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Abstract

We envisage an information source not only as an information resource where
users may submit queries to satisfy their daily information need, but also as a
collaborative working and meeting space of people sharing common interests.
Indeed, we will present a highly personalized environment where not only users
may organize (and search into) the information space according to their individ-
ual taste and use, but provides advanced features of collaborative work among
the users. It is up then to the system to discover interesting properties about the
users’ interests, relationship between users and user communities and to make
recommendations based on preference patterns of the users, which is the main
topic of this paper.

ACM Categories and Subject Descriptors: H.3.2 [INFORMATION STORAGE AND RE-
TRIEVAL]: Information Search and Retrieval - Information filtering; H.3.4 [INFORMA-
TION STORAGE AND RETRIEVAL]: Systems and Software - User profiles and alert
services;

Keywords: Digital library, collaboration, personalization, recommendation

1 Introduction

It is widely recognized that Digital Libraries (DLs) [15], will play an important role
in the next future not merely in terms of the ‘controlled’ digital information they
allow access to, but in terms of the services they provide to the information society
at large. Informally, DLs can be defined as consisting of collections of information
(usually, heterogeneous in content and format), which have associated services de-
livered to users and user communities using a variety of technologies. The services
offered on such information can be various, ranging from content operations to rights
management and can be offered to individuals as well as to user communities.
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Even though DLs have evolved rapidly over the past decade, typically, they still
are limited to provide a search facility to the digital society at large. Indeed, they
are oriented towards a generic user, as they answer queries crudely rather than, w.r.t.
learn the long-term requirements of a specific user, i.e. the so-called user profile,
which is, informally, a (machine) representation of the user’s needs through which,
for instance, an information seeking assistant, should act upon one or more goals
based on that profile and autonomously, pursuing the goals posed by the user (even
irrespective of whether the user is connected to the system). In practice, users use
the same information resource over and over and would benefit from automatization:
the time consuming effort that the user put in searching documents and possibly
downloading them from the DL is often forgotten and lost. This requires a repetition
of the manual labor in searching and browsing to find the documents just like the
first time.

As DLs will become more commonplace, there is a need for them to move from
being passive with little adaptation to their users, to being more proactive and per-
sonalized in offering and tailoring information for individual users. Nowadays, in
several DLs some personalization functionalities are provided. Mainly they fall into
the category of personalized alerting services (e.g., see [5, 13, 14, 22, 26]), i.e. services
that notify a user (usually, by sending an e-mail), with a list of references to newly
available documents in the DLs and deemed as relevant to some of the (manually)
user specified topics of interests. Typically, such alerting services are provided by
scientific journal publishers. Some other DLs, in addition, support the users in being
able to organize their information space they are accessing to according to their own
subjective perspective (e.g., see [14]). This is important as not necessarily all the in-
formation provided by a DL may be of interest to an user, but just some ‘slices’ of
it. Users and communities of users might well profit from being able to organize the
information space in a personalized fashion both in terms of restricting the informa-
tion space in which to search into as well as in terms of organizing it not necessarily
in the way a the DL manager thought would be well suited for anyone.

Seldom 1, DLs can also be considered as collaborative meeting place of people shar-
ing common interests. Indeed, our vision is that DLs may be viewed as a common
working places where users may become aware of each other, open communication
channels, and exchange information and knowledge with each other or with experts.
In fact, usually users and/or communities access a DL in search of some information.
This means that it is quite possible that users may have overlapping interests if the
information available in a DL matches their expectations, backgrounds, or motiva-
tions. Such users might well profit from each other’s knowledge by sharing opinions
or experiences or offering advice. Some users might enter into long-term relationships
and eventually evolve into a community if only they were to become aware of each
other. Hence, we are moving from services supporting an individual user towards
services supporting groups of users as well.

A major service in a personalized and collaborative DL is the recommendation of
items to a user based not only on preference patterns of the user itself, but also on
those of other users. The use of opinions and knowledge of other users to predict the

1[12] is an exception.
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relevance value of items to be recommended to each user in a community is known as
Collaborative or Social Filtering (e.g., see [6, 4, 17, 19, 25]). These methods are built
on the assumption that a good way to find interesting content is to find other users
who have similar interests, and then recommend items that those similar users like.

In this paper we first briefly present the CYCLADES system 2 and stress its
‘personalization’ and alerting features. A major distinction of CYCLADES is that
it is indeed a DL environment supporting collaboration and personalization at various
level. Users and communities may search, share and organize their information space
according to their own personal view and where the system generates recommendation
of various types based on user and community profiles. We then extensively present
the recommendation algorithms used in CYCLADES. Worth noting is that they not
only recommend to users, documents deemed as relevant, but also user, communities
and information sources.

The outline of the paper is as follows. In the next section we recall the main
features of CYCLADES, while in Section 3 we report our experimental results of
the recommendation algorithms adopted within the final version of CYCLADES.
Section 4 concludes.

This work concludes a series of works on the subject by the authors [1, 2, 11, 24].

