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Abstract. A novel method for performing model updating on finite element models is presented. The approach
is particularly tailored to modal analyses of buildings, by which the lowest frequencies, obtained by using sensors and
system identification approaches, need to be matched to the numerical ones predicted by the model. This is done by
optimizing some unknown material parameters (such as mass density and Young’s modulus) of the materials and/or
the boundary conditions, which are often only known approximately. In particular, this is the case when considering
historical buildings.

The straightforward application of a general-purpose optimizer can be impractical, given the large size of the
model involved. In the paper, we show that, by slightly modifying the projection scheme used to compute the
eigenvalues at the lowest end of the spectrum one can obtain local parametric reduced order models that, embedded
in a trust-region scheme, form the basis for a reliable and efficient specialized algorithm.

We describe an optimization strategy based on this approach, and we provide numerical experiments that confirm
its effectiveness and accuracy.
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1. Introduction. Finite element (FE) model updating is a procedure aimed at calibrating
the FE model of a structure in order to match numerical and experimental results. Introduced in
the 1980s, it turned out to play a crucial role in the design, analysis and maintenance of aerospace,
mechanical and civil engineering structures [14,19,22,29]. In structural mechanics, model updating
techniques are used in conjunction with vibrations measurements to determine unknown system
characteristics, such as the materials’ properties, constraints, etc. The resulting updated FE model
can then be used to obtain reliable predictions on the dynamic behavior of the structure subjected
to time-dependent loads. A further important application of model updating, within the framework
of structural health monitoring, is damage detection [40, 43]. Within this framework, damage can
be identified based on the assumption that its presence is associated with a decrease in the stiffness
of some elements, with consequent changes to the structure’s modal characteristics.

Finite element model updating involves the solution of a constrained optimization problem,
whose objective function is generally expressed as the discrepancy between experimental and nu-
merical quantities, such as the structure’s natural frequencies and mode shapes. The constraints
are given by the boundary conditions and other physical limitations to the degrees of freedom
involved. Ill-posedness or ill-conditioning can affect model updating formulations and lead to nu-
merical problems due to inaccuracy in the model and lack of information in the measurements.
Among the methods aimed at quantifying uncertainties, the probabilistic Bayesian approach is one
of the most adopted [40].

Application of FE model updating to ancient masonry buildings is relatively recent. In [4,5,12,
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13,15,20,21,23,27,33,37,38,44] a vibration-based model updating is conducted, and preliminary FE
models are tuned by using the dynamic characteristics determined through system identification
techniques. In the papers cited above the modal analysis of the FE models are conducted via
commercial codes, and the model updating procedure is implemented separately. In this paper,
on the contrary, FE model updating is integrated with a software package, the NOSA-ITACA
code [11], able to manage the large-scale problems encountered in applications. In particular, the
algorithms for the solution of the constrained optimization problem integrated in NOSA-ITACA
exploit the structure of the stiffness and mass matrices and the fact that only a few of the smallest
eigenvalues have to be calculated. This new procedure reduces both the total computation time of
the numerical process and the user’s effort, thus providing the scientific and technical communities
with efficient algorithms specific for the FE model updating.

A simple form of FE model updating has been employed in combination with the NOSA-ITACA
code in [6, 7, 32], to perform modal analyses of the San Frediano bell tower and the Clock tower
in Lucca, Italy. In these works the optimal values of the Young’s modulus and the material’s
mass density are determined by fitting the data measured by seismometric stations placed on the
towers and running several simulation on a grid of feasible values. However, this approach becomes
impractical when the number of free parameters or the size of the model is considerably increased.

Model reduction techniques have long been used to reduce the size of complex FE models to
a more manageable order. This allows, for example, performing more demanding, and computa-
tionally costly, numerical tasks, such as optimization, simulation, and so on, in an efficient manner.
In particular, reduced models are natural candidates for optimization of the model’s free param-
eters, either to improve some engineering properties or to better match the empirically measured
modes. In practice, this step often turns into an eigenvalue optimization, where part of the spectral
structure is tuned following some prescribed criteria.

However, when the model depends on parameters, it is generally non-trivial to obtain a reduced
parametric model that accurately reflects the behavior of the original one for all possible parameter
values. This is precisely the aim of so-called parametric model reduction, which has recently been
used in combination with optimization algorithms [3, 30, 36, 46], especially involving trust-region
solvers [1, 45]. In this work, we propose an efficient Lanczos-based projection strategy tailored to
the needs of structural FE analysis.

In fact, FE study of buildings has some peculiar features that justify trying to devise an adapted
method. As discussed in the following, in this context the natural frequencies of interest are those
at the lowest end of the real spectrum. In order to compute them accurately, the natural choice is
an (inverse) Lanczos method. When a parametric model is given, the Lanczos projection can be
re-interpreted as a parameter dependent model reduction, whereby only the relevant part of the
spectrum is matched. We show that this step can be performed efficiently, and that its combination
with a trust-region method allows matching the measured frequencies with the ones predicted by
the parametric model.

The paper is organized as follows. In Section 2 we briefly discuss the FE model for the structural
applications we are interested in, and formulate the optimization problem related to model updating.
In Section 3 we recall the requirement for a model to be used in a trust-region optimization method,
and in particular those required to guarantee convergence. Section 4 describes how to construct a
model that satisfies these requirements by slightly modifying the Lanczos projection step used to
compute the smallest frequencies, and finally Section 5 illustrates some tests of our implementation
on some problems. In Section 6 we draw some conclusions and discuss future lines of research.
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2. The model: modal analysis of masonry buildings and frequency matching. Al-
though the masonry materials constituting historical buildings exhibit different strengths under
tension and compression and, therefore, behave nonlinearly, the modal analysis, which is based on
the assumption that the materials are linear elastic, is widely used in applications and provides
important qualitative information on the dynamic behavior of masonry structures. Modal analysis
consists in the solution of the constrained generalized eigenvalue problem

K v = ω2M v, subject to Cv = 0,(1)

with C ∈ Rh×n and h� n. The left part of (1) is derived from the differential equation

(2) Mü+Ku = 0,

governing the undamped free vibrations of a linear elastic structure discretized into finite elements.
In (2) u is the displacement vector, which belongs to Rn and depends on time t, ü is the second-
derivative of u with respect to t, and K and M ∈ Rn×n are the stiffness and mass matrices of the
FE model. K is symmetric and positive-semidefinite, M is symmetric and positive-definite, and
both are sparse and banded. Displacements ui are also called degrees of freedom; the integer n is
the total number of degrees of freedom of the system and is generally very large, since it depends
on the level of discretization of the problem. By assuming that

(3) u = v · sin(ωt),

with v a vector of Rn and ω a real scalar, and applying the mode superposition procedure [9],
equation (2) is transformed into the generalized eigenvalue problem (1). The right part of equa-
tion (1) expresses the fixed constraints and the master-slave relations assigned to displacement u,
written in terms of vector v. Imposing the constraints and boundary conditions is equivalent to
projecting the matrices K and M on a subspace where they are a symmetric positive definite pencil
(the right kernel of the operator C). In the following, we assume that this projection has already
been done — and we refer the reader to [35] for further details. Notice, in particular, that if K and
M depend linearly on some parameters x := (x1, . . . , x`), the same holds true for their projection.
More generally, the smooth dependency of K and M is preserved by the projection, since it is a
linear operation. This will be exploited in the analysis of the parametric projection in Section 4.

