Consiglio Nazionale delleRicezche

Az 00

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

DESIGN OF MULTILEVEL FAULT TOLERANT SYSTEMS
A. Ciuffoletti, L. Simoncini

L81-08

Workshop on Self-Diagnosis and Fault-Toleranc:
Tubingen, 1981. M. Dal Cin, E. Dilger eds.
i Tubingen, Attempto, 1981. PP.65-83

-65=

DESIGN OF MULTILEVEL FAULT TOLERANT SYSTEMS

A. Ciuffoletti(*) - L. Simoncini(**)

(®#) Otomelara S.p.A. - La Spezia, Italy
(#*)Istituto di Elaborazione dell'Informazione - Pisa, Italy

Abstract: The literature on reliable systems is cgmpdéed by a very
broad range of specific problems and solutﬁons. Véfy few designs of

reliable systems are reported, in which an integrated methodology is

taken into account as one of the most important desién goals.

This fact makes, in general, difficult toyprovide a good readabil-
ity and possibility of evaluation of the proposed solutions for
enhancing the reliabjlity of these systems.

The aim of this paper is to provide a structured methodology and
several implementative suggestions for the design of failure tolerant
systems.

The overall approach does not explicitly differentiate between
hard or soft objects and allows the treatment of failure tolerance

from the first design phases.

1.‘ ;NTRODUCTION

liComﬁQter Science has been mostly oriented towards the synthesis
of strictly deterministic systems: this means that any component of a
}systeb is associated with a specification, which completely describes
its behaviour in a definitely predictable way.

In the real world, we have to cope with anomalous behaviours of

components and systems. Such behaviours are originated by failures
which can be:

a) physical failures or faults, which are largely impredictable or

66

b) specification or implementation errors like bugs or flaws or mali-
cious attempts, both caused by human errors, which are again impre-
dictable.

The probabilities of such events are relatively low, and this
justifies the approach of classical computer science. However the
spreading of applications requires high confidence in the computing
tools or high reliability for critical control systems. Therefore it
is vital to take into careful account the possibility of anomalous
behaviour of the system. Should such event happen, the system has to
be able to exibit a 'positive" and predictable behaviour.

This mdtivation is the basis of the development of fault tolerant
computing which can be seen as a wide and difficult extension of the
classical computer science.

The design of systems with well balanced capabilities of coping
with failures, requires that ropqstgessﬁ“Qh?ﬁggﬁgf?ﬁtiCS must be
considered ;s initial (specificatféns of the ’deéign bhase and must
constrain each step oflghg dééiéh ?f any level.

Still the 1iteratﬁbé on féilure tolerant systems is composed by a
vefy broad range of specific problems and solutions. Very few design
approaches are reported in which an integrated methodology is consider-
ed as one of the most important design goals /1,2,3/.

In general this makes difficult to provide a good readability and
possibility of evaluation of the proposed solutions for enhancing the
rébustness of these systems to failures.

In this paper, we present a structured design methodology, by
giving the basilar ideas for building up a general framework for the
design of failure tolerant systems. Such basilar ideas will be
introduced as implementative suggestions; they are useful in that they
are reisatively simple and consistent. Since they do not differentiatefw
between hard or soft objects they are able to be omogeneously applied
to all the design levels of a failure tolerant system..

| In Section 2 the general phylosophy 1is presented and the
implementative suggestions are derived and discussed. Most of the

ideas discussed in this paper have been previously introduced in /4/

ard a reduced version of jit is in /5/.

-67~

2. GENERAL PHILOSOPHY FOR STRUCTURED DESIGN

Any system can be decomposed in subsystems of lower complex;ty;
their intéraction supports the functional behaviour of the system.

This general statement introduces three central concépts:

-~ the mach#ne, which represents the basilar abstract component of a
system; it exactly corresponds with its specification or with the
gset of its functional behaviours;

- the interaction, which represents the basilar cooperation act among

the machines;

_
- the implementation relation which maps the set of functional behavi-

ours and of the interactions of lower complexity machines into the
functional behaviour of the implemented machine.

We model the system as a set of virtual machinestlorganized in a
hierarchy of successive levels of abspractioq; 'ééhy level of
abstraction is composed by machines whiégucooperaéé on the basis of
interactions; each machine at a given level of abstraction is consider-
ed as an implementation of other machines at the next 16wer level.

We shall assume that any level has its 6Wn failure modes.

