactive compounds, which includes several
groups of different substances. Phenolic acids, flavonoids and tan-
nins are the most important compounds as a result of their bio-
logical activities, and especially their antioxidant properties21–23

and related implications in animal nutrition and welfare.24 Levels
of plant antioxidants vary as a result of temperature, light inten-
sity, harvesting season and genetic factors.25 Studies on vegetable
crops have reported that the antioxidant activity and phenolic con-
tent of spinach and sweet potato leaves were greatly affected by
artificial shade and sunlight intensity.26,27 The highest content of
total polyphenols and antioxidant activity of green edible ama-
ranth leaves were found in plants grown in full sunlight.28 Mole
et al.29 reported an increase in polyphenols with increased light
intensity in leaves of Acacia pennata (L.) Wild, Cynometra leonensis
L., Diopyros thomasii Hutch. & Dalz. and Trema guineensis Schum. &
Thonn., which should be explained in terms of plant physiology
and intermediate metabolism rather than resource allocation or
a direct response to herbivory. The distribution and abundance
of many phenolics can be explained as the plant response to
preventing or minimizing photodamage, and not as a trade-off
in resource allocation in limited resource environments, or as a
response to herbivory.30 High light intensity has been related to
the higher antioxidant capacity and total polyphenol concentra-
tions in berries (Berberis microphylla G. Forst) and Thymus vulgaris
L.31 Finally, flavonoids serve multiple functions in photoprotection
as ultraviolet (UV)-screening against antioxidant functions and as
antioxidants in photoprotection.32

Despite the important implications and potential benefits from
the exploitation of plant secondary metabolites, very little is
known regarding the polyphenolic composition of understory in
relation to the contrasting exposure to full sunlight or shade. We
hypothesize that legume plant secondary metabolites might be
affected by different light conditions. The main aims of the present
study were (i) to determine the level of bioactive compounds and
antioxidant capacity of different legume-based swards and (ii) to
investigate their qualitative and quantitative variations caused by
the contrasting exposure to full sunlight and shade that typically
occurs in a Mediterranean silvopastoral system.

MATERIALS AND METHODS
Locations, experimental design and legume-based swards
The research was carried out between 2015 and 2016 in a private
farm (Buddusò municipality, 40∘37′99′′N, 9∘15′33′′ E, elevation
700 m a.s.l.) located in north eastern Sardinia (Italy). The climate
is Mediterranean with hot dry summers. Long-term rainfall is
840 mm and the average annual temperature is 12.7 ∘C. From
September 2015 to August 2016, the annual rainfall reached
680 mm and was 20% lower than the climatic mean; temperatures
differed slightly from the long-term values.

The area is characterized by extensive agro-silvopastoral sys-
tems, typical of northern Sardinia and similar semi-arid areas of
the Mediterranean basin. Land is used above all for traditional
sheep/cattle farming with pasture as the primary feeding source.
Natural pastures may occasionally be fertilized, and/or ploughed
for the establishment of annual forage crops traditionally

represented by barley, oats, oats-vetch mixtures and annual
Trifolium spp.

The soil, classified as Typic, Dystric and Lithic Leptsol,33 has an
acid pH (5.4) and sandy texture, with contents of nitrogen (0.2%),
phosphorous (5.7 ppm), organic matter (3.7%) and organic carbon
(2.3%).

Open areas with full sunlight exposition (FS) and areas under
tree canopy with partial shade conditions (PS), under a cork oak
(Quercus suber L.) density of 450 trees ha−1, were carefully identi-
fied. Light levels of photosynthetically active radiation were mea-
sured using a SunScan canopy analysis system (Delta-T Devices,
Cambridge, UK). For both FS and PS, the following legume-based
swards were compared:

(1) CNR ISPAAM mixture (L80GMIX), with 80% legume composi-
tion by Trifolium subterraneum L. (40%) and Medicago polymor-
pha L. (40%) and 20% Lolium rigidum Gaudin;

(2) Fertiprado commercial legume mixture (L100MIX), with 100%
annual legume composition, 60% of which comprised Tri-
folium subterraneum L. The remaining legume species were
Ornithopus sativus Brot. (20%), Trifolium incarnatum L. (6%) Tri-
folium michelianum Savi (4.5%) Trifolium resupinatum L. (3%)
Trifolium vesiculosum (3%) Trifolium isthmocarpum Brot. (1.5%)
and Trifolium glanduliferum Boiss. (1%).

