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A B S T R A C T   

The global prevalence of obesity more than doubled between 1990 and 2022. By 2022, 2.5 billion adults aged 18 
and older were overweight, with over 890 million of them living with obesity. The urgent need for understanding 
the impact of high-fat diet, together with the demanding of analytical methods with low energy/chemicals 
consumption, can be fulfilled by rapid, high-throughput spectroscopic techniques. 

To understand the impact of high-fat diet on the metabolic signatures of mouse cecal contents, we charac
terized metabolite variations in two diet-groups (standard vs high-fat diet) using FTIR spectroscopy and multi
variate analysis. Their cecal content showed distinct spectral features corresponding to high- and low-molecular- 
weight metabolites. Further quantification of 13 low-molecular-weight metabolites using liquid chromatography 
showed significant reduction in the production of short chain fatty acids and amino acids associated with high-fat 
diet samples. These findings demonstrated the potential of spectroscopy to follow changes in gut metabolites.   

1. Introduction 

Evidence, mainly from animal models, suggests that the gut micro
biota significantly affects host health (Flint, Scott, Louis, & Duncan, 
2012). Diseases linked to diet, such as obesity, are also associated with 
changes in the gut microbiota. Obesity is indeed not only a matter of 
calories intake but also of the selection of gut microbiota populations 
that impact via bacterial metabolites (e.g. short-chain fatty acids, lipo
polysaccharides…) on host energy metabolism, inflammation, and 
regulation of fat deposition and bile acid metabolism.(Breton, Galmiche, 
& Déchelotte, 2022). 

Mice are commonly used in biomedical research because their 
physiological and anatomical structures, including the gastrointestinal 
tract, are similar to humans (Nguyen, Vieira-Silva, Liston, & Raes, 
2015). Studies on mice fed high-fat diets have shown gut microbiota 
changes similar to those observed in humans. However, some important 
differences must be considered. Human studies typically use stool 
samples, whereas mouse studies use cecal content. The mouse cecum is 
large and important for fermenting plant materials and producing vi
tamins K and B, which mice reabsorb by eating their feces. In contrast, 
the human cecum is smaller, resembles the colon, and lacks a distinct 

function. While the murine model remains valuable for studying host- 
microbiota interactions, caution is needed when drawing direct paral
lels between murine and human gut microbiota compositions (Nguyen 
et al., 2015). 

In mice, the cecum gut portion is an important site of water and 
electrolyte absorption, but also of digesta retention and microbial 
fermentation (Breves, 1995; Jandhyala et al., 2015). In this framework, 
the study of metabolite composition of cecal content under different 
dietary conditions allows us to gain deeper insights into how specific 
nutrients and dietary factors affect the metabolic pathways and micro
bial functions within the cecum (Cai, Wen, Meng, & Yang, 2021) 
(Stanley, Geier, Chen, Hughes, & Moore, 2015). Recently, the metab
olomic signatures and microbiome profiles of cecum contents in high-fat 
diet-induced obese mice have been investigated by UHPLC-Q-TOF/MS 
(Cai et al., 2021), 16S rRNA gene amplicon sequencing and gas chro
matography–mass spectrometry (GC–MS) (Jo et al., 2021), and by 1H 
NMR spectroscopy (Ogawa et al., 2020), recognizing that the compre
hension of the effects of a high-fat diet vs a standard diet on cecal content 
is of paramount importance (Jo et al., 2021). 

Here, we hypothesized that the investigation of the cecal content 
metabolic profile in mice fed a standard or high-fat diet can reflect 
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variations in the gut microbiota composition, providing a useful 
approach for understanding host-microbiome interactions and possible 
insights into the effects of dietary interventions. 