The eigenvalues ω2
i of (1) are linked to the natural frequencies, or eigenfrequencies fi of the

structure via the relation fi = ωi/2π, and the eigenvectors v(i) are the corresponding mode shape
vectors, or eigenmodes. Together with the natural frequencies, the mode shapes provide a good
deal of qualitative information on the structure’s deformations under dynamic loads.

An efficient implementation of the numerical methods for the constrained eigenvalue prob-
lem (1) has been embedded in NOSA–ITACA [35]. Such implementation takes into account both
the sparsity of the matrices and the features of master-slave constraints (tying or multipoint con-
straints). It is based on the open-source packages SPARSKIT [39], for managing matrices in sparse
format (storage, matrix-vector products), and ARPACK [28], which implements a method based
on Lanczos factorization combined with spectral techniques that improve convergence. The linear
systems with matrix K, arising during the Lanczos process, are solved using the MUMPS sparse
direct solver, which is both fast and well-tested by the numerical community [24].

Measuring the vibrations of masonry buildings is a common practice for assessing their dynamic
behavior. Historic constructions are subjected to a number sources of vibrations, such as traffic,
micro–tremors, wind and earthquakes. The availability of sensitive instruments to detect buildings’
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movements makes it possible to conduct accurate long–term monitoring campaigns. In fact, ambient
vibration monitoring can provide important information on the structural health of old masonry
constructions, as it is a non-destructive technique able to capture the most important features
of their dynamic behavior, such as natural frequencies, damping ratios, mode shapes and wave
propagation velocities. Once the influence of environmental factors has been accounted for, changes
in these dynamic properties over time may represent effective structural damage indicators [7].

FE model updating is a procedure that enables calibrating a finite element model of a structure
in order to match numerical and experimental results. Thus, model updating techniques are used
in conjunction with vibrations measurements to determine a structure’s characteristic, such as
materials’ properties, constraints, etc., which are generally unknown.

2.1. Formulation of the optimization problem. The model updating problem can be
rephrased as an optimization problem by assuming that the (projected) stiffness and mass matrices
K and M are functions of the parameter vectors x. We use the notation

K := K(x), M := M(x), x ∈ R`,

to denote this dependency. The set of valid choices for the parameters is denoted by Ω, which we
assume to be an `-dimensional box, that is

(4) Ω = [a1, b1]× . . .× [a`, b`],

for certain values ai < bi, i = 1, . . . , `. We also assume that initial estimates for the parameter
values are available, and we denote these by x(0). When this is not the case, we choose x(0) as the
center of the box Ω (i.e., the vector with the midpoints of the intervals [ai, bi] as coordinates).

Our ultimate aim is to determine the optimal value of x that minimizes a certain cost functional
φ(x) within the box Ω. This is an instance of the optimization problem

(5) min
x∈Ω

φ(x).

The choice of the objective function φ(x) is related to the frequencies that we want to match. If
we need to match s frequencies of the model, we choose a suitable weight vector w := [w1, . . . , ws],
with wi > 0, and we define the functional φ(x) as follows:

(6) φ(x) :=

∥∥∥∥∥
√

Λs(K,M)

2π
− f

∥∥∥∥∥
2

w,2

, ‖y‖w,2 :=
√

yTDwy,

where f is the vector of the measured frequencies, Dw = diag(w1, . . . , ws) and Λs(K,M) is the
vector containing the smallest s eigenvalues of the pencil K − λM , ordered according to their
magnitude.

The vector w encodes the weights that should be given to each frequency in the optimization
scheme. If the aim is to minimize the distance between the vector of measured and computed
frequencies in the usual Euclidean norm, then w = 1s, the vector of all ones, should be chosen. If,
instead, a relative accuracy on the frequencies is desired, wi = f−1

i is the natural choice. To avoid
scaling issues in the objective function, we always normalize w to have Euclidean norm 1.

3. The optimization framework. In this section we describe the optimization framework
that we use. We choose to rely on a trust-region scheme, which is defined by building a sequence
of local models for the objective function.
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Construction of the local models is discussed in Section 4, where we show that such models
satisfy the minimal requirements for a well-defined trust-region scheme. The practical choice of
the objective function and the weights has been deferred to Section 5, where several options are
discussed.

3.1. Trust region methods. Trust-region methods are well-known iterative methods for
solving bound-constrained optimization problems, see e.g. [16, 17, 34]. Their main distinctive fea-
tures are the robustness and the convergence to first-order critical points regardless of the choice
of the initial estimate.

We now review the basic steps in a trust-region algorithm for solving the bound-constrained
optimization problem of Equation (5), where φ : R` → R is a smooth function and Ω is defined as
in (4).

The key idea of a trust-region method is to define, at iteration k, a model φRk for the objective
function φ around the current iterate x(k), together with a region within such model can be trusted
to provide an adequate representation of φ. The trial step s(k) is then computed, either exactly or
approximately, by minimizing this model within the trust-region. The trust-region is the set of all
points

Bk = {x ∈ R`| ‖x− x(k)‖ 6 ∆k},
where ∆k is called the trust-region radius and ‖ · ‖ is a norm equivalent to the Euclidean norm.

Due to the presence of bound-constraints, all the generated iterates x(k) must be ensured to
be feasible, that is, x(k) ∈ Ω for all k > 0. One strategy consists in minimizing the model within
the set Bk ∩ Ω. When the feasible set Ω is a box, the trust-region is generally defined using the ∞
norm.

Having minimized the model on Bk ∩Ω, it must be decided whether to accept the trial step or
to change the trust-region radius. Usually, the trust-region radius and the new point x(k) + s(k) are
tested simultaneously to assess the quality of the approximation yielded by the local model. This
is measured using the ratio ρ(k) between the actual and the predicted reduction defined as follows:

(7) ρ(k) =
φ(x(k))− φ(x(k) + s(k))

φRk (x(k))− φRk (x(k) + s(k))

If ρ(k) is close to 1, there is good agreement between the model φR and the function φ over this
step, so x(k) + s(k) is accepted as the new iterate and it is safe to increase the radius of the trust-
region for the next iteration. If ρ(k) is positive but not close to 1, then x(k+1) = x(k) + s(k) but the
trust-region radius is not altered. If ρ(k) is close to zero or negative, step s(k) is rejected and the
trust-region radius is shrunk.