In the following sections we will deal with the mutual relations -

among the three condepts.

2.1. The Machine and the Interactions

In this section we shall deal with Vthe relation which exists
between machines at the same level of abstraction, and with the
treatment of the effects of failures which are detected at that level.

|The functional behaviour of a machine depends on the undergoing
interactions and on 1ts non deterministic specifications. The non
dete%min;stié behaviour of a machine can be better defined by stating
that: at any moment, it 1is very 1likely to be able to predict 1its
_ future behaviour, but there is a non zero probability that the machine
willfexhibit an anomalous unpredictable behaviour.

The definition of anomaly implies that there is an external,
entity which 1is able to foresee. and expect a given (failure-free)
behaviour of the machine, by interacting with it.

In non failure tolerant systems this attitude can be associated

-68-

esclusively with the user or operator, he can:

a) unconditionally accept the result from the system, 1in case of
complicated, that is'unpredictable, computations; or .

b) submit the acceptance of the results to their reasonableness; this
means that results are in some extent predictable.

In this latter case we shall better say that the user can develop
an expectation about the behaviour of the system. This ability needs
some redundant knowledge, which is unnecessary if a total confidence
is relied on the system.

In the following, interaction object will have the meaning of

"user" of the interaction which has been originated by a.subject.

In a failure tolerant system, the attitude of expectation shall
be assigned to the machines, inside the system.

Such consideration allows to state the first implementation

suggestion: o B S U I I N
o) -

~ in failure tolerant §ystems,A any machine which, at a given time,
acts as interaction.@ébjed¥$?'mﬁé%‘ be able, on the basis of an
expectation to Jjudged the behaviour of the subject. If the
expectation 1s not satisfied the behaviour of the subject is judge
as anomalous.

The expectation can be either statically assigned at the interac-
tion object or the interaction object can dinamically create such
expectation as a consequence of different situations.

The influence of the communication support on the interaction
will be analyzed in Section 2.3.

We define a failure tolerant interaction (FTI) as an interaction

which can be submitted to a conditional acceptance by the interaction
object.

The condition is based on an expectation about certain'
characteristics of the interaction, which we call interaction
symptoms. In addition to the symptoms analysis, the interaction object
will perform the current computations on the information.

Information and symptoms are the two components not necessarily
separated of an interaction (e.g. a watchdog timer, incorporated in a
machine, controls a symptom generally not dependent on the carried

information, while a routine which controls if a data is in a given

-§G -

range heavily depends on it). We point out that symptom analysis is
not necessary in normal operation, so it can be seen as a “pedundant®
operation. Consequently we. have two types of redundancy:

- behavioural redundancies, which determine the generation of symptoms
- computing redundancies, which determine the generation of expecta-

Usually, symptoms are generated even if nothing 1is specifically
provided with this aim in the design of the machine (e.g. locality for
a program or status sequence for a processor), while generally the
expectation attitude has to be added to the normal imﬁLementation.of a
machine. This requirement must be inserted by exploiting the characte~
ristics of the machine with minimum impact on it.

Another aspect which derives by the previous discussion 1is that
the interactions must beknown and verifiable by fﬁhg interaction
object. This requirement defines the secohdtimplemeéiaéivé suggestion:
- all FTIs are definitely explicit.

This statement determines severe constraiﬁfs for FTIs being
supported by global environments /6/. If - an #implicit" channel of
interaction exists, it would be possible an uncontrolled spreading of
errors. Therefore .an environment more oriented to support failure
tolerance is based on message passing /7,8/.

As an example of the previous discussion, let us consider how
machines can model data types /9/ at running time. The machine can be
jdentified as an instance of a certain data type: this instance will
be related statically or dinamically to one or more "users'. In the
second case we shall say that the instance is a shared resource; but
it is to be pointed out that the resource is active, i.e. it is able
to gjudge, qn the wvalidity of an interaction. Only particularly
maifcioﬁs behaviours could deceive it. Therefore the interactions
among the resource and the wusers are failure tolerant and the
expebtation will be based on names, codes, lenghts and bounds.

;After the error detection has been pebformed through the symptom
analysis it is necessary to identify or diagnose the primary source of
the anomalous behaviour.

We shall suppose that the channels are always reliable. In fact,-

if this is not the case, the diagnosis will be greatly complicated. So

-70-

we -introduce a new implementation suggestion:

- the communication channel is completely transparent.

The implementation of tﬁe communication channel will be diécussed in
Sect. 2.3.