FTIR is one of the spectroscopic methodological approaches widely 
employed in tandem with chemometric tools to evidence the differences 
between different groups of samples (control vs “treated” samples, 
control vs pathological samples…) (Ferreira et al., 2022; Magalhães, 
Goodfellow, & Nunes, 2021; Naseer, Ali, & Qazi, 2021; Talari, Martinez, 
Movasaghi, Rehman, & Rehman, 2017), like other spectroscopic ap
proaches and chromatographic methods (LC or GC). FTIR spectroscopy 
is an excellent tool for profiling fecal extracts as it enables the simul
taneous detection of various metabolites from a broad range of chemical 
classes, including short-chain fatty acids (SCFAs), amino acids, bile 
acids, carbohydrates, amines, and alcohols (Chakraborty & Das, 2017; 
Talari et al., 2017). 

Few studies have been conducted on fecal samples (Ferreira et al., 
2022; Franck, Sallerin, Schroeder, Gelot, & Nabet, 1996; Kho et al., 
2023) using FTIR and even fewer on cecal content (Anderson et al., 
2013; Daniel et al., 2014). FTIR spectroscopy has the advantage to be 
very rapid without requiring cumbersome sample preparation steps, 
especially performing the measurements with the “printing” method, as 
previously described by our group (Campanella, Legnaioli, Onor, Ben
edetti, & Bramanti, 2023). 

This study aimed to investigate the water-soluble fraction of the 
cecal content of mice fed a high-fat diet vs a standard diet using ATR- 
FTIR spectroscopy, and to quantify the metabolite composition using 
liquid chromatography. To analyze the complex spectral dataset ob
tained from FTIR spectra, we employed Principal Component Analysis 
(PCA) (Morais, Lima, Singh, & Martin, 2020). FTIR spectroscopic anal
ysis was sensitive enough to enable us to reveal distinct clustering pat
terns in the score plot, indicating significant variations in the metabolic 
profiles between the dietary groups. The implementation of FTIR study 
with liquid chromatography allowed us to obtain information on spe
cific metabolites related to high-fat and standard diets responsible for 
the spectroscopic differences. 

2. Materials and methods 

2.1. In vivo animal experiment and dietary regimen 

The in vivo experiment was conducted using male C57BL/6 J mice 
with a body weight range of 22–25 g. The mice were housed in cages 
under a 12 h light/dark cycle at room temperature, with relative hu
midity maintained at 55%. Throughout the experiment, both groups of 
mice had ad libitum access to food and drinking water. 

The mice were randomly assigned to two groups: the control (stan
dard diet, STD) group (n = 12) and the high-fat diet (HFD) group (n =
11; one mouse died before the end of the experiment). The randomi
zation was performed using the simple randomization strategy by the 
online tool “Research Randomizer” (www.randomizer.org). The control 
group received a standard chow diet containing 19% proteins, 6% fibers, 
7% minerals and vitamins moisture, 64% carbohydrates, and 4% fats, 
where the latter accounted for 11% of the diet-deriving energy. The 
high-fat diet group received a specialized diet (Research Diets, D12492) 
comprising 24% proteins, 6% fibers, 5% minerals and vitamins mois
ture, 26% carbohydrates, and 35% fats, with the 35% of fats contrib
uting to 60% of the diet-deriving energy. 

Ten weeks after the commencement of the trial, the mice were 
euthanized by cervical dislocation, and their cecal content was collected 
in sterilized conditions in a random order. The randomization was 
performed using the simple randomization strategy by “Research 
Randomizer” tool online (www.randomizer.org). The cecal contents 
were frozen in liquid nitrogen immediately after collection and stored in 
a freezer at − 80 ◦C. 

The animal procedures were carried out at the Centre of Experi
mental Biomedicine of CNR (Pisa, Italy) in accordance with the 

approved in vivo protocol (Protocol 65E5B.53) and authorized by the 
Italian Ministry of Health (Authorization 873/2021-PR of 12/11/21). 
All efforts were made to ensure the welfare and ethical treatment of the 
animals throughout the study. 