Convergence of the iterative process is declared when a suitable criticality measure is sufficiently
small. We consider the measure

(8) χ(x(k)) = ‖PΩ(x(k) −∇φ(x(k)))− x(k))‖

where PΩ is the projection onto the feasible set, and χ(x(k)) is the norm of the projected gradient
onto the box, and reduces to ‖∇φ(x(k))‖ when x(k) is in the interior of Ω. The approach is
summarized in the pseudocode of Algorithm 1 where we assume that the model functions are
minimized “exactly” (as it will be the case in our applications, see Section 5.1).

In order to obtain a robust and globally convergent trust-region algorithm involving approx-
imate models, the following assumptions should hold [17] for the objective φ and the model φRk
functions:
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Algorithm 1 Basic trust-region algorithm

Require: The initial point x(0) ∈ Ω, an initial trust-region radius ∆0, the constants η1, η2, γ1, γ2

such that
0 < η1 6 η2 < 1 and 0 < γ1 6 γ2 < 1,

kmax > 0 and ε > 0.
Compute φ(x(0))
for k = 1, . . . , kmax do

Define a model φRk in Bk ∩ Ω.
Compute a step s(k) that minimizes the model and such that x(k) + s(k) ∈ Bk ∩ Ω.
Compute φ(x(k) + s(k)) and define the ratio (7).
if ρ(k) > 1 then

define x(k+1) = x(k) + s(k);
else

define x(k+1) = x(k).
end if
Update the trust-region radius setting

∆k+1 ∈


[∆k,∞) if ρ(k) > η2

[γ2∆k,∆k] if ρ(k) ∈ [η1, η2)
[γ1∆k, γ2∆k] if ρ(k) < η1

Compute the criticality measure (8).
if χ(x(k+1)) 6 ε then

return An approximate first-order critical point x(k+1).
end if

end for

(AF.1) φ : R` → R is twice-continuously differentiable on Ω.
(AF.2) The function φ is bounded below for all x ∈ Ω.
(AF.3) The second derivatives of φ are uniformly bounded for all x ∈ Ω.

(AM.1) For all k, φRk is twice differentiable on Bk.
(AM.2) The values of the objective and the model function coincide at the current iterate, i.e., for

all k,

φ(x(k)) = φRk (x(k)).

(AM.3) The gradients of the objective and the model function coincide at the current iterate, i.e.,
for all k,

∇φ(x(k)) = ∇φRk (x(k)).

(AM.4) The second derivatives of φR(x(k)) remain bounded within the trust-region Bk for all k.

Theorem 3.1. [17, Section 12.2.2] Under Assumptions (AF.1)-(AF.3) and (AM.1)-(AM.4),
every limit point of the sequence {x(k)} generated by Algorithm 1 is first-order critical, i.e.

lim
k→∞

‖PΩ(x(k) −∇φ(x(k)))− x(k))‖ = 0.
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3.2. Enforcing first-order matching. Here we use the trust-region framework described
in the previous section to solve problem (5) with objective function (6). Note that conditions
(AF.1) – (AF.3) are automatically satisfied by our definition of objective function. As discussed

in Section 4.1, the local model φ̃Rk (x) that we build does not necessarily agree at the first order
with the original function φ(x), which apparently breaks assumption (AM.3) — and only satisfies
(AM.2). However, if the gradient ∇φRk (x) is known at the expansion point x(k), this can be easily
fixed by defining

(9) φRk (x) := φ̃Rk (x) + (φ(x(k))− φ̃Rk (x(k))) + (∇φ(x(k))−∇φ̃Rk (x(k)))T (x− x(k)),

see, e.g., [1, 2, 25]

4. Building the reduced model by Lanczos projection. Our aim in this section is to
develop a low-dimensional model of the frequencies as a function of the parameters. The model
must be efficient to evaluate, and needs to satisfy the requirements for being used as a local model
in the trust-region approach described in Section 3.

This task can be viewed as a special case of parametric model order reduction. Several ap-
proaches developed in this field allow for obtaining low-dimensional models that accurately ap-
proximate the behavior of complex systems. For instance, when controlling large-scale dynamical
systems, it is possible to employ projection approaches when the observations and inputs have
low-rank properties (see [10] and the references therein).

Our aim is slightly different, as we are interested only in a particular region on the spectrum
(the lowest frequencies), and we have no particular assumption on the input (presumably induced
by the environment).

In the next sections we show how a simple modification to the classical Lanczos process makes
possible to derive a first-order model suitable for our purposes. We refer to [8] for a discussion of
the relation between the Lanczos process and (nonparametric) model reduction.

4.1. The Lanczos method. The Lanczos iteration, for a symmetric n× n matrix A, can be
summarized as follows. We construct an orthogonal basis Wm for the subspace Km(A, v) ⊆ Rn

defined as:

Km(A, v) := span(v,Av, . . . , Am−1v).

Unless a breakdown occurs, this space has dimension m, and the basis Wm is represented as a n×m
orthogonal matrix (that is, WT

mWm = Im). Given the basis, we can then computes the projection
Tm = WT

mAWm. The matrix Tm can be shown to be tridiagonal, and its eigenvalues (known as
Ritz values) are good approximations of the extremal eigenvalues of A even when m � n. This
procedure is appealing for several reasons.

(i) Computation of the space Wm only requires matrix-vector multiplications, and therefore it is
easy to exploit the sparsity or, more generally, the structure of A.

(ii) The orthogonalization of the basis requires just scalar products, which can be computed very
efficiently if m does not increase too much.

(iii) The algorithm can be carried out iteratively, i.e., the optimal value of m does not need to be
known a priori, and the matrix Tm can be built incrementally. In our framework, we stop
the iteration when the error on the computed eigenvalues is guaranteed to be smaller than
a certain relative threshold τ (see [18] for a classical reference on the stopping criterion of
Lanczos for computing eigenvalues). The actual value of τ is reported in Section 5.
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When the matrix A arises from a FE discretization of a PDE involving only local operators
and elements with compact support and few overlappings, the number of nonzero elements is only
O(n) and hence the matrix vector multiplication can be carried out with linear complexity.

In particular, the Lanczos method can be relied on to approximate the largest eigenvalues in
O(n) time. The speed and reliability of this technique, together with a well-developed theory behind
it, has made this method the de-facto standard in large-scale extremal eigenvalue computation.

A similar technique can be used to extract the smallest eigenvalues of A: we compute the space
Km(A−1, v) and project A−1. This only requires the solution of some linear systems, which for
sparse and banded A can be solved very efficiently.