At the interaction object the informations which are necessary
for the identification of the source of the anomaly, can a) arrive
with the anomalous interaction as a symptom or b) be present in the
interaction object as a consequence of previous interactions or by the
same specification of the machine.

In the case a), the symptom is always reliable, but it might be
difficult and dangerous to try to get a definite diagnosis by associat-
ing a specific symptom to a specific machine.

If the interaction object knows the subject, the simplest
strategy is to consider it as the responsible of the error. It will be
up to the subject to verifyﬁif,gﬂegsdurcaﬁnfgkﬁéngrgor has to be
ascribed to other machings wi?hvyhréh he previouély intefacted.

With this approachpfhe djggnoéis is structured in a step by step
way. . h o '

This 1is possible 1f shared communication channels are not
present. In a situation like Fig. 1, which models the existence of a
shared communication channel where Mi are machines and the arrow
represent the interactions, the knowledge of the subject is ra;her
complex. In this case a machine should be able to identify
unambiguously the subject through e.g. an appropriate coding of the
subject field in the communicating protocol. This approach may not be
completely safe, since failures in the machine which destroy the
coding can be thought; in this case it would be necessary to diagnose
as failed all the potential subjects and wait for evidence of failure;~

freedom by them.

M
1 2 n

]

"Fig 1 Shared Communication Channel"

E S
< 4

-

Tn case b) let us consider the possibility of determining the subject

-71-

of an interaction on the basis of informations previous to the interac-

tion. This identification is always possible if a dedicated communica-

tion channel exists between two machines.

In the case of a shared communication channel such identification
is extremely difficult, even 1if we consider the existence of
previously defined specifications about the use of the communication
channel. In fact an anomalous behaviour may not respect such
specifications.

As an example let us consider a channel whose utilization 1is
passed explicitely from one user to an other with a'gﬁbcific policy; a
failed user can attempt an incorrect use of the channel; the machine
which detects the irregularity cannot rely its diagnosis on the
confidence that the failed machine obeys to such rules.

These analysis determines two other implementative'suggestions
- the diagnosis ascribes the source of an anomalodé interaction to the

subject of the interaction;

- with common communication channels, the subjeé? musf identify itself
with a strongly symptomatic code. R T

The machine which has been judged as failed may be requested to
retry the last action or series of actions; this retry request may
start 4 retrospective diagnostic analysis of the interactions of which
the requested machine was object, with the aim of finding out possible
anomalies.

The first action in diagnosis is:

- retry of interaction 1s requested to a subject which has exhibited
an anomalous behaviour.

j As a consequence:

—wbbth Fhe subject and the object of a FTI should be provided wifh the
cépability of performing a retry action, that is possibly recovering
a{previous correct situation.

~ Moreover it is required that dll the diagnostic steps are exercis-
ed through FTI. ’

This allows to state that:

- the diagnosis and the subsequent operative decisions are

meaningful only locally to the machine which developed it.

This means that any operative decision subsequent to the

-72-

diagnosis is under the responsability of the machine which developed

it. It is also confined in its effects to condition the behaviour of

that machine towards the other machines with which it interacts. The

only thing a machine can do is notifying an not forcihg the other

machines with 1its decision. Situations like "master-slave" will be

very dangerous since possible malfunctions could make a machine, which

acts as a master, to try to deceive the other machines with unknown

and uncontrollable effects.

In this sense a machine which has diagnosed another one as defini-

tely failed, closes the communications with it by refusing any other

interaction with 1it. This action, which 1is the most protective a

machine can undertake, can be performed through the knowledge of the

subject of the subsequent interactions; in case of dedicate channel,

simply by refusing the interactions coming on that channel; otherwise,

in case of shared channels, by a prelimfnaryganafyéfs”gog decoding of

tHe subject field of the_informatioﬁﬁ Therefore:

- the operative action;pguccéggive: to the diagnosis of a definitely

failed machine consists in the interruption of communications, Dby

refusing any other interaction with it.

with the previous discussion, a characterization of the

constraints of an interaction has been derived, when the subject is a

]

possibly failing machine. Such kind of interaction has been defined as

FTI.

a)

b)

The several relevant features of a FTI are:

as concerning the implementation of the interaction object:

creation of expectation on the behaviour of the subject

capability of developing a local diagnosis, tentatively ascribing
the cause of the error to the subject

capability of requesting a retry of operation and of maintaining
an internal consistent situation while waiting for the retried
interaction

capability of undertaking operative actions, by refusing interac-

tions with machines it has judged definitely failed.

as to the subject:

- capability of supporting the retry action

. name identification by a strongly symptomatic code, in case of

-73=

shared communication channel
c) as to the interaction channel:
- trénsparency to the interaction,

- access to a small subset of the object machine state.