2.2. Sample preparation 

Approximately 45 mg of the cecal content samples were thawed and 
dissolved in 500 μL of bidistilled H2O (ELGA Ultrapure Laboratory 
Water, Milan, Italy). The sample was homogenized by vortexing and 
sonication (40 kHz for 5 min). After sonication, the samples were 
centrifuged at 14000 rpm for 10 min. The supernatant was collected and 
stored in a freezer at − 80 ◦C. For the analysis, the supernatant samples 
were thawed and split in two aliquots. The supernatants were fraction
ated in two parts: (i) a part was analyzed as is (named “untreated 
samples”); (ii) a part was deproteinized by ultracentrifugation (30 min) 
using Microcon® Centrifugal Filters with cut off 3-kDa (Merck, Milan 
Italy) (named “3-kDa filtered samples”).(Campanella et al., 2023). 

2.3. ATR-FTIR analysis 

Five drops (50 μL each) of samples were deposited onto a poly
propylene (PP) sheet by a micro-pipette (Eppendorf Research Plus 
pipette, Eppendorf AG), and air-dried at room temperature overnight. 
Spectra were recorded in ATR mode on sample dried spots using a 
Frontiers FTIR spectrometer (Perkin Elmer, Milan, Italy), equipped with 
a diamond attenuated total reflectance (ATR) sampling accessory. The 
flat sample press tip (2 mm diameter) was employed to “stamp” the 
sample from the dried spot (Fig. 1), then the PP sheet was removed. The 
micro-amount “printed” on the ATR diamond window was enough to get 
reliable and reproducible spectra, as previously reported (Fornasaro 
et al., 2022). Spectra were recorded in 4000–600 cm− 1 spectral range 
with a 4 cm− 1 resolution, with 32 scans for the background and the 
sample. For each analysis, the diamond sampling window and the 
sample press tip were cleaned with 70% ethanol v/v. Mid-infrared (MIR) 
spectra were acquired on 5 different spots for every mouse (12 + 11 
independent samples) obtaining a CV% <3%, by far smaller than the 
biological variability. Fig. 1 schematizes the experimental procedure. 

2.4. ATR-FTIR spectra preprocessing and analysis 

Fig. S1 shows the original spectra obtained for both experiments (no 
cut-off and 3-kDa cut-off). Spectra pre-processing, analysis, and data 
visualization were performed within R environment - version 4.1.0 
(2021–09-91) using the packages hyperSpec, prcomp, stats, baseline and 
ggplot2. An in-house modified R code from (Fornasaro et al., 2022) was 
used. The pre-processing steps were the following: (i) removal of the 
1800–2800 cm− 1 region, (ii) polynomial baseline subtraction (method 
“modpolyfit”, degree = 4), (iii) vector normalization. Fig. S2 shows the 
spectra for both experiments (no cut-off and 3-kDa cut-off) after the 
described pretreatment. Before principal component analysis (PCA) 
spectra were mean centered. A Welch’s t-test with Benjamini-Hochberg 
correction for false discovery rate was performed on PCA scores. 

2.5. HPLC-DAD/FD analysis 

3-kDa Filtered samples were 3-fold diluted in 5 mM sulfuric acid, 
filtered using a 0.20 μm RC Mini-Uniprep (Agilent Technologies, Milan, 
Italy) filter, injected in an Agilent 1260 Infinity HPLC system (Agilent 
Technologies, Milan, Italy) equipped with a UV/vis diode array (1260 
DAD G4212B) and fluorescence (FD) detector (Vinj = 5 μL), and analyzed 
as described in the paper (Campanella et al., 2020). All reagents, having 
purity >99%, were purchased from Merck-Sigma (Merck, Milan, Italy) 
and used without previous purification. 
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3. Results and discussion 

3.1. FTIR spectral profiles of Cecal content 

FTIR spectroscopy can be applied to analyze intestinal contents, and 
it provides valuable insights into the metabolic landscape of the gut 
microbiota. Fig. 2 shows the overlaid ATR-FTIR spectra of the untreated 
(Fig. 2A) and 3-kDa filtered cecum extracts (Fig. 2B) for the two groups 
fed the STD and HFD diet. These data were generated from all ATR-FTIR 
spectra of the entire dataset (120 spectra from untreated samples and 
115 spectra from 3-kDa cut-off samples, Fig. S1) after the pre-treatment 
described in the Materials and Methods Section (Fig. S2). After spectral 

pre-treatment, the 3-kDa filtered samples appeared more homogeneous 
than the untreated samples. 