Since we are interested in the modal analysis of structures discretized by FE, we will need
to approximate the smallest eigenvalues of a pencil K − λM , with K and M symmetric positive
definite; the same technique for extracting the smallest eigenvalues can be applied (implicitly) to

the symmetric matrix M
1
2K−1M

1
2 , obtaining:

Tm = WT
mM

1
2K−1M

1
2Wm = UT

mMK−1MUm, Um = M−
1
2Wm.

It is immediately verifiable that the matrix Um contains a basis of the same subspace spanned by
Wm, but this matrix is M -orthogonal (that is, orthogonal with respect to the inner product defined
by M), so UT

mMUm = Im [28].

Remark 4.1. In the above framework, there is no need to explicitly compute the square root of
the positive definite matrix M , which would be a very costly operation computationally. The
matrix Tm is implicitly obtained using the matrix-vector product with MK−1M and the re-
orthogonalization by the scalar-product induced by M , computing the basis Um directly.

However, using this procedure as a black-box to evaluate the objective function in an optimiza-
tion method can easily become too expensive: even if the complexity is only linear, the size of the
problem can make this operation impractical (we often deal with n ≈ 106 or even more in finite
element models).

Therefore, we wish to investigate the use of the Lanczos process to build a local parametric
reduced model for the case when K and M are not constant matrices, but depend on ` parameters
x1, . . . , x`.

4.2. Parametric finite element models. Let us assume that we are given a finite element
model depending on a variable x ∈ R`. These parameters x may encode different properties of the
system (our method does not make any assumption about what they mean — but only on their
algebraic properties). Most of the time, these will be some materials physical characteristics, such
as the Young’s modulus, or the mass density. In almost all the cases of interest, the dependency is
linear in x. However, for our discussion, here we just assume it to be smooth enough, i.e., at least
C2.

4.3. A first-order approximation to the updated Lanczos projection. In this section
we develop a strategy that, given a certain initial value x(0) for the model parameters, builds a
local model to be used in the trust-region scheme presented in Section 3.

Let us denote with F (x) the matrix valued function that, for a given choice of the parameters x,

returns the tridiagonal matrix obtained by running the Lanczos process on M
1
2 (x)K(x)−1M

1
2 (x).

We shall approximate F (x) in a neighborhood of x(0). We perform this approximation in two
steps: first, we fix the subspace used for the projection, as described in Lemma 4.3, set forth below,
to obtain an approximation F0(x) of F (x). Then, we show how to further approximate this function
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in order to make it cheap to evaluate. Lemma 4.7 describes how to combine these approximations
to obtain a first-order correct local model for the trust-region scheme.

Remark 4.2. The outcome of the Lanczos process depends on the initial vector chosen for the
scheme. Here and in the following, we assume that this vector is fixed whenever we keep x(0)

unchanged. This makes the subspace generated by the Lanczos projection unique.

Lemma 4.3. Let F (x) = Um(x)M(x)K−1(x)M(x)Um(x) be the matrix-valued function that
associates the point x with the Lanczos projection of the pencil K(x) − λM(x) previously defined.
Then, there exists a matrix-valued function Um,0(x) such that, in a neighborhood N of x(0),

1. For any x ∈ N the matrix-valued function Um,0(x) is an M(x)-orthogonal basis for the
column-span of Um(x(0)).

2. The function F0(x) defined as

F0(x) := Um,0(x)TM(x)K(x)−1M(x)Um,0(x)

is C2(N ) and F0(x(0)) = F (x(0)), that is it is a zeroth-order approximation of F (x).

Proof. By construction, the basis generated by the Lanczos method at x(0) returns an M(x(0))-
orthogonal basis Um(x(0)). We have

Um(x(0))TM(x)Um(x(0)) = Z(x), Z(x(0)) = I,

and since M(x) is of class C2, the same can be said of the symmetric matrix Z(x). Therefore,

we can define Um,0(x) := Um(x(0))Z(x)−
1
2 . For x close enough to x(0), the value of Z(x) is

bounded away from singular matrices (recall that Z(x(0)) = I), so the inverse square-root is locally
analytic and therefore Um,0(x) is at least C2(N ) in a neighborhood N . Direct substitution yields
UT
m,0(x)M(x)Um,0(x) = I and F0(x(0)) = F (x(0)), as requested.

The idea behind the approximation of Lemma 4.3 is to obtain the eigenvalues of F0(x) by a
subspace projection method, where the subspace is approximated by choosing the one obtained by
running Lanczos for the parameters at x(0), instead of the one at x. If the two values are close,
this subspace is still “good enough” to provide accurate approximations of the spectrum. In fact,
a similar philosophy underlies several methods known as Krylov subspace recycling [31, 41]. These
techniques find applications in solving sequences of shifted linear systems, which is a step required,
for instance, in model reduction algorithms.

The definition of F0(x), as it is, does not make it particularly easier to evaluate with respect
to F (x). In Section 4.3.1, we will show how to approximate F0(x) at the first-order in such a way
to make its computation very efficient. The next result justifies this approach.

Lemma 4.4. Let F̂0(x) be any locally C2 first-order symmetric positive definite approximation
of F0(x), and let Λ̂s(·) be the function that associates a symmetric matrix with the inverse of its
largest s eigenvalues. If the eigenvalues at x(0) of F (x(0)) are all distinct then

Λ̂s(F (x)) = Λ̂s(F̂0(x)) +O(‖x− x(0)‖2), x ∈ N ,

where N is an appropriate neighborhood of x(0).

Proof. When the eigenvalues of a symmetric matrix are all distinct, they locally depend ana-
lytically on the entries of the matrix (see, for instance, [26,42]). Since the matrices involved are all
positive definite, the same holds for their inverses λ−1

i . Therefore, the result follows by composing

Λ̂s(·) with the functions F (x) and F̂0(x).
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Remark 4.5. In the event two or more eigenvalues match, the situation is slightly more prob-
lematic, since the dependency of the eigenvalues is only continuous in general, and although partial
derivatives exist, higher-order smoothness in the eigenvalue functions [42] cannot be guaranteed. For
simplicity’s sake, we restrict our attention to the case where the eigenmodes are separated enough
not to collide while optimizing the parameters. This is the case in all the practical applications
presented in Section 5.

4.3.1. First-order expansion of the projection. In view of Lemma 4.4, in this Section we
aim to construct an approximation to F0(x) that matches at the first-order, and that is cheap to
evaluate numerically. More precisely, we aim at complexity O(m3), where m is the dimension of
the Krylov subspace. Let us write the values of K(x) and M(x) as small perturbations of their
value at x(0):

K(x) = K(x(0)) + δK(x), M(x) = M(x(0)) + δM(x).

We can expand the above expressions to the first-order, which yields

(10) K(x) = K(x(0)) +
∑̀
j=1

(xj − x(0)
j )

∂K(x(0))

∂xj
+O(‖x− x(0)‖2),

and the analogous formula for M(x). Let us now assume that we are given an M(x)-orthogonal basis
Um,0(x), spanning the same subspace of Um(x(0)) that we have computed with the Krylov projection

method at x(0). In this case, we can compute the new projected counterpart ofM
1
2 (x)K(x)−1M

1
2 (x)

as follows:

(11) F0(x) = UT
m,0(x)M(x)K(x)−1M(x)Um,0(x).