2 A brief overview of CYCLADES

The objective of CYCLADES is to provide an integrated environment for users
and groups of users (communities) that want to use, in a highly personalized and
flexible way, ‘open archives’, i.e. electronic archives of documents compliant with the
Open Archives Initiative 3 (OAI) standard. Informally, the OAI is an agreement
between several digital archives providers in order to provide some minimal level of
interoperability between them. In particular, the OAI defines an easy-to-implement
gathering protocol over HTTP, which give data providers (the individual archives) the
possibility to make the documents’ metadata in their archives externally available.
Indeed, the agreement specifies that each document of an archive should posses a
metadata record describing the documents properties and content. In particular,
the format of the metadata records should be DublinCore 4. The metadata record
consists of several attributes describing author, title, abstract, etc. of documents. The
protocol allows then to gather these metadata records (in place of the real documents).
A link to the ‘real’ document is also present if the document is accessible. A metadata
record may be understood as a statement of existence and short description of a
document. The document may be then accessible to a user according to the access
policies of the archive, which owns the document. To date, there is a wide range of
archives available (more than one hundred registered archives) in terms of its content,
forming a quite heterogeneous and multidisciplinary information space (e.g., covering
the fields of biology, mathematics, computer science, physics, etc.).

2http://www.ercim.org/cyclades
3http://www.openarchives.org
4http://dublincore.org
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Figure 1: Logical view of CYCLADES functionality.

The availability of the metadata records from the OAI compliant archives makes
then it possible for service providers to build higher levels of functionality. In this
sense, CYCLADES allows the access to the metadata provided by these archives,
as it gathers these records and through them provides access to the referenced com-
plete documents (if they exist and their access is allowed). On top of them, CY-
CLADES acts as an OAI service provider (see Figure 1.) providing functionality
for:

1. advanced search in large, heterogeneous, multidisciplinary digital archives;

2. collaborative work;

3. information filtering;

4. various forms of information recommendation; and

5. management of records grouped into so-called collections (see later on) 5.

These functionality are available in several environments, which are described below.
The main principle underlying CYCLADES is the folder paradigm (see Figure 2).

That is, users and communities of users may organize the information space into
their own folder hierarchy, as e.g. may be done with directories in operating systems,

5In CYCLADES , there is one collection of metadata records, for each OAI archive. But, addi-
tionally, users may define their own sets.
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Figure 2: User interface: a user home folder.

bookmark folders in Web browser and folders in e-mail programs. Each folder typically
corresponds to one user related subject (or discipline, or field), so that it may be
viewed as a thematic and usually semantically related repository of data items.

Collaborative Work Environment. This is an extension of the BSCW environ-
ment (Basic Support for Collaborative Work) [3] and provides the folder-based
environment. The collaborative work environment allows the management of
various data items, such as metadata records, queries, collections, external docu-
ments (i.e., documents which can be uploaded by the user to the folder), ratings
and annotations.

There are two types of folders: (i) private folders, i.e. a folder owned by one user
only. This kind of folder can only be accessed and manipulated by its owner.
They are invisible to other users; and (ii) community folders, which can be ac-
cessed and manipulated by all members of the community that owns the folder.
Community folders are used to share data items with other users and to build
up a common folder hierarchy. Community folders may also contain discussion
forums where notes may be exchanged in threaded discussions (similar to news
groups). For instance, Figure 2, shows the home (top level) folder of a user.
It contains several sub-folders. Among them, there are some (shared) folders
belonging to communities (created by someone) to which the user joined to,
like the ‘Physics-Gravity’ folder (community), while others are private folders
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Figure 3: User interface: folder content

and have been created directly by the user, e.g. the ‘Logic Programming’ folder.
These folders contain community or user collected OAI records relevant to some
topics (e.g. gravity and logic programming, respectively). Figure 3 shows the
content of a specific user folder, in our case the ‘Physics-Gravity’ folder of the
community of physicists. In order not to lose shared activity in the collabora-
tive DL environment, mutual awareness can be supported through event icons
displayed in the environment. Activity reports that are daily received by email
are also be possible. Users can also view the list of all existing communities and
can join a community directly if this is allowed by the community’s policy, or
contact the community administrator in order to be invited to the community.
In the collaborative work environment, the access policies can be set-up, as well
as the notification (alerting) modalities.

Search and Browse Environment. It supports the activity of searching records in
the various metadata record collections accessible from within CYCLADES as
well as to search into the shared folders or private folders a user owns. Users
can issue a query and are allowed to store selected records within their folders
and community folders they have access to. Essentially, three types of search
are supported:

1. ad-hoc search, where a user specifies a query and the system looks for
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relevant records within a specified collection;

2. filtered search is like the usual ad-hoc search, except that the user specifies,
additionally to a query (e.g. ‘zero’), also a target folder (e.g. ‘Physics-
Gravity’). The goal of the system consist then to find documents not only
relevant to the query, but also relevant to the topic of the target folder
(in our example, the request is something like ‘find records about zero
gravity’); and

3. what’s new, on-demand, where the user specifies a target folder, without
specifying a query, and the goal of the system consists in finding all records,
relevant to the target folder, which where become available to the system
since the last time the user asked for this request. This corresponds roughly
to the functionality provided by alerting services, except that the profile is
build implicitly from the folder content, and that records are delivered to
the user on-demand.