Figs. 3 and 4 show the comparison between medians, generated by 
averaging the biological and instrumental replicas, and interquartile 
(shaded areas) of the ATR-FTIR spectra of STD (blue) and HFD (orange) 
groups, together with the median and interquartile of all the difference 
spectra (black) from the analysis of untreated samples (Fig. 3) and 3-kDa 
filtered samples (Fig. 4). 

FTIR spectroscopic analysis of cecal content samples revealed 
distinct variations induced by different dietary regimens in both un
treated and 3-kDa filtered samples. FTIR spectra of untreated samples 
have complex absorption bands in the O–H and N–H stretching region 

Fig. 1. Experimental procedure: workflow.  

Fig. 2. Overlayed ATR-FTIR spectra of untreated (A panel) and 3-kDa filtered samples (B panel) for the 2 groups (STD: standard diet; HFD: high-fat diet).  

C. Trouki et al.                                                                                                                                                                                                                                  



Food Chemistry 455 (2024) 139856

4

(3800–3000 cm− 1), CH2 and CH3 stretching (2916 and 2850 cm− 1) and 
bending vibrations (1450, 1424 and 1362 cm− 1), C––O stretching, N–H 
bending and C–N stretching modes in the 1700–1500 cm− 1 region 
typical of amines and amides, C–O (1208 cm− 1), C–O–C (1050 cm− 1) 
stretching, and C–O–H bending vibrations (1100–900 cm− 1). These 
bands can be due to polysaccharidic matrices (starch) (Anderson et al., 
2013), starch bile derivates (Untereiner et al., 2014), amides (Daniel 
et al., 2014; Jameson, Olson, Kazmi, & Hsiao, 2020), proteins present in 
bile, and lipidic components (Untereiner et al., 2014). Despite the matrix 
complexity, we found that the diet impacts on these absorptions giving 
appreciable differences (Fig. 3 and Fig.S3A). The major differences 
observed in the spectra of untreated samples are due to the peaks at 
3352, 2916, 2850, 1610, 1450, 1424, 1362, 1208, 1050, and 916 cm− 1 

characteristics of HFD (negative peaks) and 1544, 1514, 1388, 1322, 
1078 and 980 cm− 1 characteristic of STD (positive peaks) (Fig. S3A) 
(Daniel et al., 2014). 

The analysis of 3-kDa filtered samples (Fig. 4) focus on the differ
ences related to low-molecular-weight metabolites. Medians and inter
quartiles ATR-FTIR spectra of filtered samples have absorptions typical 
of glycerol and derivates, amides and derivates, amino acid side chains 
and short chain fatty acids (SCFAs) (https://sdbs.db.aist.go.jp/sdbs 
/cgi-bin/direct_frame_top.cgi, SDBS). After the 3-kDa filtration STD 
and HFD samples show differences (Fig. 4 and S3B), at 1594, 1514, 
1448, 1386, 1346, 1074, 1008 and 980 cm− 1 (positive peaks charac
teristics of STD) and at 3280, 2946, 2886 cm− 1 (negative peaks char
acteristic of HFD) (Fig.S3B). 

This first qualitative analysis suggests that FTIR analysis is a suitable, 
rapid tool for uncovering the impact of different dietary regimens on the 
gut’s metabolic landscape. 