In order to derive a first-order expansion for the above formula we need first-order expansions for
all the terms involved. However, we still do not have such an expression for the inverse of K(x).
For x sufficiently close to x(0) we can write the Neumann expansion:

K(x)−1 = (I +K(x(0))−1δK(x))−1K(x(0))−1 =

∞∑
j=0

(−1)j
[
K(x(0))−1δK(x)

]j
K(x(0))−1.

Relying on Equation (10) and dropping second-order terms yields

K(x)−1 = K(x(0))−1 −
∑̀
j=1

(xj − x(0)
j )K(x(0))−1 ∂K(x(0))

∂xj
K(x(0))−1 +O(‖x− x(0)‖2),

which in turn can be rewritten in the following form:

(12) K(x)−1 = K(x(0))−1

I − ∑̀
j=1

(xj − x(0)
j )

∂K(x(0))

∂xj
K(x(0))−1

+O(‖x− x(0)‖2).

Equation (12) has the desirable property that all the inverses of K(x) appear evaluated at x(0),
and the dependency on x is linear.
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We now have all the ingredients to derive a cheap formula for computing F0(x), by substituting
the expansions in Equation (11). This leads to:

F0(x) = UT
m,0(x)M(x(0))K(x(0))−1M(x(0))Um,0(x)

+
∑̀
j=1

(xj − x(0)
j )Um,0(x)TGj(x

(0))Um,0(x) +O(‖x− x(0)‖2),
(13)

where Gj(x
(0)) is obtained by grouping together all the first-order contributions, that is,

Gj(x
(0)) =

∂M(x(0))

∂xj
K(x(0))−1M(x(0))−M(x(0))

∂K(x(0))

∂xj
M(x(0))+M(x(0))K(x(0))−1 ∂M(x(0))

∂xj
.

The terms Gj(x
(0)) are large matrices, computing them explicitly would be unfeasible. However,

by observing Equation (13) closely it can immediately be noticed that we do not need the complete
matrices, but just their projected counterparts Ĝj(x) := Um,0(x)TGj(x

(0))Um,0(x), which are much
smaller. Moreover, in the definition of Gj(x

(0)) the only matrix that appears as an inverse is
K(x(0)). In our Lanczos implementation we use a direct sparse solver so, just after the projection,
we already have a sparse Cholesky factorization of K(x(0)), and we can compute Ĝj(x

(0)) at the
cost of some extra back-substitutions and sparse matvec products (which have a comparable cost).
Similar savings could be obtained recycling the preconditioner when using an iterative method.

However, the same computational cost would be needed to calculate Ĝj at x 6= x(0). We would
like to avoid this extra computation. To this end, observe that according to the proof of Lemma 4.3
we have Um,0(x) = Um(x(0))Z(x)−

1
2 . Therefore, we can write the formulas to compute Ĝj(x) as

follows:
Ĝj(x) = Z(x)−

1
2Um(x(0))TGj(x

(0))Um(x(0))Z(x)−
1
2 ,

which shifts the problem to that of computing Z(x) = Um(x(0))TM(x)Um(x(0)). As in the previous
equations, we can obtain a first-order approximation of Z(x) at any x with a first-order truncation
by precomputing some small projected matrices at x(0):

Ẑ(x) := Um(x(0))T

M(x(0)) +
∑̀
j=1

(xj − x(0)
j )

∂M(x(0))

∂xj

Um(x(0))

= I +
∑̀
j

(xj − x(0)
j )Um(x(0))T

∂M(x(0))

∂xj
Um(x(0)).

We can now derive a formula for an approximation Fm,0(x) of F0(x) by combining all these
considerations:

(14) Fm,0(x) = Ẑ(x)TTm(x0)Ẑ(x) +
∑̀
j=1

(xj − x(0)
j )Ĝj(x)

As per previous remarks, Ẑ(x), and Ĝj(x), can be computed cheaply in O(m3) flops, so with a
computational cost that is independent of the size of the original problem. In view of this analysis,
we arrive at the following result.
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Lemma 4.6. The matrix-valued function Fm,0(x) defined in (14) is a first-order approximation
of F0(x) at x = x(0). More precisely, there exists a neighborhood N containing x(0) such that

F0(x) = Fm,0(x) +O(‖x− x(0)‖2), x ∈ N .

4.3.2. Restarted Lanczos and other subspace iterations. At this stage, at no time we
have used the property that Wm(x) spans a Krylov subspace generated by K(x)−1. In fact, this
is not a requirement at all. Any subspace Wm(x) generated through a subspace iteration method
will work equally well in this framework.

In particular, we could rely on a well-known large-scale eigenvalue solver such as ARPACK [28],
which provides a tried-and-tested implementation of a restarted Lanczos method to compute the
smaller end of the spectrum. This is what we currently use in the NOSA code.

Other approaches can be considered as well. The only requirement is that the projected matrix
have the form

Wm(x)TM(x)
1
2K(x)−1M(x)

1
2Wm(x),

which in turn implies that we are interested in the lowest end of the spectrum. For this reason, and
in order to keep the exposition simple and self-contained, we decided to consider only the Lanczos
method herein. Even if we never mention restarted variants explicitly in the following, their use
does not require any change in the proposed strategy.

4.3.3. Computing derivatives. In order to apply Algorithm 1 and, in particular, to perform
the first-order correction (9), we need to be able to evaluate∇φ(x(k)) and∇φRk (x(k)). In both cases,
the problem can be rephrased in terms of the computation of a derivative of the eigenvalues of a
pencil K − λM , in view of

(15)
∂

∂xj

∥∥∥∥∥
√

Λs(K(x),M(x))

2π
− f

∥∥∥∥∥
2

w,2

=

(√
Λs(K(x),M(x))

2π
− f

)T

D2
w

∂
∂xj

Λs(K(x),M(x))

2π
√

Λs(K(x),M(x))
,

where Dw = diag(w1, . . . , ws), as in (6). Classical perturbation theory for eigenvalues yields the
following, for i = 1, . . . , s:[

∂

∂xj
Λs(K(x),M(x))

]
i

=

(
vTi

(
∂K(x)

∂xj
− λi

∂M(x)

∂xj

)
vi

)
·
(
vTi M(x) vi

)−1
,

where vi is an eigenvector relative to the eigenvalues λi.

