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Introduction

Any method of the feasible directions is an iterative procedure based

on three main points:

a) computation of an initial point:

b) computation of a feasible direction;

c) computation of an optimum poinmt along a direction.

In this paper the Zoutendijk method in Euclidean norm, the Rosen method
and some slight modifications are studied. In [16] some efficlent
algorithms for computing the initial point and the optimum point along a
direction are discussed. Here efficient procedures are described for the
computation of the direction. Only linearly constrained problems are taken
into account; besides, it is known that non linearly constrained problems
can be efficiently solved by solving a sequence of linearly constrained
ones., Convergence properties can be found in {9], {13], [15 )

The direction given by the Zoutendijk method, as well known, is the
solution of the least-squares problem:

{1 min { {ip-si] =: Cs <0}
s
vhere p is the gradient of the objective functionm at a point, C is ¢ X n
matrix (g<n), whose rows are the coefficients of the active constraints at

that point and |{.|}| denotes the Euclidean norme.

In [1] numerical procedures for the computation of the solution of (1) are
described which are based on either Gauss-Jordam like or orthogomal Batrix
transformations, Here the results of [1] are employed for an efficient
implementation of some methods of feasible directions.

The results of the evaluation are presented in paragraph 5.



9 » Pormulation of the problem

Let £1{x € C* be a convex function of Bn=~> B , let 4 be a real
# X n matrix, a; ¢ J=1s000yB being the rows of A4, and let b be a real
vector of order a@.

#e comsider the convex programming problem:

{2) min{ £4{x) ¢ A&4x € b }.
Let
K(x) = { Kk :a x =D}
Kk &
be the set of indices of active constraints in x, and let
S{x) = [ s : s € R , a s <0 , jeKiz)}
3
be the cone of the feasible directicns in %
Having chosen an initial feasible point x¢02, the Zoutendijk method

determines a sequence x(i’} of feasible points by the formulae

(i+7) (1) (1)
(3) X = x + %% s
where s(i) is the solution of the problem
T (1)
{8) max {p s : s€5(x } s Hisiist 3}

il-11 denoting the Buclidean norm and p being the vector »K}f{x‘iagp and %é
is chosen so that
(i+1) (1) (1) (1) (1)
£(x )zn;tn{f(x +XNs ) z A{x +*As )<b }

#le focus the attention on the solution of the problem (4)., Por the
computation of x¢(ed and 9% we refer to known results, In the following we
denote by C the g ¥ n matrix of the active constraints at x€i); ye BEppODe
the rows of C linearly independent, whence ¢g<n.

In [16] it is proved that the solution of (%) is the same, apart fros a
proportionality factor, as the projection of p onto the come S(xﬂiﬁgg which

is the solutiom of the probles



(%) min { {ip=si{ 2 Cs € 0 }.
In other words, if p GS(xiii) then p 1is soluticn cf (5) and g/)iEpl) is
solution of (4); if pg S(x(il), then the solution of (4) is the normalized

solution of (5). Obviously, if p belongs to the cone

S{x ) = (s ::s= Cu , uz2?0}
then x(V? is a solution of (2).
If p 8 S(x(£>) then the projection of p onto S(x(i’) belongs to the
boundary of S(x‘£>), theretore +to a linear @manifold obtained by
intersecting some hyperplanes %;x=bj ¢ 3 € K(x‘i’).

The method we are going to describe finds such a manifold and corputes

the soluticn of (5) om it, according to the following schenme:

a) at each step it computes the projection P ¢t ¢ onto a set of
equality constraimnts Cs=0;
py if be 1s not a solution of (5), it adds a constraint to the above

set, or deletes one,

For bpoth points a) and b) techniques of Gauss~Jordan like and
crthogonal matrix transformations are used [1], (33, (4], {51 [11) [1213

{16 7.