3.2. Principal component analysis 

To further explore the metabolic variations induced by different di
etary regimens in mice, we performed Principal Component Analysis 
(PCA) on the FTIR spectral data of the cecal content samples. PCA 
analysis revealed distinct clustering patterns between the two dietary 
groups, indicating differences in the overall metabolite composition of 
the cecal content. The scores plot obtained from the PCA demonstrated a 
significant difference between the STD and HFD groups in both un
treated and 3-kDa filtered samples, indicating that the dietary regimen 
strongly influences the cecal metabolite profile, according to the liter
ature (Anderson et al., 2013; Cai et al., 2021; Daniel et al., 2014; Jo 
et al., 2021; Ryan, Barquera, Barata Cavalcanti, & Ralston, 2021; Van 
Treuren & Dodd, 2020; Zhang et al., 2023). 

Fig. 5 shows PC1 vs PC3 and PC2 vs PC3 score plots from the PC 
analysis of untreated samples (panel A), the scores of the third principal 
component split by group (panel B), and PC3 loading (black lines) 
compared to corresponding ATR-FTIR average spectrum (blue line) 
(panel C). 

In untreated samples, STD and HFD groups were separated along 
PC3. The p-value from STD-PC3 and HFD-PC3 comparison, obtained by 
a pairwise t-test (adjusted for false discovery rate with the Benjamini- 
Hochberg method) with no assumption of equal variances, was <0.001. 

The analysis of the PC3 loading plot confirms the results of the 
analysis of median interquartile of the difference spectra. PC3 indicates 
that HFD affects IR absorptions typical of polysaccharidic matrices 
(starch) (Anderson et al., 2013), starch bile derivatives (Untereiner 
et al., 2014), amides (Daniel et al., 2014; Jameson et al., 2020), proteins 
present in bile, and lipidic components (Untereiner et al., 2014). 

Fig. 6 shows PC1 vs PC3 and PC2 vs PC3 score plots from PC analysis 
of 3-kDa filtered samples (panel A), the scores of the first principal 
component split by group (panel B), and PC1 loading (black lines) from 
PC analysis compared to corresponding ATR-FTIR average spectrum 
(blue line) (panel C). The p-value, obtained from STD-PC1 vs HFD-PC1 
comparison, was <0.001. 

In the 3-kDa filtered samples, the STD and HFD groups were signif
icantly separated along PC1 (Fig. 5). PC1 loadings indicate HFD group 
characterized by the absorption at 3298 cm− 1, typical of N–H stretch
ing of secondary amide, and at 2958 and 2898 cm− 1,typical of CH2 and 
CH3 stretching vibrations. The STD group is characterized by metabo
lites associated with the bands around 1602 and 1520 cm− 1 attributed to 
amides and amines (Daniel et al., 2014; Jameson et al., 2020), and 
potentially to the asymmetric -COO− and the symmetric -COO−

stretching of amino acid side chains, and to CH2 and CH3 bending vi
brations, and peaks at 1082, 1012, 984 cm− 1 characteristic of C–O and 
C-O-C compounds, including SCFAs, carbohydrates and glycerol/glyc
erol derivatives (Ogawa et al., 2020). 

Despite the assignment of the absorption to specific low-molecular 
weight metabolites is not feasible using FTIR spectroscopy, and 
despite few authors report on the composition of mouse cecal content 
(Cai et al., 2021; Daniel et al., 2014; Ogawa et al., 2020; Sun et al., 2019; 
Zeng et al., 2015), by matching the available data several hypotheses on 

Fig. 3. Comparison between medians and interquartile (shaded areas) of the 
intensity for the ATR-FTIR spectra of standard (STD, blue) and high-fat diet 
(HFD, orange) groups, together with the median and interquartile of all the 
difference spectra (black) from the analysis of untreated samples. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 4. Comparison between medians and interquartile (shaded areas) of the 
intensity for the ATR-FTIR spectra of standard (STD, blue) and high-fat diet 
(HFD, orange) groups, together with the median and interquartile of all the 
difference spectra (black) from the analysis of 3-kDa filtered samples. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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the main molecules and pathways involved in the systemic effects of 
HFD can be suggested. Table S1 shows a list of metabolites, with the 
related concentration detected in mouse cecal content that could help in 
the interpretation of these differences, although the metabolite pattern 
may differ due to the adopted sample preparation methods.(Ogawa 
et al., 2020). 