(3) Unsown semi-natural pasture (L60SNPA), with 60% legume
composition and a predominance of native unsown Trifolium
subterraneum L. Other legumes were Trifolium spp. Ornithopus
compressus L. Non-legume species were mainly represented by
Lolium and Avena spp., Asphodelus macrocarpus Parl., Hyoseris
radiata L., Carlina corymbosa L., Sonchus oleraceus L., Plantago
lanceolate L., Raphanus raphanistrum L., Rumex spp, Daucus
carota L., Echium plantagineum L. and Thapsia garganica L.

(4) Bladder clover, Trifolium spumosum L., pure sward (100BCLO),
elite Sardinian accession.

Sown legume-based swards were established in September
2015, after soil ploughing and seedbed preparation. Before sow-
ing, all plots were fertilized with 100 kg ha−1 of P2O5. Plot sizes
were 5 × 3 m and plots were arranged in a completely randomized
design with three replications.

Plant materials and sample preparation
Samples were harvested from each plot. In late spring, 240 days
after sowing, shoot forage samples were cut from each plot at
ground level, approximately at 5 cm, and immediately frozen in
liquid nitrogen. Shoot subsamples were then freeze dried with
Heto Lyolab 3000 (Heto-Holten A/S, Allerød, Denmark), ground
to a fine powder and stored at −20 ∘C until analysis. Ground
shoot samples (50 mg) were treated with a 2.5 mL methanol/water
(8:2 v/v) mixture and shaken for 60 min. The samples were then
centrifuged for 10 min at 1683 × g and the supernatant was stored
at −20 ∘C until analysis. All the samples were analyzed in triplicate.

Total phenolic content
Total phenolics (TotP), non-tannic phenolics (NTP) and tannic phe-
nolics (TP) of extracts were determined using the Folin–Ciocalteau
reagent, in accordance with procedures previously described by
Piluzza and Bullitta.34 Results were expressed as g of gallic acid
equivalent (GAE) kg−1 dry matter of plant material (g GAE kg−1

DM) by means of a calibration curve of gallic acid (5–30 mg L−1,
r2 = 0.999).
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The butanol assay34 was used for quantification of the
extractable condensed tannin content from samples, expressed
as g delphinidin equivalent per kg−1 dry matter (g DE kg−1 DM)
by means of a calibration curve of delphinidin (10–50 mg L−1,
r2 = 0.988).

Total flavonoid content
Total flavonoids (TotF) were quantified by colorimetric assay
with the AlCl3 method, in accordance with procedures reported
previously.22 TotF in samples were quantified by a catechin calibra-
tion curve (2.5–20𝜇g mL−1, r2 = 0.999). The results were expressed
as g of catechin equivalent (CE) kg−1 dry matter (g CE kg−1 DM).

Determination of antioxidant capacity
Antioxidant capacity was determined by means of the
2,2′-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)
diammonium salt (ABTS) and by 1,1-diphenyl-2-picrylhydrazyl
(DPPH) assays35 with some modifications.22 Trolox
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) was
used as the reference standard. For each assay, 0.1 mL of
diluted sample was used, a calibrate standard curve with Trolox
(2–12𝜇mol L−1; r2 = 0.997 for the DPPH assay and r2 = 0.998 for
the ABTS assay) was made. The results were expressed in terms
of Trolox equivalent antioxidant capacity (TEAC), as mmol Trolox
equivalents 100 g−1 dry weight of plant material (mmol TEAC
100 g−1 DW).