Filtering and Recommendation Environment. It supports the personalized search
(i.e. “filtered search” and “what’s new, on-demand”) and provides the recom-
mendations functionalities. All recommendations are specific to a given user
folder (topic of interest), i.e. they have always to be understood in the context
not of the general interests of the user, but of the specific interests (topic) of
the user represented by a folder. A user may get recommendations of metadata
records (suggesting to the user to access to relevant documents), collections
(suggesting to the user to search within a relevant information space), users
(suggesting to the user to enter in relationship with a user or give a look to
the publicly available documents of the recommended user), and communities
(suggesting to the user to join the community) issued to users based on user
and/or community profiles. For instance, Figure 4 shows the recommendations
related to the ‘Physics-Gravity’ folder, deemed by the system as relevant to this
folder.

Collection Management. It manages collections (i.e. their definition, creation, and
update) of metadata records. Its aim is to allow a dynamic partitioning of the
information space according to the users’ interests, where to search. Usually, a
collection is meant to reflect a topic of interest of a user or a community, e.g.
the collection of records about ‘Information Retrieval’. Informally, a collection
specification is the definition of a not materialized view over the information
space. It is up to the system to automatically determine the “physical” collec-
tions in which to search for relevant records (this is accomplished by means of
a technique called automated source selection see, e.g. [8, 16, 21, 23]).

As pointed out, filtering and recommendation play an important role in making CY-
CLADES a personalized and collaborative environment. In the following section,
we detail the algorithms used for metadata record recommendation, user recommen-
dation and collection recommendation. We also report experimental results of their
effectiveness. The recommendation of communities, i.e. the suggestion to join a com-
munity is realized as for the case of collections. Indeed, a community is identified with
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Figure 4: User interface: folder content and recommendations.

its community folder, i.e. a set of metadata records. As such, a community can be
seen as a collection of records and, thus, the recommendation of a community can be
implemented like the recommendation of a collection. Therefore, we do not address
it further.

3 Recommendation algorithms and experimental eval-
uation

We are going to describe our recommendation algorithms and test for their effective-
ness. We first introduce some notation, describe the data corpus and then proceed
with the description and effectiveness tests of the algorithms for record, user and
collection recommendation. For each recommendation type (record, user, collection)
we provide the objective, the test set, the algorithm, the evaluation method, and the
result analysis.

3.1 Preliminaries

In the following, consider

• a set of users uk;

• a set of folders Fi (of the users); and

• a set of available metadata records dj .
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For ease, we consider a metadata record as an unstructured piece of plain text (of
course, more sophisticated algorithms can be devised by taking into account the
metadata structure). Metadata records belong to folders and each user may rate a
document within a folder he has access to. A record may belong to multiple folders.
With rijk we indicate the rating value given by a user uk to record dj , which is stored
in folder Fi. We further assume that whenever a data item dj belongs to a folder Fi

of a user uk, an implicit default rating rijk is assigned. Indeed, a record belonging
to a folder of a user is an implicit indicator of being the record relevant to the user
folder. Given a folder Fi and a record dj belonging Fi, we compute an average rating
from all the ratings given to record dj in folder Fi, i.e. we average the ratings rijk

relative to the same record–folder pair (i, j) and indicate it as

rij = meank≥1{rijk} . (1)

(see matrix (c) in Table 1). The rating rij indicates the average rating given by the
users to record dj in folder Fi. This allows us to re-conduct our three dimensional
recommendation setting (user-folder-record) to an easier to manage two dimensional
setting (folder-record) to which we apply our recommendation algorithms. Of course,
in place of the mean, other measures may be applied to compute rij as well. All records
in the folders are indexed according to the well-known vector space model [27]. With

dj = 〈wj1, . . . , wjm〉

we indicate its indexed representation, where 0 ≤ wjk ≤ 1 is the ‘weight’ of term
(keyword) tk in the record dj (see matrix (a) in Table 1).

For each folder, we compute its folder profile, which is a machine representation
of what a folder is about. For a given folder Fi, for ease the folder profile (denoted fi)
of Fi is computed as the centroid, or average, of the records belonging to Fi, i.e.

fi = (1/|Fi|)
∑

dj∈Fi

dj ,

and, thus, it is represented as a vector of weighted terms as well, i.e. fi = 〈wi1, . . . , wim〉
(see matrix (b) in Table 1). Note that the folder profile does not take into account
the ratings associated to the records, but only the records’ text content.

Similarly, the user profile of a user u (denoted pu) is built as the centroid of the
folder profiles the user has access to and is an indicator of the interests of an user,
i.e. if Fu is the set of folders the user u has access to, then

pu = (1/|Fu|)
∑

Fi∈Fu

fi .

Like folder profiles, the user profile is represented as a vector of weighted terms as
well, i.e. pu = 〈wu1, . . . , wum〉.

The data we represent is summarized in Table 1. Matrix (a) represents the records,
matrix (b) represents the folder profiles, matrix (c) represents the average ratings
associated to the records belonging to folders, while matrix (d) represents the user
profiles.
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Table 1: (a) The records matrix. (b) The folder profile matrix. (c) The folder-record
rating matrix. (d) The user profile matrix.

. . . tk . . .
d1 . . . w1k . . .
. . . . . . . . . . . .
dj . . . wjk . . .
. . . . . . . . . . . .
dn . . . wnk . . .

. . . tk . . .
f1 . . . w1k . . .
. . . . . . . . . . . .
fi . . . wik . . .
. . . . . . . . . . . .
fv . . . wvk . . .