FTIR spectroscopic data have drawn attention to glycerol de
rivatives, amides, amino acids, and SCFAs. Although glycerol is among 
the most abundant compounds in mouse cecal content (Ogawa et al., 
2020), its role remains unknown. It has been reported that human fecal 
microbiota displays variable patterns of glycerol metabolism, and that 
glycerol may modulate fermentation kinetics and profiles in the 
gastrointestinal tract, correlating with SCFA content (De Weirdt et al., 
2010). It cannot be excluded that diet-modulated glycerol content and 
species are associated with 2-arachidonoyl glycerol metabolism, a 
molecule with cannabinoid neuromodulatory effects, and an inflam
matory signaling role in the gut-brain axis (Wang, Su, Dai, Song, & Qian, 
2023). 

Regarding the detection of amide compounds in the cecal content of 
mice, it is interesting to highlight that N-acyl amides have emerged as a 
family of biologically active compounds in transient receptor potential 
channels, and conserved integral membrane proteins of ion channels 
(Raboune et al., 2014). N-acyl amides are characterized by an acyl group 
and an amine via an amide bond, and can be modified by changing 

either the fatty acid or the amide to potentially form hundreds of lipids 
representing the gut microbial lipidome (Morozumi, Ueda, Okahashi, & 
Arita, 2022). The involvement of SCFAs in the gut-brain signaling is also 
well known (Jameson et al., 2020; Wang et al., 2023). 

3.3. HPLC-DAD/FD analysis of 3-kDa filtered cecal content samples 

In our laboratories, we have developed a liquid chromatography 
method that exploits a diode array and a fluorescence detector for the 
quantification of low-molecular-weight metabolites in biological ex
tracts. This procedure requires minimal sample handling and it is cost- 
effective, as it makes it possible to analyze a large number of samples 
with basic instrumentation. In this study, HPLC-DAD/FD analysis 
allowed us to add important pieces to the framework outlined by FTIR 
spectroscopy. Fig. 7 shows a box plot of 13 metabolites determined by 
HPLC-DAD/FD in the cecal content extracts of mice fed the two diets. 
Representative absorbance chromatograms at 220 nm of STD and HFD 
cecal content extracts are reported in the Supporting Information 
(Fig. S5). 

The main metabolites in the millimolar range are the SCFAs acetic, 
propionic, succinic, formic and malic acids. In the micromolar range, 
isobutyric and butyric acids, pyridoxine (vitamin B6), uric acid, and 
aromatic amino acids phenylalanine (PHE), tyrosine (TYR), and tryp
tophan (TRP), were detected. Significant differences were observed in 

Fig. 5. (A) PC1 vs PC3 and PC2 vs PC3 score plots from PC analysis of untreated samples (A); (B) scores of the third principal component split by group (B). (C) PC3 
loading (black lines) from PC analysis of untreated samples compared to the corresponding ATR-FTIR average spectrum (blue line). (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. PC1 vs PC2 and PC1 vs PC3 score plots from PC analysis of 3 kDa filtered samples (A); (B) scores of the first principal component split by group (B). (C) PC1 
loading (black lines) from PC analysis of 3-kDa filtered samples compared to corresponding ATR-FTIR average spectrum (blue line). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Box plot of metabolites (autoscaled concentrations) determined by HPLC-DAD in the cecal content extracts of N = 11 animal fed with standard and high- 
fat diet. 
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10 out of 13 (t-test comparison) of the listed metabolites, partially 
explaining the differences observed in the FTIR analysis. Table 1 shows 
the descriptive statistics of the 13 metabolites in the cecal content ex
tracts determined by HPLC-DAD (μmol/g cecal content). 