2.2. The Machine and the Implementation

In this section we will deal with the relation between machines
at different level of abstraction and with the treatment of the
effects of failures which are detected in levels different from that
where the failure has been originated. '

An anomaly which is detected in the behaviour of a machine, can
be originated by:

a) a transient failure; in this case the machine goe§‘back to a normal
behavioural condition and the system cgn_recovegsa}fégular function-
ing; o "

b) a permanent failure; in this case the machine capnot go back to a
normal behavioural condition. If we want the system to recover, we
need some other machine, with analogousafunctiénal capabilities, to
be Able to substitute it.

In the case b), 'spares" shall be provided to allow the system to
go back to a normal functioning. Twoe kinds of ‘'spares"” can be
identified:

a) passive spares: those machines which were not active, that 1is
"stand by'" before their insertion;

b) active spares: those machines which, before their insertion, were
performing: '

; the same. operation which was previously performed by the failing

' machine; a typical example ié the duplication with check;
- different operations from those performed by the failing machine;

in this case the spare has to be sufficiently flexible to fulfill
" the operation previously carried out by the failed machine; this
) is the basis of graceful degradation.

The cost in terms of performance and percentage o0f resources
utilization which is associated to the techniques for.managing these

two types of spares is different. It is optimized in case of active

spares performing different operations, since the percentage of

g

resource utilization is the highest and the performance is reduced
only in case of failures.)

In any case the two type of spares are compatible, thelr use
depending on the application requirements of the system.

48 regards to machines which exhibit only transient failures, it
is sufficient to keep copies or traces which are necessary to recover
their normal functional behaviour; we can say that these machines have
embedded "self repairing" characteristics.

We define:

- a machine is failure tolerant (FTM) if it exhibits only transient
failures. '

An implementative suggestion can be stated:

- Ygpares" shall be provided for non failure tolerant machines (NFTM).

Obviously an object has to be able to start communlcatlon with
the substitute of the failed machlnq aSJwell-as nefuserany interaction

by a definitely failed subject,, .L
o {

When a failure toleradt syétem ‘is implemented the starting
building blocks are non FTMs., At an intermediate abstractlon level,
petween the lowest and the user level, FTIs among NFTMs are introduced
(by definition, FTIs do not take place necessarily among FTMs). At
this level we should provide 'spares" for the NFTMs, which are
subjects of FTIs, in order to allow the substitution of a definitely
failed machine. It is obvious that all faiiures, exhibited by NFTMs
which are part of the implementation of NFTMs among which FTls are
introduced, will be assimilated to failures in the NFTMs, which are
provided with spares.

A better characterization of a FTM is the following:

- a machine is a FTM if all the interactions among the machines, which
are part of its implementation, are FTIs.

in fact should an anomalous behaviour of one of the implementing
nachine have effects at a higher level, these effects will influence
the machine at the higher level only in a transient mode. They will
disappear when the failure is fixed at the right level. Thus:

- “gparew" are not necessary for FTMs, since only the recovery action
is rnoeded.)

We can outline the hierarchy of abstraction levels in a fallure

-75=

tolerant system as follows:

a) at lower levels of abstraction NFTMs and NFTIs will be present,
b) at intermediate levels NFTMs and FTIs will be present; "“spares"
shall be provided;
¢c) at higher levqls FTMs and FTIs will be present; "spares" will not
be necessary.
At levels of abstraction generally defined as intermediate, FTHs

and FTIs will be present together with non failure tolerant ones.

Let us consider the following example, outlined in Fig. 2.
. ‘ *

.

Mii machine

R .
M ii spare machine
M,. FT machine

ii

NFT interaction
FT interaction
implementation relation

"Fig 2 Example®

T . " .V
Let Mlé be failed, and an error be detected by M will be substi-

14° M13

ted by M13 and M14 will start again interacting with M13' This reconfi-

guration will be notified to M12 by M13 and possibly accepted. In the

wofst case M21 will exhibit a transient failure.