2 = Analytical prelimimaries

2.1 - Denote py QC the manifold generated by the matrix C:

n
Q = { s € F : Cs =0}
c

and by ¥_. the orthogonal complement of ¢ in BT . Then N. is a

C
g~-dimensional vector space, and the rows of C form a kasis of N {(io what
follows we suppose that the rcws of C are normalized, llcjil=1, J=1s000,4) «

Then the vector p (also normalized {(jFpl{=1) can be written as:

(6) p=p *+p + P€Q , pE€EN
c cC cC c c cC



- 3 =
vhers Pe is the projection of p onto the manifold CC o
On the other hand there exists one and only one vector ucc E% suck that
p = Cu ,
C
hence
T C
(7) p=pt+tCu o
C

Bultiplying by matrix C, we obtain the linear system with the unknowas

{8} CCu =Cp o
. - 0 ‘r .
Having assumed that C has maximal rank, the matrix CC is positive
<
definite and the system (8) has one and only one soluticn u
Let us remark that:
a) 4f Cp £ 0 then p is solution of (5);
by 4f Cp £ 0 then, after computing T s £rom (7) wme obtain P :

. C
if u 2

it uC Z 0 then the solution of (5) is the projection of p onto a

=

then Pc is the solution of (5);

subset of the constraints specified by C.

Let be Cp € % and ucz f: we choose v rows of C (assumed tc be the
first «r ones, otherwise it is sufficient to reorder appropriately the
eguations of the system Cs=0 ),

Sabdividing C :

C

1
{9) C =

where c, e ¢C, are respectively r Xn and (g-r) ¥ n wmatrices, by

applying the block Gauss-Jordan method, the system (8) is transformed into



C T T C C,
u ¢ {(CCy)y—r CC ue = u
1 11 1 2 2
(10)
T C
-C P C u = =C p
2 C3 2 G 2P 1

N

where P. 1is the fprojection matrix onto the manifold Q
4

2

T T
Pe =1 -C (CC)—tC
i i i 1 i
C4
and P. is the projection of p onto QC s U is the vector of the
4 1
Lagrangian multipliers of p related to QC °
4

These formulae make the Lagrangian multipliers uC of p , related to
¢ s=0, correspond to the Lagrangian multigpliers uC1 related to C, s=0.

From them it follows that:

a) 1if the right-hand side is positive, then Pc4is the solution of (5).

by if Czpc4 is non-positive, then pc‘=p—cjuc‘ is feasible.

For brevity sake, we shall call optimal matrix the suklmatrix C of C if

4
a) holds, that is the solution of (5) ccincides with the solution of the
problem

min { |l p - s {1 : Cs =0}

1
From (10) the following consequences can be easily obtained [1]:

Theorem 1. - Let C, be an optimal matrix and subdivide C, as follgcwus:
_C',
1
C = : then
3
Cu
i
b el
C C
i 1
u # 0 ==> Cw p 20 , u # 0 ==> (C¢' p £ G ,
co 1 Cce ce 1 Co
1 1 1 1

Corollary f. - Under the hypotheses of theorem 1, it follows that at least
one constraint specitied by a row of Cn is among those whichk are not

verified by pc"

4
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Corollary 2. - The solution of (5) verifies at least one of the constraiamts

not verified by .

Theorem 2. - let C, be an optimal matrix and CzpC ¢ 0 , then
4

Theorem 3. -~ Denotaing by a’ any row of qz and ty D the matrix

C
b
D:
T
d
it follows:
T D
a) ad p 20 <=> u 2 0
c < a =
£
D T
b) u =0 (d p = 0) => Pp-p = Pp-P
d C D C
N ]
D T
c) u # 0 (@ p & G => {tp=p 11 > llp-p 11 o
d C C D

3 = Hethods for computing the direction.

We now describe briefly three methods for the computatiocn of the search
direction. The first method solves the problem (5), the second and third
ones compute feasible directions as suggested by Zoutendijk [16] and Rosen
£9 3.