(a) (b)

. . . dj . . .
F1 . . . r1j . . .
. . . . . . . . . . . .
Fi . . . rij . . .
. . . . . . . . . . . .
Fv . . . rvj . . .

. . . tk . . .
p1 . . . w1k . . .
. . . . . . . . . . . .
pu . . . wuk . . .
. . . . . . . . . . . .
ph . . . whk . . .

(c) (d)

By relying on matrix (a) of Table 1, the correlation (similarity) among two rows es-
tablishes a similarity between records. Similarly, in matrix (b), the correlation among
two rows establishes a correlation among folder profiles. Of course, the same applies
to matrix (d) so that a correlation among users may be computed. Furthermore, as
all three matrixes (a), (b) and (d) are term based, we also compute the mixed cor-
relations among them. For instance, we may compute the similarity among folders
profiles and user profiles to determine whether the user is interested in the implicit
topic described by the folder. All these measures are based on content only (no rating
are taken into account). The measure used for content correlation among two vectors
v1, v2 taken from matrixes (a), (b) or (d), denoted CSim(v1, v2), is the well-know
cosine, i.e. the scalar product between two row vectors (we assume that the rows are
already normalized):

CSim(v1, v2) =
∑

k

w1k · w2k .

By relying on matrix (c), a correlation among folders can be determined by taking
into account the ratings issued by users. This similarity is called rating similarity of
two folders F1 and F2, denoted RSim(F1, F2), and is determined using the Pearson
correlation coefficient [6], i.e.

RSim(F1, F2) =

∑
j(r1j − r1) · (r2j − r2)

σ1 · σ2
,

where ri is the mean of the ratings ri1 . . . rin, and σi is their standard deviation.

10



The combined similarity between two folders is then obtained by taking into ac-
count the content similarity (i.e., using CSim) and the rating similarity (i.e., us-
ing RSim). In what follows, the combined similarity or simply similarity, denoted
Sim(F1, F2), between two folders F1 and F2 will be determined as a linear combina-
tion between their content similarity and their rating similarity, i.e.

Sim(F1, F2) = α · CSim(f1, f2) + (1 − α) ·RSim(F1, F2) ,

where 0 ≤ α ≤ 1.

3.2 Corpus

As to date, neither there is yet a significant corpus within the CYCLADES system
(build by real users) nor there exists an available corpus from the literature, which
fits to our setting, we build a suitable corpus automatically by taking the data from
the Internet.

The corpus was selected from the Open Directory Project hierarchy (ODP or
DMOZ) 6. ODP is among the largest human-edited directories of the Web. The ODP
data includes over 3.8 million sites, about 60,000 editors and over 460,000 categories.
ODP powers the core directory services for the Web’s largest search engines and
portals, e.g. Google 7.

Each category in ODP contains a set of Web documents, which have been eval-
uated by one or more editors for their relevance to the category. Furthermore, to
each document within a category, Google assigns a score (using the PageRank [7]
algorithm).

We construct our corpus as follows.

1. The set of users is the set editors of ODP.

2. The set of records is the set of documents in ODP.

3. The set of folders is the set of categories in ODP.

4. We consider different environments of 23, 85 and 100 collections of records,
respectively. Each set is characterized by a different degree of heterogeneity of
the collections (see description below).

To each record dj in folder Fi, evaluated by user uk, we set the rating rijk equal to
the PageRank score sij assigned to record dj w.r.t. folder Fi. This means that rij ,
the average rating over all users rating records dj in folder Fi, is indeed sij

8. We
considered all the categories under “Science”, together with the involved records and
users (1415 folders, 61 users, 18091 records). All the profiles (of the folders and users)
has been restricted to the top weighted 100 terms.

The three different collection environments we consider in our tests have been
built as follows from the ODP records. In Table 2 we report the characteristics of
these three environments of collections.

6http://dmoz.org
7http://www.google.com
8Note that all users rate dj in Fi equally. But this does not matter us, as in the recommendation

algorithm just the mean rij is required.
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Table 2: The experimental environments
Environment Number Of Collection size

Collections Max Min Avg
ScienceI 23 15,722 11 3,027.47

Quasi-random 85 5,660 1 809.67
Random 100 768 621 696.32

ScienceI: each of the 23 collections contains the records that are in the corresponding
first-level sub-category of Science into the DMOZ hierarchy. Therefore, the
records of a collection share the same topic;

Quasi-random: each of the 85 collections contains a set of records, which have been
selected randomly, from a subset of the first-level sub-category of the category
Science. In this case, the collections are more heterogeneous than the previous
case as the records of a collection belong to a different, but limited, set of
categories. That is, a collection is multi-topic;

Random: each of the 100 collections contains a set of records randomly selected from
the whole corpus. Therefore, the collections are highly heterogeneous.

3.3 Record recommendation algorithm

Objective. The objective of the record recommendation algorithm is, given a user
u and a folder Ft belonging to u (indicating a topic the user is interested in), called
the target folder, to recommend to Ft (and, thus, to the user) records relevant to the
topic represented by Ft.

Test set. To create the test set, we considered the set D̄ of all records of the corpus,
which belong to at least two folders. For each of these records dj ∈ D̄ (300 records),
we randomly choose a folder Ft in which dj occurs. The set of chosen folders F̄ = {Ft}
(250 folders), the records dj and the relative average rating rtj forms the test set, i.e.
the test set in this case is a set of triples (Ft, dj , rtj), where we check whether our
recommendation algorithm recommends record dj to the target folder Ft and how
well the computed recommendation score agrees with the rating rtj .