Reverse phase-high-performance liquid chromatography
(HPLC) analysis of phenolic compounds
The phenolic compounds were analysed on an Agilent 1260
series HPLC instrument (Agilent Technologies, Palo Alto, CA, USA)
equipped with a quaternary pump (G1311B), degasser, column
thermostat (G1316A), auto-sampler (G1329B) and diode array
detector (G1315 B).

Chromatographic separation was carried out according to Karimi
et al.36 with some modifications, mainly with respect to the use of
the column and gradient elution.

The column was a Zorbax Eclipse plus C18 (250 × 4.6 mm, 5 𝜇m;
Agilent Technologies). The flow rate was 0.8 mL min−1 and the col-
umn temperature was set to 30 ∘C. The injection volume was 10 𝜇L,
and the detection wavelengths were set to 280 and 350 nm. Elu-
tion was carried out with a binary mobile phase of solvent A (water
and 0.1% trifluoroacetic acid) and solvent B (acetonitrile). The gra-
dient elution was modified as follows: 0–5 min from 5% to 15%
B, held for 5 min; 10–20 min from 15% to 25% B, held for 5 min;
25–30 min from 25% to 35% B, 30–35 min from 35% to 45% B,
35–40 min from 45% to 97% B, held for 5 min; and 45–60 min
from 97% to 5% B. The post-running time was 5 min. Phenolic
compounds were monitored at 280 and 350 nm. Data were pro-
cessed using the OpenLAB CDS ChemStation edition 2012 (Agilent
Technologies). Identification and peak assignment of polypheno-
lic compounds was based on a comparison of their retention times
and spectra with analytically pure standard compounds, as well
as by adding the standard solution to the sample. The concentra-
tions of 12 standards [neochlorogenic acid, chlorogenic acid, rutin,
verbascoside, 3,5-di-O-E-caffeoylquinic acid (3,5-DCQ), naringenin,
isorientin, p-coumaric acid, luteolin 7-O-𝛽-D-glucoside, luteolin,
quercetin, gallic acid] were calculated in accordance with the
external standard method curve (four known concentrations for
each standard in duplicate, r2 = 0.99) and expressed in g kg−1 DW.

Statistical analysis
Data were analysed using Statgraphics Centurion XVI.37 Statistical
significance was performed by two-way analysis of variance to test
for differences between different legume-based swards and light
intensity of full sunlight and partial shade. Fisher’s test and Tukey’s
honestly significant test were used for post-hoc tests of significant
differences between means as indicated. The regression analyses
between polyphenols and antioxidant capacity were calculated
using Excel 2016 (Microsoft Corp., Redmond, WA, USA). P < 0.05
was considered statistically significant.

RESULTS AND DISCUSSION
Light interception by cork trees was 85%, 77% and 70% in Jan-
uary, April and May, respectively as a result of the different solar
azimuth angle of the seasons. Therefore, only 15%, 23% and 30%
of the effective light radiation reached the understory of different
legume-based swards.

The antioxidant capacity, total phenolic and total flavonoid
contents of the different legume-based swards were significantly
affected by the contrasting conditions of light intensity, as well as
by the type of legume-based sward (Figs 1–7).

L100MIX and L60SNPA had the highest antioxidant capacity
values and total phenolic and total flavonoid contents under FS.
The peak values of DPPH were 6.6 and 7.0 mmol TEAC 100 g−1 DW,
(Fig. 1), total phenolics were 67.1 and 50.1 g GAE kg−1 DW (Fig. 3),
and total flavonoids were 6.4 and 7.5 g CE kg−1 DW, respectively
(Fig. 6). Compared to full sunlight, PS reduced DPPH values by
29% and 42%, and the total phenolic content by 23% and 53%, in
L100MIX and L60SNPA, respectively, and PS also reduced the total
flavonoid content by 51% in L60SNPA.