The first method constructs a seguence {s€t)} such that the Seguence
{|;p-s¢i)§|} is nct increasing., At the i-th step it operates as follous:

a) it computes the projection pc of p onto k constraints C,s=0 active in
4
s{t), Let be y =s€ti+p

C
b) if C p_ 0 andu 20, then Pc is the solution of the problem (5);

4 4



¢c) if ¢ P $0 it computes:
4

T (1)
-a s
i T
= min J={j:a p >0}
jed T (4) jc
a [p -S ) t
i c
1
and
(1+1) (1) (1)
s =s ¢+ B (p -5 )
C

1

dy if C pc <y and uc‘zO, then it deletes the constraints with the least
neg&ti?g Lagrangian multiplier and puts s(i+l’=y.
Bt the first step, referring to Corollary 2, p is projected onto a
ccnstraint not verified by p.

On the basis of the preceding theorems, it can Le proved ¢that this

method reaches the soclution cf (5) in a finite number of steps [1].

The second method works like the first one except for step d) which is

modified as follcwus:

#0 then Pc is the looked for feasible
4

C
dy if C p. <% and u "3? and Pc
4

4
direction; if Pc =% then it deletes the constraint with the least
1
negative Lagrangian multiplier and puts
(i+¢7)
s =y
Obviously this method computes the feasible direction in a finite

nuaber of steps.

The third method computes the direction in the following way:
a) it projects p onto the whole set of active constraints in x(i?

b) if P, #0 then Fc is the looked fot direction
q 4
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< .
c) if Pc =0 and u ' 20, then x€¢') is the solution of (2)
4

dy if PC1=G and uc‘ze, then i1t deletes the constraint with the least
negative Lagrangian multiplier and the looked for direction is <the
projection onto the remaining constraints.

In all the methods, for the computation of the search direction at a
Feint x‘ib, the results at the previous step could be employed, as in BRosen
(9], so that computation time be minimized. For the sake of stability we
chose not to follow this indication: it may happen that at an intermediate
step one has to project cnto a constraint which does not belong tc the
optimal set of active constraints, but generates numerical instabilitye.

These three methods compute at each step the projection of p onto a
polyhedral cone. In [ 1] two numerical methods for the computation of the
Frojection are described, the former based on matrix transformations of
system (8) (by employing (10)), the 1latter based on Hcuseholder orthcgomal
transformations of problem (5).

The procedure which implement the three methods are described in the

next paragraph.

§ = Procedures

We now present a set of procedures for the soluticn of the probles (2),
vhich generate a sequence of feasible polnts {x(ii},uhere the functionm £ {x)
is not increasing,

The main procedure FED calls a procedure DIR which coaputes the search
direction. DIR is a dummy and can be any of the three fcllowing:

Z1, which imprlements the first method

Z2, which implements the second method

E , which implements the third method

of the preceding paragraph.

All the methods project the vector p=- ¥ f (x) onto a manifold generated



by a submatriz of the matrix a.

The addition and deletion of a constraint in the procedure Z1, %2,

E is

performed by calling a procedure PRO; PRO is a dummy and can be either one

ofs

GJ , which employs Gauss-Jordan like transformations

OR , which employs Householder orthogomal tranforsations.

let L be a vector of integers of order 8 : we denote by AL
submatrix formed by the rows of A whose row indices are in L.

The procedure PRO computes the vector u of Lagrangian multipliers
related to the manifold generated by AL °

T T

{1 v -~ pi| = ﬁiﬂeﬂiﬁ v - il
L vER L

4.1 - Procedure FD

the

of p

comment: this procedure isplements a feasipble directions method [15]; if

the output vector s of DIR is zero, then the output vector
non negative and the procedure terminates because x(7? is
optimal point.

gtep 0. Let m be the number of constraints, r=0

a2 is

the

step To let x=x¢¥ ) and consider the vector I o¢f crder m_ formed by the

1
indices of active cconstraints in x

let p=- V£ (x)

step 2. 41if A p<h then s=p , else call procedure DIR
I

step 3, 4if s=0 then stop. Otherwise

step 4, compute o such that
f{x+X g) = min f(x+ o< s)
o

and put y=x¢ & s



T
step 5. if ay < b for any jsm , then B = &
3 3
T
b - a x
s T
else ﬁ = mim{ —— 2 a {X¢X s}>L , jSm}
T B 3
a s
3
(re?)
step 6. put X = x 0}%:5 e T = re¢d and go to step 1.