Algorithm. Our recommendation algorithm follows a four-step schema:

1. select a set MS(Ft) of k-most similar folders to the target folder Ft, according to
the similarity measures xSim (we can use either CSim, RSim or a combination
of both and in this latter case we use α = 0.5);

2. from this set of similar folders, determine a pool PD of candidate records, i.e.
set of records belonging to the similar folders Fi ∈ MS(Ft);

3. for each of the records dj ∈ PD compute a recommendation score of dj to Ft,
according to content (cosine between target folder and record) and rating, i.e.
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sR(Ft, dj) = r +

∑
Fi∈MS(Ft)

(rij − ri) ·RSim(Ft, Fi)∑
Fi∈MS(Ft)

·RSim(Ft, Fi)
,

where r (ri) is the mean of the ratings in the target folder Ft, i.e. the mean of
the Ft row in matrix (c) (mean of Fi ∈ MS(Ft) rating row);

4. Recommend to folder Ft records having a positive score.

Evaluation method. For each target folder Ft ∈ F̄ , we compute the set of rec-
ommended records {dj} and consider their recommendation score sR(Ft, dj). We
measure the coverage, which is the percentage of records correctly recommended to
the target folders, i.e. the system recommends a record to a folder and in the corpus
effectively the record belongs to the test set. We also measure the accuracy of the
system through the widely used Mean Absolute Error (MAE)[18, 20]. It is the mean
of the absolute error among the prediction sR(Ft, dj) of a document dj ∈ D̄ and dj ’s
real rating value rtj in Fj . That is, the MAE is the mean of |sR(Ft, dj) − rtj | over
Ft ∈ F̄ , dj ∈ D̄. The purpose of the MAE is to determine how far away is the system
predicted value from the real rating value of a record.

Result analysis. The results of our experiments are summarized below. We con-
sidered two different parameters:

1. the strategy to select the similar folders w.r.t. a target folder; and

2. the impact of varying k, the k −most similar folders threshold.

In case 1., we have three different options: either select similar folders by relying
on rating similarity only (using RSim), or using content similarity only (using CSim),
or to use both (Sim). In case 2., k took one of the values 10, 100 and 200.

Figure 5 reports the coverage and MAE in using CSim (left bar), RSim (center
bar) only and in using Sim (right bar) for various k. The combined approach Sim is
the best performing one.

Note that all cases reach a stability at k ≥ 100. For k = 100, combined approach
perform 49% better than relying on RSim only and 10% better than relying on CSim
only. In Figure 6 we report the fraction of records, which have been recommended
by using both RSim and CSim. For instance, consider the “CSim Coverage” figure.
The whole bar reports the coverage of recommended records using CSim. The part
labeled “CSim & RSim” indicates the amount of records that have been recommended
both using CSim and RSim, while the label “Only CSim” indicates the amount of
records that have been recommended using CSim but can not be recommended using
RSim and, thus, indicates the added value of using CSim. The explanation for the
“RSim Coverage” is similar. Interestingly, we can observe that a large part of records,
that have been recommended using CSim only, can not be recommended using RSim
and vice-versa. This confirms that the combination of both strategies can improve
the coverage significantly.
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Figure 5: Record recommendation: coverage and accuracy results

Figure 6: Record recommendation: RSim vs. CSim.
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3.4 User recommendation algorithm

Objective. The goal of the user recommendation algorithm is, given a target folder
Ft of user u, to recommend to Ft (and, thus, to user u) those users, which by the
system are thought to have overlapping interests with the topic addressed by the
folder Ft (and, thus, may be related to user u).

Test set. To create the test set, we considered the set Ū of all users of the corpus,
which have access to at least two folders. For each of these users uk ∈ Ū (61 users),
we randomly choose a folder Ft user uk has access to. The set of chosen folders
F̄ = {Ft} (49 folders) and the users uk forms the user test set, i.e. the test set in this
case is a set of pairs (Ft, uk), where we check whether our recommendation algorithm
recommends user uk to the target folder Ft.

Algorithm. We have analyzed three different algorithms, with increasing level of
effectiveness. The first user recommendation algorithm follows a four-step schema,
like for the record recommendation case:

1. select the set MS(Ft) of s-most similar folders to Ft, according to a similarity
measures. We can use either CSim, RSim or the combination of both (Sim),
but in [1, 2] we have already observed that Sim (α = 0.5) has better effective-
ness, so we use it here as well;

2. from this set of similar folders, determine a pool PU (Ft) of candidate users to
be recommended, i.e. let PU (Ft) be the set of users being owners of the folders
in MS(Ft);

3. compute the recommendation score for each possible recommendable user, i.e.
for each user uk ∈ PU (Ft) determine the user hits factor (where Fi ∈ uk means
that folder Fi is accessible by user uk)

h(uk) = |{Fi : Fi ∈ MS(Ft), Fi ∈ uk}|

i.e. the number of folders Fi judged as similar to the target folder Ft belonging
to the same user uk. For each user uk ∈ PU (Ft) the recommendation score
s(Ft, uk) is computed as follows:

s(Ft, uk) = h(uk) ·
∑

Fi∈MS(Ft),Fi∈uk

Sim(Ft, Fi) ;

4. recommend to folder Ft, the top-n ranked users, ranked according to the rec-
ommendation score.