L100MIX showed a condensed tannin (CT) content of
2.9 g DE kg−1 in the FS, which was twice as high as in PS. By
contrast, PS significantly increased the CT content in 100BCLO
by 13% (Fig. 7). Unfortunately, the CT concentrations found were
too low to affect protein solubility and degradation in the rumen
because the suggested minimum plant CT concentration needed
to make forage bloat-safe is 5 g kg−1 DM or greater.24,38 However,
the results obtained suggest that the effects of light intensity
should be investigated on legume species containing higher
and/or optimal CT levels. The synthesis of flavonoids and pheno-
lic acids depends on ecological and physiological factors. Light
has been shown to be the key environmental factor influencing
phenolic acids and flavonoids synthesis in most plants.39

A study on the effects of shade on the synthesis and accumu-
lation of polyphenolic compounds in ginger (Zingiber officinale
Roscoe) varieties indicated that phenolic acids and flavonoids are
completely light dependent and that their biosynthetic rate is
related to light intensity.39 Conversely, 100BCLO showed that total
flavonoids were unaffected by light intensity, whereas condensed
tannins were higher in PS (Figs 6 and 7), indicating a legume
species response.

Significant correlations were found between the antioxidant
capacity by means of the ABTS and DPPH methods and the
phenolic content (Table 1). ABTS and total phenolics showed
a correlation of r2 = 0.8061 (full sunlight) and r2 = 0.8558 (par-
tial shade), whereas statistically significant correlations were not
found between antioxidant capacity and condensed tannins. Sig-
nificant correlations were also found between antioxidant capacity
and TotP and TotF in both FS and PS. Our findings agree with many
studies regarding the relationship between antioxidant activity
and total phenolic compounds.23,35
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Figure 1. Antioxidant capacity (DPPH method) in shoot of legume-based swards growing in full sunlight (FS) and partial shade (PS). Vertical bars represent
confidence interval. L80GMIX, CNR ISPAAM mixture; L100MIX, Fertiprado commercial mixture; L60SNPA, Unsown semi-natural pasture; 100BCLO, Trifolium
spumosum L., pure sward.

Table 1. Correlations (r2) established between total phenolics (ToTP), non-tannic phenolics (NTP), tannic phenolics (TP), condensed tannins (CT),
total flavonoids (ToTF) and antioxidant capacity (ABTS, DPPH) from shoot of legume-based swards growing in full sunlight (FS) and with partial shade
(PS)

ABTS DPPH Ptot
FS PS FS PS FS PS

DPPH 0.9325*** 0.6230*

ToTP 0.8061*** 0.8558*** 0.7057** 0.5680*

NTP 0.6682** 0.9672*** 0.4679* 0.6000* 0.8341*** 0.8471***

TP 0.7229** 0.6106* 0.7491*** 0.4317* 0.8927*** 0.9102***

CT 0.0841 ns 0.1620 ns 0.0191 ns 0.0940 ns 0.4381* 0.0113 ns
ToTF 0.8924*** 0.7733** 0.8888*** 0.4014* 0.6108* 0.5700*

***P ≤ 0.0001. **P ≤ 0.001. *P ≤ 0.05.
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Figure 2. Antioxidant capacity (ABTS method) in shoot of legume-based
swards growing in full sunlight (FS) and partial shade (PS). Vertical bars
represent confidence interval. L80GMIX, CNR ISPAAM mixture; L100MIX,
Fertiprado commercial mixture; L60SNPA, Unsown semi-natural pasture;
100BCLO, Trifolium spumosum L., pure sward.