Acetate is a crucial SCFA present in the gut, especially in the colon, 
with trophic effects on the colonic epithelium and mucosal blood flux 
(Vernocchi, Del Chierico, & Putignani, 2016), and the knowledge of the 
role of microbiota-derived acetate in health and disease is increasing 
(Antunes et al., 2019; Bhattarai et al., 2017; Chen et al., 2023; Erny 
et al., 2021; Jugder, Kamareddine, & Watnick, 2021; Lin et al., 2022; 
Marques et al., 2017; Niu et al., 2023; Zhang et al., 2023). The other 
SCFAs, propionate (Bai et al., 2021; Bajic et al., 2020; Bindels et al., 
2012; Chen et al., 2021; Dürholz et al., 2022; Hou et al., 2021; Huang 
et al., 2020; Huang, Shi, Xu, & Ji, 2021; Kim et al., 2019; Langfeld, Du, 
Bereswill, & Heimesaat, 2021; Li et al., 2021; Su, Braat, & Peppe
lenbosch, 2021; Yan et al., 2022) and butyrate (Amiri et al., 2022; 
Bridgeman et al., 2020; Couto, Gonçalves, Magro, & Martel, 2020; 
Gheorghe et al., 2022; Stilling et al., 2016) are involved as well in 
important metabolic pathways and systemic conditions. All SCFA con
centrations were decreased in the HFD group. 

Lactate is a common metabolite in mammals, human body, and 
biofluids, and plays a role in the glycolysis-oxidative metabolism switch 
(Brooks, 2018). However, its role in gut remains unclear and under 
study (Lee et al., 2018; Mayeur et al., 2013; Okada et al., 2013; Peng, & 
TH, D., & Zhang, M., 2016; Zhao, Dong, Zhang, & Li, 2019). In our 
experiment, mice fed an HFD had significantly lower lactate levels. 

Gut bacteria are also involved in the biosynthesis of B-vitamins B1 
(thiamin), B2 (riboflavin), B3 (niacin), B5 (pantothenic acid), B6 (pyr
idoxine), B7 (biotin), B9 (folate), and B12 (cobalamin), which are 
involved in a variety of metabolic pathways and physiopathological 
conditions (Barone, D’Amico, Brigidi, & Turroni, 2022; Magnúsdóttir, 
Ravcheev, de Crécy-Lagard, & Thiele, 2015; Miri, Yeo, Abubaker, & 
Hammami, 2023; Thakur, Tomar, & De, 2016). HFD samples showed 
significant lower concentrations of vitamin B6, which is the cofactor of 
pyridoxal phosphate-dependent (B6-dependent) enzymes and in 
methionine and transsulfuration pathways that convert homocysteine to 
cysteine (Ettinger, 2022). 

The decrease of aromatic amino acids in cecal content of HFD mice 
was less evident for TYR and PHE, or absent for TRP. However, the 
fluorescence detector provided evidence of relevant changes in the 
chromatograms (λex = 280 nm, λem = 320 nm) of STD and HFD mice. 
Fig. 8 shows the comparison of the average fluorescence chromatograms 
of STD and HFD samples (N = 15 samples considering biological and 
instrumental replicates, metadata are available). Fig. S5 shows the 
fluorescence chromatograms of standard solutions of 10 μM dopamine, 

2.34 μM TYR, 45.1 μM PHE, 8.97 μM TRP and 2 μM melatonin. 
The results revealed different peaks in the STD and HFD groups. 

Among these, only the peaks at 7.819 and 23.508 min were identified as 
TYR and TRP, respectively. Dopamine and melatonin were eluted at 
5.328 and 27.023 min, respectively. However, many peaks in the fluo
rescence chromatograms (λex = 280 nm/ λem = 320 nm) were not 
identified. Considering that TYR is crucial for the production of dopa
mine and TRP to produce serotonin and melatonin, and that TRP me
tabolites are strictly related to the gut-brain axis (Gao & Farzi, 2020), 
TRP/TYR metabolites and small TRP/TYR-containing peptides would 
require further investigation. 