The intuition behind Step 3 is that the more a user appears among the owners of the
top-s similar folders, the more he is considered as relevant to the target folder.

The second algorithm is a variation of the first one in which Step 3 is replaced
with:
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3. for each user uk ∈ PU (Ft), consider the profile of uk, puk
, and compute the

recommendation score as the similarity between the user profile puk
and the

profile f of the target folder Ft, i.e.

s(Ft, uk) = CSim(f, puk
) ;

The intuition here is to use the user profile of recommendable users uk ∈ PU (Ft)
directly in place of the folder profiles of similar folders.

Finally, the third algorithm does not consider the set of similar folders, but just
compares the profile of the target folder against all user profiles, using CSim. Note
that in this way, no ratings are taken into account. Therefore, we remove Step 1,
and in Step 2, the pool of candidate users, PU (Ft), is given by all users known to the
system, and Step 3 is as in algorithm 2.

Evaluation method. For each target folder Ft ∈ F̄ , we compute the set of rec-
ommended users {uk} and ranked them according to their recommendation score
s(Ft, uk). In this rank, we highlight the rank position of user uk. If the recommenda-
tion score is 0, user uk is ranked 0. We compute precision and recall, by recommending
the top-n users for each target folder, where n ∈ {1, 2, 5, 10}. Precision is the fraction
between correctly recommended users and the total amount of recommended users,
i.e.

Precisionn =
|CorRecn|

49 · n
,

where CorRecn is the set of correctly recommended users among all 49 tests and n
is the number of recommended users for each test. Recall, is the fraction between
correctly recommended users and the number of test users, i.e.

Recalln =
|CorRecn|

61
.

Of course, the more users we recommend (i.e. n increases), the more correctly rec-
ommended users we have (recall improves), but the less precise we are (precision
decreases). We also report the standard measure

F1n =
2 · Precisionn ·Recalln
Precisionn + Recalln

,

which gives us an estimate of the combination between precision and recall, as well
as their average rank.

Result analysis. The results of our experiments are summarized in Figure 7 and
Table 3. In Figure 7, for each test pair (Ft, uk) we report the rank position of user
uk, according to our recommendation algorithms 1, 2 and 3, respectively. It turns
out that algorithm 3 performs best, algorithm 2 is second, while the less effective one
is algorithm 1. As we can seen, for algorithms 2 and 3, in many cases the correctly
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Figure 7: Rank position of correctly recommended users
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Table 3: Effectiveness measures
algorithm top-1 top-2 top-5 top-10

Precision 1 0.00 0.01 0.02 0.02
2 0.29 0.18 0.09 0.06
3 0.33 0.21 0.11 0.07

Recall 1 0.00 0.02 0.10 0.18
2 0.23 0.30 0.38 0.48
3 0.26 0.34 0.44 0.57

F1 1 undef. 0.01 0.04 0.04
2 0.25 0.23 0.15 0.11
3 0.29 0.26 0.18 0.13

algorithm average rank
1 23.18
2 8.28
3 8.09

recommended user is highly ranked. It turns out that algorithm 3, which does not rely
on the ratings provided by the users, is the most effective one and, interestingly, that
recommending just the top ranked user is the most satisfactory compromise between
precision and recall, except for algorithm 1, where taking the top ranked user only
failed to be the right one in all test cases. Therefore, precision and recall are 0 and,
thus, F1 is undefined.

3.5 Collection recommendation algorithm

Objective. The objective of the collection recommendation algorithm is, given a
target folder Ft of user u, to recommend to Ft those collections that potentially
contains records relevant for the topic addressed by the folder itself.

Test set. To create the test set, we considered the 300 folders belonging to three
different categories of Science, i.e. Agriculture, Anomalies and Alternative Science,
and Astronomy. these folders are our target folders Ft, where we check how good our
recommendation algorithm is in recommending relevant collections to the folder Ft;

Algorithm. The recommendation algorithm is based on a simple two-step schema:

1. the computation of an approximation of the content of each collection; and

2. the selection of the top-n collections deemed as most relevant to the target
folder, relying on the approximations of the collections’ content.
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The first step is done only once for all collections and consists of the computation
of a representation of what a collection is about, i.e. the so-called collection topic or
language model of the collection. This data is then used in the second step to compute
the recommendation score for each collection, i.e. a measure of similarity between the
folder topic and the collection topic and, thus, establishes the relatedness of the
collection to the target folder.

The language model of a collection consists of a list of terms with their term weight
information. We rely on the so-called query-based sampling method [9], which has been
proposed for automatically acquiring statistical information about the content of a
collection. A major feature is that it requires only that a collection provides a query
facility and access to the records, that are in the result of a query. Informally, the
method is an iteration of the following steps 2 and 3:

1. issue a random query to the collection (as start-up);

2. add the select the top-k records to the sample;

3. select randomly a record from the current sample. Select randomly n terms
from this record. Build a new query using these terms and issue the query to
the collection.

The iteration continues until a stop criterion is satisfied 9. As a result, a sample set
of records for each collection has been gathered. This set is our resource description,
or approximation of a collection.