In case that M14 is failed and that M13 detects the failure, H14

could not be substituted immediately since it is not provided with

“spares”. This failure will be evidenced at the higher level, when M21

22. Then M will be

will detect some anomaly in the behaviour of M
: 22

-76-

substituted by M The interruption of interactions by M1 will be

the correct acéfgn, after which M13 can continue igi normal

computation.

By this discussion we have pointed out the relation among
machines at different level of abstraction.

The relevant deriving characterizations are:

- & machine is FTM if it 1s well implemented having as implementation
basis FTIs and if all the NFTMs, which are part of its implementa-
tion, are provided with spares;

~ the effects of failures at lower level are modelled, in failure tole-
rant machines, as transient failures; therefore only a recovery ac-

tion is necessary in FMTs and "“spares" are not needed.

2.3. The Implementation and the Interactions

In the previous section the pnob}en1;9f4ﬂﬁgi§me

Vi

nting FTMs from

n

NFTMs has been dealt with, The_soihtion of this problém requires the
introduction of FTIs. :@ﬂ; é:%f‘ ;“" , ‘
The constraints for an inferaéfion being a FTI concern the interacting
machines and the functionality of the communication channel.

In this section we will discuss the characteristics for a correct
implementation of a communication channel.

The constraints for an interaction being a FTI require that a
communication channel can:
i) be transparent to the interaction,
i1) exhibits only transient anomalous behaviours.

It 1is quite straight by the point ii) that communication
channels, which are able to support FTIs, have to be implemented on

FTIs at the 1lower 1level of abstraction. Therefore 1let us first.:

consider communication channels among NFTMs which support FTIs.

g\ e N M e\ e b ad e B P

et ol | M A e\ B G \pome

e\ 1 MG e Ak el
a) ' b) c)

"Fig 3 Spares Access Paths"

-FFe

A channel is usually accessed by two Or more users: if both a
machine and its '"spares' are accessed by the same channel (i.é. they
are objects of the interactions supported by this channel), then the
failure of the channel will imply the unavailability of both the
machine and its .spares. The situation is exactly the same if both 5
machine and its "“spares" can access the channel (i.e. they are subject
of the interactions supported by this channel). In fact, particular
malfunctionings may exist for which a machine can hold indefinitely
the channel. Therefore: v
- not all the machines which can support a certai%‘function have to

access or be accessed through the same channel.

Therefore the situation in Fig. 3a) or 3b) are not advisable,
while that one in Fig. 3c) would be safe.

In other words, we have in general.that a qgrégéﬁ implementation
of a communication channel for suppofEiﬁg FTIs; among NFTMs, should
rely on a point to point basis and not on shared communication
channels (e.g. a bus with arbitration) as outlinéd in Fig. 4. The
approach in Fig. 4, which is almost usual, :is completely unsafe,
since, as previously said, the failure either of a processor or of the
channel can determine the loss of all the system.

Nevertheless a complete point to point approach is very expensive
and difficultly expandable.) _

In this case we have to consider the channel as no more
transparent, and substitute it with an explicit interacting machine,

possibly provided with spares. This is outlined in Fig. 5.

CH*

"Fig 4-5 Shared Channels'

The requirement that the communication channel 1is an explicit

interacting machine, determines the need that it 1is an intelligent

-7 B

unit, able of refusing the interactions with the Ps on the basis of an
expectation. With this approach, we actually replace the shared
communication channel -with a set of dedicated ones and a machine.
Therefore the discussion of the previous sections can be appligd to
this case.

For what concerns higher levels of abstraction, we have already
pointed out that 1t is always possible to implement correctly
communication channels able to support FTI's, once this problem has
been solved at lower levels. In this way we can meet the requirement
that at higher level only transient anomalous behaviours are induced

by failures at lower levels.

3. APPLICATION OF THE APPROACH TO THE MuTEAM DESIGN

MuTEAM is an experimental prototype of a multimicroprocessor
system for real. time applications which iiigpgqpﬁgeyelopment in Pisa
supported by the National Compﬁ§§f= S;iengé’"§;6é£;;lﬁgf the Italian
National Research Couné&{. ngfaim“of the prototype is the development
of integrated designbmétéodologieé fo; distributed multimicroﬁroces-
sor environments. The aim goals are modularity, expandibility, error
confinement and robustness. The first version will serve as a
benchmark for the evaluation of several proposed design choices.