Among the 30 individual phenolic compounds that were
screened, 12 phenolic compounds were detected in the different
legume-based swards subjected to a contrasting light inten-
sity. These were neochlorogenic acid, chlorogenic acid, rutin,
verbascoside, 3,5-DCQ, naringenin, isorientin, p-cumaric acid,
luteolin-7-O-glucoside, luteolin, quercetin and gallic acid. Seven of
these compounds are reported in Table 2 because they are present
and common in almost all the various legume-based swards.
Of the compounds not reported in Table 2, p-coumaric acid
(0.11 g kg−1 in FS and 0.06 g kg−1 in PS) and luteolin-7-O-glucoside
(4.25 g kg−1 in FS and 1.15 g kg−1 in PS) were detected only in
L100MIX and only traces of L80GMIX in FS. In addition, quercetin
was detected in L60SNPA (0.07 g kg−1 in FS and 0.035 g kg−1 in PS,
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Figure 3. Total phenolic contents (Tot P, g GAE kg−1 DM) in shoot of
legume-based swards growing in full sunlight (FS) and with partial shade
(PS). Vertical bars represent confidence interval. L80GMIX, CNR ISPAAM
mixture; L100MIX, Fertiprado commercial mixture; L60SNPA, Unsown
semi-natural pasture; 100BCLO, Trifolium spumosum L., pure sward.

respectively) and in 100BCLO only in FS (0.062 g kg−1). Luteolin
was found only in L60SNPA (0.11 and 0.03 g kg−1 in FS and PS,
respectively) and below the detection limit in L80GMIX in FS.
L60SNPA was the only legume-based sward containing gallic acid
(0.163 g kg−1 in PS but below the detection limit in FS).

In an HPLC analysis of the polyphenolic composition in a perma-
nent mountain pasture, similar to our results, Fraisse et al.40 iden-
tified the following phenolic acids: neochlorogenic acid, chloro-
genic acid, verbascoside and 3,5-DCQ, as well as flavonoids such as
luteolin-7-O-glucoside and isorientin. In the same study, 1,5-DCQ,
schaftoside and apigenin were also detected; however, these phe-
nolics were not detected in the present study.
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Figure 4. Non-tannic phenolic contents (NTP, g GAE kg−1 DM) in shoot of
legume-based swards growing in full sunlight (FS) and partial shade (PS).
Vertical bars represent confidence interval. L80GMIX, CNR ISPAAM mixture;
L100MIX, Fertiprado commercial mixture; L60SNPA, Unsown semi-natural
pasture; 100BCLO, Trifolium spumosum L., pure sward.
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Figure 5. Tannic phenolic contents (TP, g GAE kg−1 DM) in shoot of
legume-based swards growing in full sunlight (FS) and with partial shade
(PS). Vertical bars represent confidence interval. L80GMIX, CNR ISPAAM
mixture; L100MIX, Fertiprado commercial mixture; L60SNPA, Unsown
semi-natural pasture; 100BCLO, Trifolium spumosum L., pure sward.
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Figure 6. Flavonoid contents (Tot F, g CE kg−1 DM) in shoot of
legume-based swards growing in full sunlight (FS) and with partial
shade (PS). Vertical bars represent confidence interval. L80GMIX, CNR
ISPAAM mixture; L100MIX, Fertiprado commercial mixture; L60SNPA,
Unsown semi-natural pasture; 100BCLO, Trifolium spumosum L., pure
sward.

Regardless of the light intensity conditions, neochlorogenic and
chlorogenic acids were always detected (Table 2). Rutin was not
detected in L60SNPA grown in PS; 3,5-DCQ was not found in
L80GMIX in PS and in 100BCLO grown in FS. Under PS, L80GMIX
showed a higher content of neochlorogenic acid (0.35 g kg−1) and
a higher content of rutin (0.3 g kg−1) in FS.

In FS, L100MIX revealed a higher content of neochlorogenic
acid (0.08 g kg−1), chlorogenic acid (2.03 g kg −1), rutin (0.85 g kg−1)
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Figure 7. Condensed tannins (CT, g DE kg−1 DM) in shoot of legume-based
swards growing in full sunlight (FS) and with partial shade (PS). Vertical bars
represent confidence interval. L80GMIX, CNR ISPAAM mixture; L100MIX,
Fertiprado commercial mixture; L60SNPA, Unsown semi-natural pasture;
100BCLO, Trifolium spumosum L., pure sward.

and 3,5-DCQ (0.31 g kg−1) than PS; naringenin was higher in PS
(0.44 g kg−1).