#,2 = Procedure %1
comment: this procedure implesents the first method of paragraph 3. I is

the vector of order mI constructed in the procedure PD which
contains the indices of active constraints.
step 0. put s=0 , h=0 , k=1

T
let je€I such that ap>29o

J

comBent: in the following step the procedure PRO is called to conpute the
Lagrangian multipliers of p related to a subset of the active
constraints., The dinput values of h and k for the procedure PRO
indicate the number of constraints involved respectively at the
previous and at the present step; if h<k the j-th constraint will
be added, if h>k the j-th constraint will be deleted. The output
values of k and h coincide. In the procedure PRO the constraints
are so rearranged that the first k constraints are those oato
which it is projected; the components of the vector I are erchaged
accordingly.

step 1o call procedure ERO,
let K be the subvector of the first k elements of I: conpute

T

P =p=13u
1 K
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T
gtep 2. 4if a p € 0, for any j<m , then go to step 4. Otherwise
¢ I
gstep 3. compute J such that
T T
-a 8 -a S
J i T
}3 = = min : a px0 , i<m
T T i I
a (p - s) a {(p =~ s)
j 8 4 8
8 = 8 ¢ (p - s) k=ked
ﬁ N 4 @
go to step 1 (vhere an adding step is performed because h<k).
step 8, let be j, u = min u
i iek i
i€ u 2 @ then s = p , rTeturn
35 &

else

#,3 =~ Procedure %2

comments: this procedure
coincides with

replaced by the

step 4, 41f p #0 then s
2
step 5. let be J, u =
3
if w 20 then
3
else

k=k-1 and go to step 1 (where a deleting step is

performed because h>kj.

implenments the second methcd of paragraph 3. It

the procedure Z1 save for the step & which is
stegps:
= p , return. Otherwvise
i
mip u
iek i
s =0 , return

k=k=1 and go to step 1 (vhere a deleting step is

performed because h>k).
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4,4 - Procedure R

comment:

Step 0o

comment:

gtep 1.

Step 2o

step 3.

step 4.

comment:

step 5.

this procedure implements the third method of paragraph 3.

put s=0 , h=0 , k=1

in the following step the procedure PRC is called to compute
Lagrangian multipliers of p related to the whole set of active
constraints. As for h and k , see comment preceding step 1 of the
procedure Z1.

for j=1 to m
I

call procedure PRO, put k=ke&i

end 7
K=T
T
put P =p -4 8
g K

if p #0 them s = p , return. Othervise
] 1

let be j, u = min u
j iek i

if uv20 then s =0 , return. Otherwise

3
in the following step the procedure PRO is called to delete the

j-th constraint.

put k=k-1,
call procedure PRO,

let K be the subvector of the first k elements of I and go to step

20
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.5 - Procedure GJ
comeent: this procedure
and deleting the
1 of

preceding step procedure

product of the

columns of the output matrix M.

uses elementary Gauss-Jordan matrices

j=th costraint; as for

elementary matrices

for adding

b and k see the compent

Z1s The first k columns of the

are stcred in the first «k

T
step 0. Lif h=0 then =[R2 A | 2 p ]
I1I 1
step 1. let g be such that I =]
g
if h<k tnen ‘h=k
step 2. if g#h then exchange rous and columns. of ‘indices g and h cf the
matrix ¥ and the elements of indices g and h in vector I.
step 3. put
4
1
e if r=s=h
m
hh
m
Th
- if r#h , s=h
. m M
hh
mo=L
rs m
hs
if r=h 4 s#h
m
hh
n
rh
B - m if r#+nh , s+#¢h
rs m hs
\ hh

u is the vector formed by the

of H

h=k , return

step 4.

first h elements of the last column
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4,6 = Procedure OR

comment: this procedure wuses Householder orthogonal matrices both for
adding and deleting the j~th constraint; as for h and k see the
comment preceding step 1 of the procedure 21. #hen deleting a
constraint the construction of the orthogomal matrix is sisplified
because the first k columns of M are in Hessembterg form.