MuTEAM is constituted by a set of clusters, loosely connected via
serial lines. Each cluster consists of a =2t of autonomous Computer
Elements tightly coupled through a parallel bus. A detailed
description of the architecture is in /10/ and an outline of one

cluster is shown in Fig. 6.

CLUSTER BUS

NODE HODE HODE

SIGNALLING BUS

a

“Fig 6 Cluster Architecture"

-79=

Only partial implementative suggestions have been applied in the
MUuTEAM, since, as said, this first version will be used mainly as an
evaluation tool. We can consider two basic ideas introduced in this
paper as being practically implemented:

- expectation, as.described in section 2

- separated communication channels between machines; this is a very
informal concept that has evolved to the ideas contained in Section
2.3.

We have focused our attention on two 1levels: the memory-processor

level and the first user level, with the aim of ‘experimenting the

following failure tolerant aspects:

a) how to 1implement an expectation of the shared memory towards the
processor

b) how to implement a structured interprocess commgpiéépion mechanism.’

Moreover, we will experiment through thé‘ realiiétiéh ”of a separate

interprocessor channel:

¢) how to implement a structured »interproéesscr communication

i

mechanism.

3.1. Implementation of expectation of memory-processor level

The implementation of expectation at memory-procéssor level is
one of the most difficult problems. In fact, usually the shared memory
is considered as a passive object; conseguently it may cbnstitute a
point through which errors can spread in the whole system. In our
structured approach we have pointed out that any machine in a structur-
ed failure tolerant system must be '"active'". The problem is how to
inqbrporate this feature. A possible implementation of memory
egéecfation is based on the control .of the accessed location on the
baéis éf the name of the processor and of access rights /11/ associat-
ed to each processor. This is implemented as 6utlined in Fig. 7 by a
uni¥ located at the input of the shared memory subsystem.

. This wunit contains for each memory segment the access rights
assigned to the proéessors which can access the segments. The access
rights which are used are Read Only, Read/Write and NoRight. The

NoRight can be used to specify the refusal of communications with the

processor to which it has been assigned., This mechanism will implement

«B80-

the logical reconfiguration at processor level.

CLUSTER BUS
: Shared
Addrees Privileged bue Protection Me: .
hoccuori Translator, i beye
i Unit Subsystem
Interrupt Brivate
Request Bus
Line
Coemsunication Private
Memory
Cc'mn:o!.leri & 1/0
[ENEE] ~

SIGNALLIBG BHS 1o s hivoe haines -0
AL ; :
0 -

“"Fig % Node Architecture"

This use of control access list is the expectation generator
which we will implement in MuTEAM at memory processor level. However
it should be noted that this is not completely structured since, with
the aim of getting an error détection at memory-processor level, we
have used the semantics>of a process. This has the consequence that a
bug in a program running on a processor can cause an error detection
at the processor level. We hope to eliminate this drawback with an

accurate debug of programs.

3.2. Implementation of structured interprocess communication channel

Two general approaches are possible in the implementation of“
iriterprocess communications; the first is based on the concept of
shared variables and the second is based on. the concept of message
passing. As pointed out in Section 2.1. the concept of shared
variables is not consistent with the robustness required by the
system, On the contrary message passing is completely adequate to a

structured system /7/.

Among the different models of message passing mechanisms, we have

-81-

chosen the CSP /12/, whose semantics are well defined.

The mechanisms so far implemented for interprocess communication
- guarantee the dynamic creation -of highly protected communication
channels, which is a very relevant feature to insure error confinement
and avoid the spreading of errors.

The wuse of highly protected communication channels 1s also a
necessary feature for supporting a distributed diagnosis among
processors as shown in /13/.

A detailed description of thg CSP based language used in MuTEAM
and of the mechanism for interprocess communication ‘is in /14/. By
using message-types it 1is possible to implement an expectation about
received messages to the extent that a variety of communication

mechanisms can be defined, and the parallel program properties can be

proved.
3.3. Implementation of a structured interprocessor _communication
channel

The problem of interprocessor communiéétion-ﬂés been épproached
using an Mintelligent" wunit, different from the processor, which
manages the interprocessor interrupts, relieving the main processor of
this task which may be very heavy.

Moreover this organization allows to manage those falilures which
determine continuos request of attention from a failed processor to
another. In other words, toghether with the NoRight access right; the
masking of interrupts implements the logical disconnection among the
processors.