Fraisse et al.40 reported values of neochlorogenic acid at three
stages of pasture growth (0.17, 0.65 and 0.26 g kg−1) and chloro-
genic acid (1.80, 4.90 and 2.36 g kg−1), which were similar to our
results. Verbascoside was not detected in L100MIX and the con-
tents in the other legume-based swards were in accordance with
those of Fraisse et al.40 Chlorogenic acid in PS L80GMIX and ver-
bascoside in 100BCLO in FS were found to be the most abun-
dant phenolic acids. Among the flavonoids, luteolin-7-O-glucoside
was the most abundant in L100MIX in FS, and isorientin was
the most abundant in L60SNPA in PS. As a result of their valu-
able antioxidant activity, several studies have highlighted the
potential role of these compounds in preventing various dis-
eases associated with oxidative stress, such as cancer and car-
diovascular and neurodegenerative diseases.41,42 Chlorogenic acid
is an ester of caffeic acid with quinic acid that occurs in many
plants and fruits. A recent study reported that a sheep diet
supplemented with coffee pulp (up 16%) did not affect their
productive parameters, although it increased the antioxidant
capacity of the diet and the production of volatile fatty acids in
the rumen, at the same time as reducing the oxidative stress.43

The coffee pulp used in this experiment contained predomi-
nantly chlorogenic acid as an antioxidant. As a result of the pre-
dominance of chlorogenic acid found in legume-based sward,
it is reasonable to assume that chlorogenic acid might signifi-
cantly contribute to the antioxidative properties of legume-based
sward extracts.

Based on the results of the present study, the legume pure sward
100BCLO grown in full sunlight is rich in verbascoside and there-
fore could be a natural source of this compound. Verbascoside is
a caffeoyl phenylethanoid glycoside, mainly found in the families
of the Lamiales order, with antimicrobial, anti-inflammatory and
antioxidant properties.44,45 However, the presence of verbas-
coside has not been reported in other HPLC studies on other
clover species, namely T. resupinatum L., Trifolium pratense L.
and Trifolium repens L.46–48 The effects of the administration of
verbascoside on the plasma oxidative status and specific blood
and milk production parameters have been evaluated in Lacaune
ewes during the peripartum period.49 It was reported that the
use of verbascoside provided benefits in terms of several blood
parameters, oxidative status and milk production, particularly

in the immediate postpartum period. Casamassima et al.50 and
Vizzarri et al.51 reported the supplementation of rabbit feeding
with plant extracts, also based on verbascoside, with positive
effects on blood parameters, plasma oxidative markers, produc-
tive performance and meat quality, as well as possible beneficial
effects on animal health. It is worth highlighting that blad-
der clover (100BCLO) is a very promising aerial seeding annual
legume, which represents a productive alternative to annual
Medicago spp. in fine-textured Mediterranean soils.52 To our
knowledge, this is the first reported chemical characterization of
T. spumosum shoot.

The oral administration of bay leaf (Laurus nobilis L.) and its
isolated flavonoids, such as kaempferol, quercetin and luteolin,
were shown to be useful in reducing hyperlipidemia of local
Iraqi female rabbits.53 Isorientin was only detected in L100MIX
and L60SNPA with a higher content in PS, 0.23 and 4.78 g kg−1,
respectively. Fraisse et al.40 reported values in isorientin of 1.05,
0.84, 0.56 g kg−1.