4.4. Constructing a local model for the trust-region scheme. Now that we have an
approximation Fm,0(x) of F (x), we can obtain a local model for the trust-region scheme by replacing

Λ̂s(F (x)) with Λ̂s(Fm,0(x)).
In view of Lemma 4.3, the approximation of F (x) with Fm,0(x) is correct only up to the zeroth

order, and the same holds when composing it with Λ̂s(·), and so for φ(x) and φR(x) as well.
However, using the strategy described in Section 4.3.1, we can modify φR(x) a posteriori to match
at the first-order.

Since both φ(x) and φR(x) are of the form described in equation (15), and in both cases the
eigenvectors are available while computing the eigenvalues, the same formula can be used directly.
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Lemma 4.7. Let φR(x) be the function defined as follows

(16) φR(x) = φ̃R(x) + (∇φ(x(0))−∇φ̃R(x(0)))T (x− x(0)), φ̃R(x) =

∥∥∥∥∥∥
√

Λ̂s(Fm,0(x))

2π
− f

∥∥∥∥∥∥
2

w,2

.

Then, φR(x) is a first-order approximation of φ(x) at x = x(0).

Proof. In view of Lemmas 4.3, 4.4, 4.6 we have φ(x(0)) = φ̃R(x(0)). Given this condition, the
first-order matching is ensured by the gradient correction done as described in Section 4.3.1.

Remark 4.8. Although the formulas for ∇φ(x) and ∇φR(x) are not reported explicitly in
Lemma 4.7, they are directly implementable in view of Equation (15), and require almost no
computational effort when the eigenvectors are obtained through the Lanczos process.

5. Numerical experiments and real examples. In this section we verify the performance
of the proposed approach on both artificial and real examples. To this end, we will compare the
number of iterations needed to achieve convergence, that is reported in terms of outer iterations,
that is to say, the number of reduced models that were computed in order to complete the procedure.

The number of iterations of the inner optimizer, used within a single trust-region, are ignored
because they are largely irrelevant in determining the final computational cost. Typical tests show
that the total time spent optimizing the models within the trust-region is less than 1% of the total
running time of the algorithm.

5.1. Some implementation details. The tests were run on a computer with an Intel Core
i7-920 CPU running at 2.67 GHz, with 18 GB of RAM clocked at 1066 MHz. We used the single-core
version of MUMPS 4.10, and the Intel MKL BLAS shipped with MATLAB R2017b.

In all experiments the tolerance τ for the accuracy of the Lanczos method was set to 10−5 while
the trust-region procedure was stopped when the norm of the projected gradient norm fell below
10−4 (i.e. ε = 10−4 in Algorithm 1). All the other parameters in Algorithm 1 were set to standard
values as suggested in [17, Chapter 17]. The trust-region radius update follows [17, Chapter 17,
page 782] as well. Also, in Algorithm 1 the trust-region step s(k) is computed “exactly”, that is we
minimize the reduced model (16) in Bk ∩ Ω to high accuracy. This is a reasonable choice due to
problem low dimension of the problem. To this end, we used the function fmincon included in the
MATLAB’s Optimization toolbox, setting the built-in sqp solver using the default parameter setting.

Furthermore, the parameter space is always preliminary scaled, so that the initial point x(0) is
the vector of all ones. This ensures that checking norm-wise conditions on the eigenvalues and on
the gradient yields relative accuracy on the parameters, independently of their scaling.

The weight vector w is always chosen as wi = f−1
i , which ensures relative accuracy on the

recovered frequency, except where otherwise stated. In particular, in the clock tower example, we
emphasize the consequences of a difference choice of w.

5.2. Arch on piers. In this section we consider a simple example for demonstration purposes.
We built a 2D discretization of the arch on piers, shown in Figure 1. The arch spans 4 meters, and it
rests on two 4-meters-high lateral piers. The structure is modeled by means of 336 finite elements,
and clamped at the base of the two piers. This corresponds to 851 total degrees of freedom in the
structure.

The three materials composing the structure are depicted with different colors in Figure 1.
Material 1 is used for the arch (green in in the figure), and materials 2 and 3 for the piers (red



14 MARIA GIRARDI, ET AL.

Fig. 1. The arch on piers modeled in the experiments. Each differently colored region corresponds to a different
material.
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Fig. 2. The left graph shows the convergence of the objective function to the minimum for each new reduced
model generated in the optimization procedure. The dashed line is the tolerance set for the projected gradient in the
optimization scheme. The right graph plots the convergence of the frequencies during the process.

and blue, respectively). The Poisson’s ratio ν is set to 0.2 for all the materials, and assumed to be
known a priori.

For the three materials we assume the following values:

E1 = 3250 MPa E2 = 5000 MPa E3 = 4800 MPa

ρ1 = 1800
kg

m3
ρ2 = 2200

kg

m3
ρ3 = 2100

kg

m3
,
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Fig. 3. The left graph shows the convergence of the objective function to the minimum for each new reduced
model generated in the optimization procedure. The dashed line is the tolerance set for the projected gradient in
the optimization scheme. The right graph plots the convergence of the frequencies during the process. In this case,
the initial points were chosen quite far from the original ones, selecting E2 = 2000 MPa, ρ2 = 1100 kg · m−3, E3 =
1100 MPa.

where the index j ∈ {1, 2, 3} indicates the material under consideration. We computed the 5 leading
frequencies by running the NOSA-ITACA code (with these fixed parameters), obtaining:

f ≈
[
9.575 14.87 23.17 39.17 62.84

]
.

Our aim is to validate the optimization method by recovering the original parameters matching
these frequencies, assuming E2, ρ2, and E3 are unknown. We consider the following bounds of
realistic parameters:

1000 MPa 6E2 6 9000 MPa, 1000
kg

m3
6ρ2 6 3000

kg

m3
, 1000 MPa 6 E3 6 9000 MPa,

which define the corresponding box Ω in (4)
In the default implementation, the starting points are chosen as the midpoint of the intervals,

which are quite good estimates of the true values. Convergence in this case is displayed in Figure 2.
The initial points are sufficiently close to the correct ones for the frequencies to almost match already,
and the distance to the optimum during convergence is not easily distinguishable. However, the
left plot in Figure 2, which shows the convergence of the objective function in log-scale, clearly
demonstrates that we are recovering the right solution.

To test the robustness of the approach, we modified the starting points to be relatively far from
the correct ones by making the following choices:

E
(0)
2 = 2000 MPa, ρ

(0)
2 = 1100

kg

m3
, E

(0)
3 = 1100 MPa.

Convergence of the method is displayed in the graphs in Figure 3, which clearly shows that the
initial frequencies are quite far from the correct ones; yet the method reaches convergence using only
12 reduced models. Moreover, a rough estimate (though probably sufficient for most engineering
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Fig. 4. This plot shows the relation between the noise of the measurements of the frequencies and the component-
wise relative error on the retrieve optimal parameters. The graph shows the linear dependency of the error on the
estimated parameters and the level of noise in the input data.

purposes) is already obtained after about 6 steps. Moreover, the Young’s modulus and the mass
density of the initial model are recovered exactly up to 5 digits in this example.