step ¢e 4if h=0 then M =[ A& | p ]
I

step 1. let g be such that I =7
q

if k<h then go to step 3.
step 2o h=k

if g#h then exchange the rows of dindices g and h of ¥ and the

elements of indices ¢ and h of the vecter I:

‘ 1
compute 1+ v = :
”@ 6 (6 + (m )
hh
o

% i€ r<h

U = <‘sgn(m. 1 (6 + | m ;] it rrh‘ sy
r ‘ hh hh

m it h )
. Ih e

T
M =M - u {ﬁ o M)
and go to step 6

step 3. h=k

step 4, for r=q to k exchange the columns of indices r and re¢l1 din ¥ and
the elements of indices 7 and r+t1 in T

step 5. for r=qg to k dc

‘ 1
6 :Q w2 + me P =z . :
rr r+#l, ¢ j% (6 ¢+ In 116
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f sgn(m ) (6 + | m i) if s=r¢r
rr o
u =4 ® . if s=re+1
g r¢l,r
. 0 otherwise

T
M=K - u g&u N

end T

step 6. compute the solutiom of the system Tu=t, where T is the triamqular
submatrix formed by the first h columms of H and t is the vector
formed by the first h elements of the last columm of H

step 7. vreturn

% » Buserical resvlits
®

The parameters, from which the efficiency of the sethods depends, are
in a large number and can not be easily checked: for this reason, to find
some significant dindicatioms, we limit the numerical experiments to
dimensionally small (n=10) gquadratic problees with structured matrices and
linear constraints, whose objective function depends on one parameter; when
its value decreases, the condition number of the matrix of the guadratic
form increases. Alsc the constraints matrix depends on one parameter, by
ﬁhich the active constraints at the optimal point can be made almost
linearly dependent.

#e do not consider non-guadratic convex problems, because they would
reguire an additicnal testing of unidimensional minimization technigues.

In the experiments we consider two parameters: the average time
reguired by a method to execute a step and a suitable factor which measures

the rate of convergence.

5,9 = The ¢test problems we conslder are of the fors



T T
min { ¥ Hx ¢ h ¥ 2 Ax<b }

where x€R™ , n=10, H is a positive definite matrix of order =n, & is a

gguare matrix of order m=10:

v for i=7j
H = “"‘% fﬁ?f §3§.WJ§§:‘§ yig j:1g@w®@ﬁ
ij
0 cthervise
v+ for i=j
'A - @igj:‘ggxs&&g&
i9 1 othervise

where v and v are suitable real nombers.

The set K of indices of the active constraints at the optimal point dis
fixed and a point x¥¢£0 is randomly generated; the vectors b and h are
determined, as described in {[10], so that x¥ be the optimal point aand the
peint x=0 be feasibles.

Taking the guotient

Wh@X@‘f¢ aﬁdjﬂ&wmbm are the maximum and the minisam elgenvalue of H,
as the condition pumber of H, we have
y + 2 cos{(m/11)

cond {H} = o
y = 2 cos{mt/11)

We then define the constraint degeneration parameter as the saxinmum

ginor of mwaximal rank of the submatrix L

k=11
deg(h ) = w ({u ¢ k)
K
where k i& the number of active constraints at x%,

He take into account the following values for the parameters



k=2 ,5,7, 8, 9, 10

205 5 2.0 , 1.96 , 1.92

e
i

i
(1/72) , i=04000,5

#

W

Thus we obtain problems whose condition numker varies from 7.6 to
3490, while the degeneration parameter varies from 11 to 2.85 10~13,

The procedure FD and the subprocedures 21,%Z2,R,6J,CE are implemented in

double precision on the IBM 370,168,

5¢2 - Por any problem and method, taking as the initial point the point
¥€93=0, and putting a bound to the maximus iteration number, we weasure the
execution time not imcluding the imput/output operations. Hence we compute
the iteration +time by dividing the execution time by the npumber of
?erﬁwx@@@ iterations and, for each methcd and each k value, letting y and w
‘ waxy@ e compute the average iteration time. ¥e do not consider the time
length for those problems where the projection of the gradient can not be
computed by the procedure GJ, peing too low the value of the degemeration

parameter of the constraints at the optimum [1 7.