In the leaves of Medicago sativa L., Karimi et al.36 found phe-
nolic acids and flavonoids, including gallic acid, naringenin and
quercetin, which was a similar finding to the results of the present
study, except for rutin, which was absent in M. sativa leaves.36

By contrast, Karimi et al.36 found apigenin, pyrogallol, caffeic acid,
syringic acid, kaempferol and myricetin, which were not detected
in the present study.

The striking feature is that each phenolic compound showed dif-
ferences as a result of the light intensity and type of legume-based
swards, leading to variable concentrations and composition of
polyphenols contained in the forage of legume-based swards on
offer to ruminants.

Some studies have reported a higher polyphenol content in full
sunlight;28,31 however, our results also revealed a higher content
of isorientin and 3,5-DCQ in L60SNPA, as well as of naringenin
in L100MIX, with a significant (P ≤ 0.01) effect of PS on the syn-
thesis of phenolic acids and flavonoids (Table 2). Ghasemzadeh
and Ghasemzadeh39 reported that the flavonoid accumulation of
quercetin, apigenin, luteolin and myricetin in ginger varieties was
affected considerably by shade, with the leaves having a higher
flavonoid content under a 60% shade level compared to 0% shade.
It was also reported that caffeic acid was only detected from ginger
grown under a 0% shade, whereas tannic acid only accumulated
in ginger leaves grown under a 60% shade level. The increase in
phenolic acids, such as intermediates in lignin biosynthesis, indi-
cates typical anatomical changes.54 An important issue is whether
the enhanced production of secondary metabolites under differ-
ent light intensities is a result of the increased carbon production
through photosynthesis or to the stress induced by different light
intensities, which stimulates secondary metabolite production.39

Another important factor is the enzyme activity involved in the
biosynthesis of phenolic compounds. A high content in some phe-
nolic compounds could inhibit flavonoid synthesis, as a result of
inhibiting the enzyme activity of phenylalanine ammonia lyase.55

This enzyme is involved in the biosynthesis of phenolic acids,
which show activity induced by high light intensity and UV.56 The
key enzyme in the flavonoid pathway is chalcone synthase, which
is extremely sensitive to UV and blue light.57,58

By contrast to previous assumptions, the present study demon-
strated that the reduction in light intensity by partial shade
enhances the synthesis of phenolic acids and the flavonoid com-
pounds of different legume-based swards. One study, aimed at
evaluating the effects of light on growth and the accumulation of
secondary metabolites of the legume medicinal plant Glycyrrhiza
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uralensis Fisch., reported that a low light intensity significantly
increased the concentration of glycyrrhizic acid and the flavonoid
liquiritin.59 An appropriate light control obtained within agro-
forestry systems might therefore increase the secondary metabo-
lite content of that plant.

Finally, recent studies have reported that secondary metabolites
also play a major role in ecosystem processes, such as plant
succession or litter decomposition, by governing the interplay
between plant matter and soil organisms. The ecological role of
phenolic acids, flavonoids and tannins has been reviewed recently
by Chomel et al.60

CONCLUSIONS
Our research provides new insights into the effects of light inten-
sity on plant secondary metabolites from legume-based swards
grown under contrasting conditions of partial shade in Mediter-
ranean grazed woodlands and full sunlight conditions.

Both the contribution of light intensity and the legume species
affected the concentration and composition of polyphenol com-
pounds, as well as the antioxidant capacity of the legume-based
swards under study.

The phenolic acid verbascoside and the flavonoid
luteolin-7-O-glucoside were the most abundant compounds
in full sunlight. Chlorogenic acid and the flavonoid compound
isorientin were predominant under partial shade. Because antiox-
idant capacity and the content of plant secondary metabolites
determined in the legume-based swards could potentially affect
the nutritional properties of forage, their variations caused by
contrasting light intensities thus represent a particular benefit of
agroforestry systems, which could be exploited as an additional
service at farm levels.

Future multidisplinary investigations are required to clarify the
specific role of the most important phenolic compounds identified
in animal diets, as well as to test their beneficial effects as supple-
mentary treatments.
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