4. Conclusions 

FTIR spectroscopic and chromatographic data suggest that dietary 
variations affect the high- and low- molecular-weight metabolite pro
files of cecal content extracts. The FTIR method with the deposition of 
the extracts on polypropylene sheets has provided a valuable, fast tool 
for the efficient, low-cost, and reliable characterization of cecal content 
metabolites, demonstrating the potentiality of the ATR-FTIR method for 
studying the impact of diet on gut content composition and identifying 
regions of the spectra associated with potential biomarkers correlated 
with the diet. Complementary liquid chromatography allowed us to 
identify several metabolites and elucidate their variations among the 
different diet groups, being SCFAs, lactate and aromatic amino acids the 
main low-molecular-weight compounds involved in differentiating STD 
from HFD. 

These data confirm the complex metabolic interactions between the 
gut microbiota, host factors, and dietary components in mice. Alter
ations in their intensities or patterns suggest metabolic adaptations in 
response to a high-fat diet. 

The ability to analyze multiple metabolites simultaneously makes 
the FTIR approach rapidly and non-destructively well suited for high- 
throughput investigations and may facilitate the development of tar
geted interventions in animal models to improve gut health and manage 
diet-related diseases. 
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Table 1 
Descriptive statistics of the 13 metabolites in the cecal content extracts determined by HPLC-DAD (μmol/g cecal content).   

STANDARD DIET  

formic 
acid 

malic 
acid 

lactic 
acid 1 

lactic 
acid 2 

acetic 
acid 

uric 
acid 

pyridoxal 
phosphate 

succinic 
acid 

TYR propionic 
acid 

PHE isobutyric 
acid 

butyric 
acid 

TRP 

Min. 1.3 2.6 26.4 83.3 188.7 0.06 1.0 34.8 0.56 86.5 2.4 7.6 2.6 0.44 
1st Qu. 3.6 6.6 50.8 96.6 260.2 0.10 1.4 54.2 0.78 120.5 3.3 10.8 4.0 0.57 
Median 22.2 17.6 74.0 116.3 360.7 0.15 1.8 58.2 1.0 192.5 4.4 13.8 4.9 0.66 
Mean 28.4 15.3 80.6 142.9 356.9 0.34 1.7 69.3 1.1 192.6 4.7 13.3 6.9 0.78 
3rd Qu. 45.6 22.9 102.1 185.7 424.0 0.17 2.0 93.7 1.4 229.4 6.2 16.5 11.1 1.0 
Max. 68.9 26.7 148.8 216.3 554.5 3.2 2.1 106.2 1.7 326.0 7.1 18.7 16.4 1.2   

HIGH-FAT DIET  
formic 
acid 

malic 
acid 

lactic 
acid 1 

lactic 
acid 2 

acetic 
acid 

uric 
acid 

pyridoxal 
phosphate 

succinic 
acid TYR 

propionic 
acid PHE 

isobutyric 
acid 

butyric 
acid TRP 

Min. 0.00 12.8 9.3 7.8 11.6 0.00 0.08 50.7 0.01 0.00 0.24 0.00 1.0 0.42 
1st Qu. 1.8 17.4 16.4 10.3 58.4 0.01 0.09 70.9 0.47 53.3 2.2 0.02 1.4 0.53 
Median 2.4 21.5 21.3 12.5 67.2 0.02 0.10 91.5 0.60 123.4 2.7 0.55 1.6 0.70 
Mean 2.7 22.0 25.6 15.1 66.7 0.06 0.13 89.2 0.66 108.9 3.1 0.81 1.9 0.75 
3rd Qu. 3.6 23.6 31.7 15.7 84.3 0.04 0.15 111.9 0.80 144.6 3.9 1.2 2.6 1.0 
Max. 8.9 51.5 75.1 43.5 138.8 0.50 0.32 122.0 1.1 180.6 5.3 3.3 3.5 1.2  
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