! | 21 ] 22 | R {
| kK frre———eeere——— [===memerenreeee {ommmemerren oo {
} ] Ok | GJ | OR | GJ | OR | GJ |
{momm oo eee- j == |oome——— |- | Rttt |=m=eoe- {
I 2 1 51T 1 86 | 50 | 46 | 50 {§ .46 |
b At |- |==mm——— j==————- == | ===
I 5 1 81T | 73 | <81 | 73 | 78 | .65 |
o o e o |- == | == | m=mo——n]
b7 1 1.00 | .98 | 1,00 | .93 | .85 | .78 |
{== oo |momme—— j=—em——- et Rt | ==y
§ 8 | 103 1 +96 | .01 | .96 | .9¢ | .88 |
il jroeme—— Bt | == |==eom— |
§ 9 | 103 | 1,00 ) 103 | 299 | .94 § .89 |
Rl ittt |=o—e e Rttt | === |- it e i
I 10 7 190 | 105 { 1.10 | 1.05 | .91 | .86 |
| i l ! ! | ! i

Table 1 Average iteration times imn hundredths of a sec.

hAlthough the dimemsion of the problems is small, it can be noted from

the table that the average iteratiomn times given by the procedure GJ are
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lower than those given by the procedure OR, independently £roe the
procedures Z1,22,R.

The procedure Z1 requires generally more time for an iteration, and
this can be explained by the fact that the number of intermediate cycles in
the procedure Z1 can be much greater than in the other procedures. The
number of controls required by the procedure 22 seems to have a negative

influence on its efficiency with respect to the procedure E.

563 - Let x* be the optimal point of a test problem and let the convergent
to ¥ sequence, gx<i>}, be obtained by the iterative method ({(3) starting
from a feasible initial point x¢0) (wve assume that x(0lgx®k), is a
convergence factor of the segquence {xiiP}, on the basis of the results of
[2] and [8], ve consider as particularly sigpnificant the root-convergence
factor, or Rﬂ{x(ib}-factor, [6]:

(i) (1) 174

Rﬂ{x } = 1lim sup {ix - x|
L g

At any step of each method the i-th root

{i) 174
(1ix = x®]]/1|xC0> ~ x¥{|)

ft

T
i

is computed. The sequences {tig s0 obtained have Rg{x‘53§ as upper limit.

5.4 -~ From the results of the experisents i1t comes out that, erxcept when
the degeneration parameter is too low, the optimal set of constraints is
reached easily enough. Afterwards the method behaves like a gradient
method on the manifold generated by the active constraints. Hence if k=n,
after finding the optimal set, the optimal point is immediately reached; if
k=p=1, after finding the optimal set, the optimal point is reached by only
one step of unidimensional minimization (in both cases the ngx%i§§ is
zero) ; if k<n-2 the seguence {ri} has 0 < Rd{xﬁiﬂ} < fo Plgures frozm 1 to

9 show some of the most significant graphs for the values k=5,8,9 , which
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illustrate the variations of the seguence {r;} with the condition number
and the degeneration number, with the aim of specifying the parameters on
which the evalvation is based.

The seguence {I£3 plotted in figures from 1 tc 9 were obtained by
procedure 21 with OR (the segquences obtained by the other procedures have a
similar behaviour) for the values of the condition number cond (H)=7.6 and
cond {H) =3490,

The figures 1 and 2, obtained for k=5, show the typical obehaviour of
the sequence (r, } when k<n-2: in this case, after ap initial stage when
the method finds the optimal set of constraints, the sequences settle down
and show a behavicur analogous to that of a steepest descent method c¢cn the
manifold generated bpy the constraints on which it 4is projected, with a
linear convergence order. From the graphs we find that the degeneration
parameter has an influence on the sequence {gi} only for very low values.

The figures 7 and 8, obtained for k=9, show the typical bebaviour of
the sequence gxi } when k=n-1: in this case, after the initial stage when
the method finds the optimal set of constraints, c¢nly one iteraticn is
regquired to reach the optimal point. Prom the graphs wve find that the
degeneration parameter bas an influence on the number éf iterations of the
ipitial stage.