Another important feature for a method that must deal with experimentally measured frequen-
cies is its robustness when the input is subject to noise. In fact, we would expect the frequencies
to be accurate only up to a certain relative threshold.

To simulate the behavior of our method in a predictable environment, we perturbed the fre-
quency vector f̂ = f + δf , by imposing |δfi| 6 |fi| · δ, with δ the prescribed noise level. We have
run tests for δ ranging from 0.01% to 100%: the corresponding error in the retrieved frequencies is
plotted in Figure 4.

The error is measured in relative norm, that is we are plotting the infinity norm of the vector
with components (xi− x̂i)/xi, where xi is the vector with the actual model parameters, and x̂i the
ones estimated by the optimization process.

The linear behavior of the relative error with respect to the noise level is clearly visible. This
behavior suggests that, even if the frequencies are contaminated with noise, it is still possible to
retrieve meaningful parameters if enough information is provided. Note that, in general, a correct
(or accurate) recovery of the parameters might not be possible, and a more detailed study of the
condition number of this inverse problem will be studied more in depth in future research.

5.3. A dome. Here we provide a more complex example, represented by a dome supported
by four 14-meters-high pillars. The dome consists of an octagonal shaped cloister vault of 5 meters,
resting on a drum inscribed on a 10× 11 meters rectangle. We assume the structure composed by
4 different materials: material 1 for the vault (color red in Figure 5), material 2 for the top of the
drum (blue), material 3 for the lower part of the drum (green) and material 4 for the pillars (gray).

The finite element model consists of 31,052 elements and 41,245 nodes. It is modeled using 3D
8-node hexahedron brick elements, which gives rise to a (projected) model with 122.853 degrees of
freedom.
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Fig. 5. Domed temple

We performed a test similar to that carried out for the arch on piers: we computed the fre-
quencies for a certain choice of parameters, some of which were then assumed to be unknown, and
we ran the optimization scheme trying to recover the original parameters.

In order to obtain the reference frequencies the characteristics of the 4 materials (Young’s
modulus and mass density) were set as follows:

E1 = 3000 MPa ρ1 = 1800
kg

m3
E2 = 4000 MPa ρ2 = 2000

kg

m3

E3 = 3500 MPa ρ3 = 1900
kg

m3
E4 = 5000 MPa ρ2 = 2200

kg

m3

νj = 0.25, j = 1, . . . , 4.

The leading 10 frequencies have been computed using the NOSA-ITACA code. The result, expressed
in Hertz, are the frequencies in the vector:

f ≈
[
2.19 2.23 3.76 3.83 4.32 4.60 4.72 8.26 8.30 9.21

]
.

The optimization code was run setting the bounds as

2000 MPa 6 Ej 6 6000 MPa 1600
kg

m3
6 ρj 6 2400

kg

m3
j = 1, . . . , 4,

with the sole exception of ρ3 which was set to the correct value. This leaves 7 parameters to be
optimized. No particular starting conditions were specified. In this case, the algorithm chooses the
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Fig. 6. Convergence history for the dome model, with 7 free parameters and matching 10 frequencies. The left
plot shows the convergence of the objective function and the norm of the projected gradient, and in the right plot
the convergence of frequencies to the exact ones is reported.

midpoint of the intervals. The convergence history is reported in Figure 6, which reveals that high
accuracy is attained with only 4 outer iterations — with the residual of the objective function being
very small even after two steps. The weights have been chosen in order to reach relative accuracy1

(i.e., wi = f−1
i ) on the target frequencies, with the usual tolerance ε = 10−4.

The estimated mechanical parameters obtained through the optimization are as follows:

E1 = 2953 MPa ρ1 = 1769
kg

m3
E2 = 3932 MPa ρ2 = 1960

kg

m3

E3 = 3426 MPa ρ3 = 1900
kg

m3
E4 = 4951 MPa ρ2 = 2174

kg

m3
.

This corresponds to a relative error bounded between 0.97% and 2.1%, with an average of about
1.6%. Although such accuracy is a quite good accuracy for practical purposes, even more precise
estimates can be obtained by reducing the tolerance to below 10−4 that we have used in these tests.

5.4. The Clock tower. As a real example, we consider the case study of the Clock tower
(“Torre delle Ore”) in Lucca, Italy. The 48.4 m high masonry structure, dating back to the 13th
century, has a rectangular cross section of about 5.1×7.1 meters and walls of variable thickness
varying from 1.77 m at the base to 0.85 m at the top. Two barrel vaults are set at heights of about
12.5 m and 42.3 m, respectively. The bell chamber is covered by a pavillon roof made up of wooden
trusses and rafters. At a height of about 33 m the walls have been fitted with 4 steel tie rods of
30×30 mm rectangular section. The adjacent buildings abut the tower on two sides for a height
of about 13 m and constitute asymmetric boundary conditions. The modal behavior of the tower
has already been analyzed using the NOSA-ITACA code and through experimental measurements
conducted in November 2016, when the tower was fitted with 4 triaxial seismometric stations. The

1A detailed discussion of the influence of the weights on the accuracy of the recovered frequencies is presented in
the next section, where its relevance is discussed for a real example.
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Fig. 7. On the left, a picture of the clock tower in Lucca. On the right, the mesh used for the finite element
discretization, where the different materials for the bell chamber and the lower part of the tower are reported in
different colors (respectively red and light blue).

two procedures yielded similar, albeit not perfectly matching results [32]. Figure 7 shows a picture
of the tower, together with the mesh used for its discretization.

The frequencies obtained by analyzing data from the fitted instruments via Operational Modal
Analysis techniques, are as follows:

f ≈
[
1.05 1.3 4.19 4.50

]
.

The frequencies obtained with the finite element model in [32] are, instead, [0.98 1.24 4.32 4.38].
The materials constituting the tower are wood, steel, and masonry, with the latter being different
in the bell chamber and the lower part of the tower. We use the following mechanical properties in
the finite element model

Ew = 10000 MPa ρw = 800
kg

m3
νw = 0.35

ρml
= 2100

kg

m3
ρmc

= 1700
kg

m3
νml

= νmc
= 0.2

Es = 210,000 MPa ρs = 7850
kg

m3
νs = 0.3,

and we leave the Young’s moduli Emc
and Eml

as free parameters, since they are not known
explicitly due to the lack of experimental information. Here, the subscript ml identifies the lower
part of the tower, and mc the bell chamber.
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Fig. 8. The left graph reports the convergence history of the objective function to the minimum for each new
reduced model generated in the optimization procedure. The norm of the projected gradient is reported as well,
and the dashed line is the tolerance of the optimization scheme. The right plot represents the convergence of the
frequencies during the process (the dashed lines are the experimental frequencies). Iteration 0 is the evaluation
function at the starting point. In this example, the free parameters are Eml and Emc .