Once we have gathered a sample (approximation) of each collection, we are ready
to perform collection recommendation. So, let Ft be a target folder and let ft be its
profile (vector of terms ttk with relative weight wtk). The collection recommendation
score G(Ft, Cl) for a collection Cl with respect to the folder Ft is defined as follow:

G(Ft, Cl) =
∑

k p(ttk|Cl)
|ft|

, (2)

where |ft| is the number of non-zero weighted terms in the profile ft. The belief
p(ttk|Cl) in Cl, for term ttk appearing in Ft’s profile ft is computed using a variant
of the CORI algorithm [10]:

p(ttk|Cl) = Tl,tk · Itk · wtk (3)

Tl,tk =
dfl,tk

dfl,tk + 50 + 150 · cwl

cw

(4)

Itk =
log

(
|C|+0.5

cftk

)
log (|C|+ 1.0)

(5)

where:
9More details about this technique in our context can be found also in [11]
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dfl,tk is the number of records in the approximation of Cl containing term ttk;
cwl is the number of terms in the approximation of Cl;
cw is the mean value of cw over the approximation of Cl;
cftk is the number of approximated collections containing ttk;
|C| is the number of the collections.

Finally, given a target folder Ft, all collections Cl of a collection environment are
ranked according the their collection recommendation score G(Ft, Cl) and the top-n
are recommended to Ft.

Evaluation method. The evaluation phase is rather involved and consists of two
parts:

1. the evaluation of the effectiveness of a collection approximation, i.e. comparing
the learned resource description of a collection with the real resource description
for that collection ; and

2. the evaluation of the effectiveness of the collection recommendation.

Concerning the evaluation of the effectiveness of a collection approximation, in accor-
dance with [9], we have used two metrics to evaluate the quality of the approximation:
the ctf ratio (CTF) to measure the portion of term occurrences in the collection vo-
cabulary (V ) that are covered by the terms in the learned vocabulary (V ′) and the
Spearman Rank Correlation Coefficient (SRCC) to measure the correspondence be-
tween the learned and the actual document frequency information. This metrics are
calculated using Equation (6) and (7) below, where ctfi is the number of times term
ti occurs in the collection C, δ(i) is the rank difference of a common term ti ∈ V ′∩V .
The two term rankings are based on the learned and the actual document frequency
dfi. n is the total number of common terms, i.e. n = |V ′ ∩ V |.

CTF =

∑
ti∈V ′ ctfi∑
ti∈V ctfi

(6)

SRCC = 1 − 6
n3 − n

∑
ti∈V ′∩V

δ(i)2 . (7)

Concerning the second evaluation point (i.e. the effectiveness of collection recommen-
dation) we require some additional steps. Indeed, we neither know a priori, which
are the correct collections to be recommended to a target folder, nor we are willing
to evaluated it manually. A way to automated effectiveness evaluation of a collection
recommendation algorithm is as follows. For each the three collections environment,
we have built a collection containing all the records belonging to the environment.
This collection is called baseline collection. The baseline collection has been indexed.
This index is called baseline index. For indexing (and retrieval, see later on) we have
used the Jakarta Lucene search engine 10. So, we have three baseline collections and

10http://jakarta.apache.org/lucene
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indexes, one for each environment. We also indexed all collections of all environments,
which we call collection index.

For each target folder Ft, we consider its profile ft. Each folder profile represent a
query that is matched against a baseline collection of a collection environment. As a
result, the retrieval engine give us back a ranked list rank(Ft) (called baseline rank)
of records belonging to the environment, deemed by the system as relevant to the
query, i.e. relevant to the folder Ft. Now, we proceed as follows. For each collection
environment and for each target folder Ft, we use the recommendation algorithm to
compute a recommendation score G(Ft, Ci) for each collection Ci of the environment.
We select the top-n collections according to their score. Then we match the query ft

against each collection Ci of this list and get a ranked list of records reti(Ft). Now
we merge these ranked lists into a unique ranked list ret(Ft). The fusion of multiple
ranked lists is done by computing, for each record, a normalized global retrieval score,
RSVg(dj), obtained from the their normalized retrieval score, RSV ′

i (dj), within the
ranked lists, i.e.

RSVg(dj) =
RSV ′

i (dj) + 0.4 ·RSV ′
i (dj) ·G(Ft, Ci)

1.4
(8)

RSV ′
i (dj) =

RSVi(dj) −mink(RSVi(dk))
maxk(RSVi(dk))−mink(RSVi(dk))

, (9)

where RSVi(d) is the score of record d in the ranked list reti(Ft) (note that a record
does appear at most in one ranked list, as there is no record overlapping among the
collections). Therefore, for target folder Ft, on one hand we have the baseline rank
rank(Ft) which has been computed over the baseline collection (without selecting
collections) and on the other hand we have the rank ret(Ft) obtained from the fusion of
rank lists with collection selection. The effectiveness of the recommendation algorithm
is computed as the similarity among the two ranked lists rank(Ft) and ret(Ft) and is
based using set-based measures like Precision and Recall defined as follows:

Precision =
|rank(Ft) ∩ ret(F )|

|ret(Ft)|
(10)

Recall =
|rank(Ft) ∩ ret(Ft)|

|rank(Ft)|
. (11)

We have also considered the harmonic mean (F1-score) of these two values computed
as F1 = 2 · Precision ·Recall/(Precision + Recall).