In figures 4 and S, obtained for k=8, we find plotted the sequences
grés when k=n-2: in this case the method shows a hybrid bebhaviour: the
initial stage is similar to that for k=n-1, but once found the optimal set
of constraints, the seguence {ri} has a non-zero upper limit and shows an
ogscillatory behaviour, caused by the accumulation of the rounding errors,

The figures 3, 6 and 9 shov the sequences {ti} for k=5, k=8 and k=9 vheg
the condition number varies. In our opinion the condition number actually
influencing the cc¢nvergence factor is that, not of the matrix H, but of the
matrix of the guadratic fore obtained by considering the problem on the

sanifold generated by the intersection of the optimal constraints set.
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55 = Comparing the procedures OR and GJ tfrom the rpoint of view of the
seguences {ri}, ve £ind that there can be considerable differences only for
lcw values of the degeneration parameter, in accordance with what reported
in {13, (773

As for the procedures 21, 22 and R, we find that no coansiderable
differences can te detected when k=2 and k=5. For k27, the procedure R
finds the optimal constraints set faster: we think that this is due to the
fact that it implements an implicit antizigzagging procedure. This
explains the fact tnat for k=9 and k=1L the seguences {ri} relative %o the
procedure R converge in a smaller number of iteraticns (see table 2, where
the numpers of iterations regquired by the method Z1, Z2 and R are coppared
for different values of w and y:; see also figure 10 vhere the seguences
{ri} of the three methods are plotted in the case: k=9,y=1.96),

O0n the other nand the procedure R, bound to project on the whole set of
active constraints at a point, for low values of the degeneration
parameter, is influenced py the rounding errors more than the procedures 21
and 42, which, by projectiny on a subset of active constraints, caa
recognize as verified the remaining ones: this fact is partacularly evident

when k<n-1 (see figure 11},



{ ] { ¥ | Z1 %2 R |
j=-moms |=-=m===- |=-==mm—- mo=——emcm e |
{ I 2.5 { 10 10 0 |
S ! |
§ i %92 | 11 11 11
fmmmmmm J===mmmme |======- e
g I 25 1 1 11 11 4
|z ! |
i P %.92 | 13 12 13
e [======-= fmmommommomm e em oo e l
| | 25 | 14 14 12 |
Iovae e l
g i 1,92 | 17 16 13
| m o |======m= J====mmmmmmmmmm e eee e |
i I 2.5 { 13 13 13 4
| e | | |
! I 1.92 | 15 15 15 |
|- f======-- |=r===mmmm oo e ol
| | 25 | 14 14 12|
| 1716 | ! 1
{ I 1.92 | 20 21 21 |
o f=-====-- fm====mmmmmmmmome oo e |
| i 25 { 15 15 15
|32 ! |
] I 1.92 | 24 23 20 |
s ! a |

Table 2: number of iterations required by the methods Z1, Z2 and R for some

values of the copdition number and the degeneration parameter.



o-o-o-e0 W=
roaaa RWz1/2
oo [W=1/4
st W=1/18

q wm-g-a-n W-1/32

T
00

2. 15.00 0 18.00 0 21.00 @ 24.08 29.08 ' 96.80 '
ITERATION NUMBER

@
&
-
a
a
«
@
b1
a
-

Fig. 1: sequences (c, 1 for k=5, y=2.5, w=1,1/2,1,4,1/16,1/32

{in abscissa the iteration index i)

s-o-o-o-o =]
otmtmimas W=1/2
oo Wz1/4
e W=1/16

W=1/32

§

0;3& L l‘,;

6,80 ,

ROOT FACTOR

0,40 |

0.20

T.00 ' 1.0 16.00 2108
ITERATION NUMBER

5,00

Fig. 2: sequences {ri} for k=5, v=1.92, w=1,1/2,1/4,1716,1/32

{in abscissa the iteration index i)