- A final note concerns the use of a single parallel bus for the
traésfeqiéf'informations among the processors. Some failures exist at
prodéssor level, whose effect is the complete loss of the cluster. We
disregarded this problem in this first experimental version of the
MUuTEAM, simply to avoid complex organizations 1ike replicated bus
structures or, as suggested in Section 2.3., the insertion of some
intelligence on the bus interface towards the processors. We shall

consider this problem in the final version of the MuTEAM.

-§2~

CONCLUSION

In this paper we have dealt with the problem of implementing a
system tolerant to failures in its h/w or s/w support. Some design
rules are given which can help in this complex task. Those rules are
valld at any abstraction level, and, in a way, are recursive: in fact
the application of the rules at a given level helps the designer to
respect the same rules at the higher ones. So, the risk of implementat-
ing conflicting policies 1is avoided, and a good readability easily
provided. In a word, we give a methodology to structure, that is to
constrain the choices the designer can do: but he has not to deal with
problems that the structure ."solves" for him. In our case important
problems as:
- which components have to be replicated
- how to build channels which do not affect failure tolerance
- who controls the functioning of a c?r?ain;ppmpqnent

T NN

- which kind of consequence a ldﬁ level failure can have on higher

et o

levels NP L
-~ what is the meaning Sf Teduﬁaéncy and how to introduce it effectively
< which concept underlies different failure tolerant policies which

are practically implemented (as TMR and "graceful degradation")
are trated and solved in a completely general way.

One of the main problems left unsolved by the presented structure

is how to support the retry operation. Closer analysis of this
question brings to the problems related to the "domino effect™,

defined and partially solved in /1/.

REFERENCES

/1/ B. Randell, P.A. Lee, P.C. Treleaven, "“Reliability Issues in
Computing System Design", Comp. Surv., Vol. 10, n® 2, June 1978,
pp. 123-164.

/2/ W.C. Carter, "Fault Detection and Recovery Algorithms for Fault
Tolerant Systems", IFIP Working Conference, '"Reliable Computing

and Fault Tolerance in the '80's"; London, Sept. 1980.

/3/
/4/

/s/

/6/

17/

/8/

/9/

/10/
/11/

/12/.

/13/

/14/,

-83=-

A.L. Hopkins, "On Virtual Levels of Fault Processing for Very
Reliable Systems', IFIP Working Conference, “Reliable Computing
and Fault Tolerance in the '80's", London, Sept. 1980.

A. Ciuffoletti, "Approccio strutturato alla modellistica di si-
stemi fault tolerant", ISI, University of Pisa, (Tesi di lau-
rea), April 1980, in Italian.

A. Ciuffoletti, L. Simoncini, "Integrated Design Methodology of
Failure Tolerant Systems", to be published in the Proceed. of

FTSD, Intern. Conference on Fault Tolerant Systems and
v

~

Diagnostics, Brno, Sept. 1981.
C.A.R. Hoare, “Monitors: an Operating System Structuring

Concept", Communications of the ACM, Vol. 17, n°® 10, Oct. 1974,

pp. 540-557, '

R.E. Bryant, J.B. Dennis, "Concurrent Programmiﬁgﬂ? MIT Report,

1979. o r

E. Manning, N.J. Livesey, M. Tokuda, "Interprocessor
Communication in Distributed System: One V%ew“.‘IFIPJBO, North-

Holland, 1980, pp. 513-520. B o '

T.W. Pratt, "Programming Languages: Design & Implementation®,

Prentice-Hall, Englew@od Cliff, N.J.

G. Cioffi, P. Corsini, G. Frosini, F, Grandoni, L. Lopriore,

"MuTEAM: Architectural Insights of a Distributed Multimicro-

processor System", FTCS-11, Portland, June 1981.

J.H. Saltzer and M.D. Schroeder, "The Protection of Information’
in Computer Systems", Proc. IEEE 63, n. 9, Sept. 1975, pp. 1278-

-1308.

C.A.R. Hoare, "Communicating Sequential Processes", Comm. ACM,

Val: 21, n° 8, Aug. 1978, pag. 666-677.

P. Ciompi, F. Grandoni, L. Simoncini, “"The MuTEAM Fault
Treatment; a Proposal for Self-Diagnosis in Multiprocessor
Systems®™, FTCS-11, Portland, June 1981.

F. Baiardi, A. Fantechi, A. Tomasi, M. Vanneschi, "“The MuTEAM
Kernel: a Message Passing Approach for a Robust Multiprocessing

Environment”, FTCS-11, Portland, June 1981.