As the measure of Precision and Recall does not consider the ordering of the two
ranked lists to compare, we have also used the SRCC to measure the correspondence
between the two ranked lists, i.e. SRCC = 1 − 6

n3−n

∑
δ(i)2, where this time δ(i) is

the rank difference of a record i appearing in both ranks and n is the total number
of records common to both ranks.

Result analysis. At first, we report the evaluation of the effectiveness of the sam-
pling method.
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Table 4: Collections and their samples characteristics
Avg Record Avg Terms

Environment Source Sample Sample% Source Sample Sample%
ScienceI 3,027.47 279.17 9.22% 10,2375 17,707.2 17.29%

Quasi-random 809.67 238.3 29.43% 46,197.7 18,083.17 39.14%
Random 696.32 295.74 42.47% 48,571.31 27,121.01 55.83%

Table 5: Sample statistics
CTF SRCC

Environment Max Min Avg Max Min Avg
ScienceI 98% 74% 87% 97% 53% 80%

Quasi-random 100% 71% 98% 100% 63% 85%
Random 92% 78% 87% 90% 75% 85%

In Table 4 we report the characteristics of the collections and their approxima-
tions in terms of number of records gathered and number of terms in the samples,
respectively.

In Table 5 we report the results of CTF and SRCC effectiveness metrics. For
example, observing the ScienceI case, we can note that acquiring just the 9% of the
records of the source we are able to have a very close representation of the content
of the collections as we obtain a CTF of about 90% and an SRCC of 80%. More-
over, note that the effectiveness of the approximations are quite independent from
the content homogeneity of the collections in the collection environments. But, for
instance, by observing the Random environment case, we can note that the amount
of records acquired by the sample process is a much greater in percentage than that
for the ScienceI case in order to get similar CTF and SRCC values. Essentially, and
quite intuitively, the more heterogeneous is a collection with respect to its content,
the more records have to be gathered in its sample to reasonably approximate the
collection’s content.

At second, the evaluation of the effectiveness of the recommendation algorithm.
For each target folder, we have evaluated the effect of varying the number of collections
to be recommended and the number of records (from 1 to 500) to be considered in
each of the two ranked lists rank(Ft) and ret(Ft).

In Figures 8 and 9, we report the results for the ScienceI case. As previously
observed, in this case a collection is homogeneous, i.e. its records belong to the same
topic or set of topics. The recommendation of just the top-1 collection for each target
folder produces an high F1 value, about 80%, and an high SRCC value. This means
that our algorithm is able to find the most appropriate collection w.r.t. the target
folder in case the collection are multitopic. Recommending more than one collections
produces a deterioration of the results as the selected collections contains documents
less pertinent to the target folder topic. In Figures 10 and 11 we report the results
for the Quasi-random case. As previously observed this kind of collections are more
heterogeneous than the previous ones, i.e. the records of a collection may belong to
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Figure 8: ScienceI case: F1 values.
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Figure 9: ScienceI case: SRCC values.

Figure 10: Quasi-random case: F1 values.
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Figure 12: Random case: F-Score values.
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Figure 13: Random case: SRCC values.

different but a limited set of topics, and records about a topic are distributed among
a limited number of collections. In this case recommending just the top-1 collection
to each target folder produces a lower F1 than for the previous case. Moreover,
the performance decrease if the number of records to be recommended increases.
Recommending more than one collections produces an improvement of the results as
the selected collections contain records relevant to the target folder. Concerning the
SRCC curve we note that increasing the number of records in the rank list, each
curve has a decreasing phase and finally it increases. The end of the decreasing phase
coincides with the point where the F1 value starts to decrease, which means that we
are able to select a minor number of records but the ranked lists are more similar.

In Figures 12 and 13 we report the results for the Random case. In this envi-
ronment, the collections are highly heterogeneous, i.e. the records of a collection can
belong to many different topics, and the records of a category are distributed, poten-
tially, among all collections. This is the worst case. We can note that the performance
decreases if the number of records in the rank list increases, while its increases if the
number of collections to recommend increases. However, our algorithm is still able to
find the most appropriate collection w.r.t. the target folder.

4 Conclusions

Since the Web, and consequently the information contained in it, is growing rapidly,
every day a huge amount of “new” information is electronically published and new
Digital Libraries are available to satisfy the user information needs. We described
here a Digital Library environment that is not only an information resource where
users may submit queries to get what they are searching for, but also a collaborative
working and meeting space. Indeed, users looking within an information resource for
relevant data might have overlapping interests, which may turn out to be of reciprocal
interest for the users: users might well profit from each other’s knowledge by sharing
opinions and experiences. As such, we have presented CYCLADES, a personalized
collaborative Digital Library environment, in which the user functionality may be
organized into four categories: users may (i) search for information; (ii) organize the
information space (according to the “folder paradigm”); (iii) collaborate with other
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users sharing similar interests; and (iv) get recommendations. CYCLADES not only
provides recommendation of records, as it usually happens in personalization system
dealing with documents, but by taking advantage of the highly collaborative environ-
ment, it may recommend also communities, collections and users as well. Particular
attention has been paid to the recommendation part and to the experiments showing
the effectiveness of the adopted algorithms.
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