« 22 =

oo Y=2.5
GOl Y:Z_
oo Yx=1 .86

sttt Y=] .92

P A

8,00

RBOT FACTOR
8,40

0,20 ,

i

598

12.60 = 16.00 ' 18.00 | 21.00
ITERRTION NUMBER

FPig. 3: sequences (r;} for k=5, w=1/16, ¥%2.5,2¢,1.96,1.92

{in abscissa the iteration index i)

o0 =1
atmata {=1/2
oo-o-s Wz1/4
- Wx1/16

| eoa-a-a W=1/32

1,88

i

6,00

ROOT FRLCTOR
1,80

8,48

i

8,80

¥ ¥ 1 L ¥

o2
]

&

-

]

8

12.00 = 16.00 = 16.08 £1.00
ITERATION NUMBER

.yige b: sequences {:i} for k=8, y=2.5, w=1,1/2,1/8,1/716,1/32

(in abscissa the iteration index i)



oo W=|
ettmama W=1/2
oo——o  W=1/4
st W=1/16

- pawe-a W-]/32

A

ROGT FACTOR
0,80 |

0,40

1

0‘20

&5, 00

T T T L Y T T T T T T T ¥ T T
.00 3.08 8.00 9.00 12.00 16.00 21.00 24.00 27.00 30.00

" 15.00
ITERATION NUMBER

Fig. 5: sequences {r, } for k=8, y=1.92, w=1,1/2,1,4,1,16,1/32

(in abscissa the iteration index i)

oo Y=2.5
PN S V- Y Y=2.
o0 Y=1.96

o Y-l .92

D‘.GO . !AOO N

0‘.3!7 |

1

ROGT FACTOR

0;40

0,80

0,00

H T

18.00  21.00 @ 24.00 = 25.00 = 86.00

i
2. o
ITERRTION NUMBER

Fig, 6: sequences {ri} for k=8, w=1/2, ¥5265420,1:96,1,92

(in abscissa the iteration index i)



o 28 =

o006 W=i
sttt Wx1/2
oo H=1/4
i Wz]/16

g soao-e RWKz1/32

ROGT FACTOR
8,08 , &8 ,

8,48 |

9e ,

k)

¥ ] ¥ L

P68
g
e
g
@

8
@

)

12.60 | 16.00 @ 10.60 ' 21.09
ITERATION NUMBER

Pig. 7: sequences {(r.} for k=9, y=2.5, w=1,1/2,1,4,1/16,1/32

{(in abscissa the iteration index i)

oo W=l
i Pl=1/2
oooe R=1/4
w-x W=1/16

: | mesea W=1/32

8,80

ROOT FACTOR
9,08

945

5

B,%0

288

18.05 1 16.00 @ 16.06  21.00 2408 £7.08  90.09 '
ITERARTION MNUMBER

Pig. 8: seguences (IL} for k=9, y=1.92, w=1,1/2,1/8,1/716,1/32

{in abscissa the iteratiom index i)



oo Y=2.5
Bl il Y:Z_
oo Y=zl .96

S5 Y-1.92

ROGT FACTOR
0,40 0,88 080

L

U‘-!O

1] ¥

00

.00 3.00 B’-OD QI-OO ! {.00 ’ 2-‘0.00 : 3}1.00 3&.00

12,00~ 16.00  18.00 2
ITERATION NUMBER

Fig. 9: segquences {r{} for k=9, w=1/2, ¥52.5,26196,7.92

{in abscissa the iteration index i)

i

0;00 , KAM

0,68 |

ROOBT FACTOR

0;40 .

1

6,20

T ) ¥ ¥ ¥ t ¥

g
8
e
g
a
2

2.00'  16.00 18.00 21.00
ITERATION NUMBER

Fige 10: seguences ({r;} fcr k=9, y=1.96, w=1,/16 by 21, 22, K

{in abscissa the iteration index 1)



1409 ,

kS

8,89

8,0

ROGT FRCTOR
948 ,

820

i

£,98
4

08 | 9.08 @ §.06 @ 9.80 12,08~ 16.80 @ 16.00 @ £1.08 '
ITERRTION NUMBER

Pig. 11: segquences (r:} for k=7, y=1.92, w=1 by 21, 22, R

{in abscissa the iteration index i)
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