We can rephrase the problem as an optimization, trying to match the frequencies of the system
to the measured ones, letting the parameters vary in a reasonable range. In our case we can set

2500 MPa 6 Eml
6 5500 MPa 1000 MPa 6 Emc

6 5500 MPa.

As a first test, we choose the weights as the vector of all ones. The convergence of the optimization
scheme, obtained with these initial parameters, is reported in Figure 8. Note that the method
optimizes the third and fourth frequencies to match quite closely, but at the price of decreasing the
quality of the first two (see Table 1).

This is connected to the choice of w, which ensures norm-wise accuracy, but not a relative one.
Often, we prefer to have a low relative error on the frequencies, instead of an absolute one. Therefore,
it is natural to choose wi = f−1

i (in fact, this is the default choice in our implementation). This
yields different results, and different approximations for both the parameters and the frequencies.
More specifically, we expect a better matching on the lowest end of the spectrum, and a worse one
on the highest frequencies.

The convergence history with this choice of w is reported in Figure 9, and the results are shown
in Table 1. It appears immediately evident that the relative errors are balanced with wi = f−1

i ,
whereas they tend to increase on the small frequencies when wi = 1.

The parameters identified by the model updating phase give Eml
≈ 3182 MPa and Emc

≈
1873 MPa when using the weights equal to one, and Eml

≈ 3076 MPa and Emc ≈ 1950 MPa when
aiming for relative accuracy.

We conclude this section by comparing the overall CPU time of our implementation with those
of alternative solvers which, in different ways, do not exploit the problem structure. In Table 2 we
compare 4 different implementations:
RM This implementation corresponds to the current proposal, that is, a solver based on the trust-

region and projection approach described in the previous section and used in the tests
presented herein. This strategy is labeled as “RM” in the table — highlighted with the
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Fig. 9. The left graph reports the convergence history of the objective function to the minimum for each new
reduced model generated in the optimization procedure. The norm of the projected gradient is reported as well, and
the dashed line is the tolerance set for the projected gradient in the optimization scheme. The right plot represents
the convergence of the frequencies during the process (the dashed line are the experimental frequencies). Iteration
0 is the evaluation function at the starting point. In this example, the free parameters are Eml and Emc , and the

objective function is defined using the weights wi = f−1
i .

bold font.
BB Here we interpret the finite element code as a black-box function and solve the optimization

problem using a general purpose optimizer. This is done to reflect a scenario in which the
user has no access to the internals of the finite element code — and requires an assembly
phase at every function evaluation. Derivatives are computed here by finite differences.
This is column “BB” in the table.

A In this approach, we separately assemble the parametric generalized eigenvalue problem K(x)−
λM(x) and then pass to a general optimizer a function that evaluates the frequencies
for a given value of x. This function corresponds to the Lanczos projection routine used
internally in RM. Derivatives are computed here by finite differences. This is approach “A”
in the table.

AD The same as A, but derivatives are evaluated analytically according to Section 4.3.3. This is
“AD” in the table.

The general optimizer chosen in the implementations BB, A and AD is again fmincon with the sqp

option available in the Optimization toolbox of MATLAB. In our experience, this choice turned
out to be the most efficient choice between those available in the toolbox. This same function has
been used for the computation of the step in the trust-region scheme of Algorithm 1.

In Table 2, the time for the assembly (which needs to be added to the costs in columns A, AD,
and RM) is reported separately, as well as the degrees of freedom of the problem.

It is immediately apparent that the proposed RM method is the fastest in all cases except the
arch on piers, where given the small dimension we incur in some overhead. Moreover, it is worth
stressing that our approach has a complexity that seems to grow nicely with the dimension. The
general optimization approach BB, instead, becomes costly when the number of degrees of freedom
increases.

For instance, in the dome example, the timings range from about 7 hours for BB to slightly
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Exp. freq. Freq. (wi = 1) Rel. error (wi = 1) Freq. (wi = f−1
i ) Rel. error (wi = f−1

i )
1.05 Hz 1.0621 Hz 1.15% 1.0449 Hz 0.49%
1.30 Hz 1.3366 Hz 2.82% 1.315 Hz 1.15%
4.19 Hz 4.2041 Hz 0.33% 4.2154 Hz 0.61%
4.50 Hz 4.4729 Hz 0.60% 4.4409 Hz 1.31%

Table 1
Frequencies and corresponding relative errors computed using the weights wi = 1 and wi = f−1

i for the problem
of the clock tower in Lucca, Italy.

# dof BB A AD RM Assembly
Arch on piers 851 16.40s 1.17s 0.62s 0.68s 0.42s

Dome 122,853 25,032s 7,662.4s 1,990.5s 226.02s 134.32s
Clock tower 45,511 476.9s 305.39s 202.87s 44.10s 32.22s

Table 2
Timings for different optimization approaches. The timings reported for the approaches “Assembled” (A),

“Assembled + derivatives” (AD), and “Reduced model” (RM) do not include the time needed to assembly the
parametric finite element model, which is reported in the last column. The Portal model has been run with the
default starting points.

more than 3 minutes with our approach. The case where we supply derivatives to the optimizer
(AD) still takes more than 30 minutes.

The timings suggest the unsurprising conclusion that a better knowledge of the underlying
optimization problem leads to more efficient and faster optimization routines. It should be noted
that the stopping criterion for all the approaches is set to ensure that the first order optimality
condition (given by the norm of the projected gradient) is smaller than ε = 10−4 used in the
experiments. All the approaches provided solutions with comparable accuracy.

6. Concluding remarks. In this work we have presented a model updating scheme focusing
on the optimization of finite element models for structural dynamics. We have shown how the
subspace projection method used to compute the eigenvalues at the lowest end of the spectrum can
be used directly as a parametric model order reduction step, and that embedding it in a trust-region
scheme can be very effective.

Several examples have been reported on, both to test the theoretical properties of the scheme as
well as to demonstrate its practical applicability. We have also presented a preliminary numerical
evidence of its robustness against perturbations in the data, an aspect will be further investigated
and characterized in future work.

We believe that embedding the model updating step directly in the finite element code naturally
leads to more efficient procedures, compared to applying an optimizer fed with a black-box finite
element code. The proposed approach can benefit from the fact that the optimizer knows the
details about the finite element formulation, and this reveals to be particularly effective in terms of
reliability and efficiency.

Several problems remain open, and deserve further study which will be carried out in the
future. For instance, the optimization of eigenmodes — and not only eigenfrequencies — is of
crucial importance to obtain an accurate knowledge of the dynamic behavior of a structure

Moreover, a robust and efficient implementation of our approach within the NOSA-ITACA
code needs to be performed — along with its integration with the graphical user interface based on
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SALOME. These issues will will be addressed in future work.
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