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Abstract 

Mitochondrial chromosomes have diversified among eukaryotes and many different 

architectures and features are now acknowledged for this genome. Here we present the 

improved HERMES index, which can measure and quantify the amount of molecular change 

experienced by mitochondrial genomes. We test the improved approach with ten molecular 

phylogenetic studies based on complete mitochondrial genomes, representing six bilaterian 

Phyla. In most cases, HERMES analysis spotted out clades or single species with peculiar 

molecular synapomorphies, allowing to identify phylogenetic and ecological patterns. The 

software presented herein handles linear, circular, and multi-chromosome genomes, thus 

widening the HERMES scope to the complete eukaryotic domain. 
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1 Introduction 

1.1 The myth of a conserved genome 

As remarked in Lavrov and Pett (2016), the myth of a “typical” and conserved metazoan 

mitochondrial genome (mtDNA) arose when the complete mtDNA of Drosophila yakuba was 

obtained (Clary and Wolstenholme 1984) and found to share most features with the already 

available human mtDNA (Anderson et al. 1981): most notably, a size of approximately 16 kb, 

a circular topology, the same 37 genes (atp6, atp8, cox1-3, cytb, nad1-6, nad4l, 2 rRNAs, and 

22 tRNAs), a single large noncoding region, incomplete stop codons, absence of introns. Given 

the huge evolutionary distance between humans and fruit flies, it was assumed these to be the 

common (and basal) features of all animal mtDNAs (Clary and Wolstenholme 1985; see also 

Saccone et al. 2002). 

A comparably small size of mtDNA was measured in representatives of several animal groups 

(Borst and Kroon 1969). In the same years, mtDNAs of chickens, cows and mice turned out to 

be circular (Sinclair and Stevens 1966; Van Bruggen et al. 1966). As reconstructed in 

Williamson (2002), this led to a widespread belief in a small, circular molecule to be present in 

all mitochondria. Consequently, the claims for linear mtDNA examples that did arise in the 

same years (Suyama and Miura 1968) were discarded as naturalistic oddities, and the linear 

molecules that were repeatedly observed within yeast mitochondria were interpreted as broken 

circles for approximately 30 years (Williamson 2002). 

Currently, the query “mitochondrion, complete genome” yields 95,406 results from the NCBI 

Nucleotide database (accessed on the 9th of January, 2021), yet the common ideas about 

mitochondrial genomes are still grounded on the first results and are spread in many textbooks 

and lectures. Nonetheless, there is overwhelming evidence that, while a small, circular, 

intronless, somewhat conserved mtDNA is in fact common among bilaterians, many eukaryotic 



lineages show genome structures and organizations that are contrasting to various extents with 

this oversimplified conception. 

 

1.2 Variability in mtDNA architecture 

The mitochondrial proteome size is estimated between 1,000 and 1,500 proteins (e.g., Muthye 

and Lavrov 2020; Becker et al. 2012; Chacinska et al. 2009; Meisinger et al. 2008; Gabaldón 

and Martijn 2004); however, only a small cluster of protein coding genes (PCGs) has been 

retained on mtDNA: typically, 13 PCGs in metazoans (e.g., Breton et al. 2014; Boore 1999), 

and even as few as 3 in apicomplexans (Rehkopf et al. 2000; Feagin 1994). Most genes of the 

original endosymbiont were therefore lost or have been transferred to the nucleus – a process 

termed Genome Reductive Evolution (GRE; Kannan et al. 2014; Ghiselli et al. 2013; Khachane 

et al. 2007; Andersson and Kurland 1998). 

Among Eukaryotes, jakobids (order Jakobida) comprise the supergroup Discoba along with 

Tsukubamonadida, Heterolobosea, and Euglenozoa (see Gray et al. 2020; Hampl et al. 2009; 

Derelle et al. 2015; and references therein). Jakobids show the most gene-rich mtDNAs of all 

eukaryotes, with many bacterial features, and the mtDNA of the species Andalucia godoyi was 

found to encode the most genes to our knowledge (Burger et al. 2013; Lang et al. 1997). 

Notably, all eukaryotic mitochondria harbor a single-subunit, bacteriophage-like, nucleus-

encoded RNA polymerase, while jakobids’ mtDNA encodes subunits of a bacterial-like RNA 

polymerase (Yabuki et al. 2018; Burger et al. 2013; Shutt and Gray 2006; Gray and Lang 1998) 

and no evidence of a nucleus-encoded RNA polymerase supporting the mitochondrion-encoded 

one was found in a recent genomic draft of A. godoyi (Gray et al. 2020). Moreover, 21% (31 on 

at least 145) proteins involved in the energetic metabolism and 19% (29 on at least 149) proteins 

involved in the translation apparatus are mitochondrially encoded in A. godoyi (Gray et al. 

2020). These and many other observations point to the fact that mtDNA in jakobids retains most 



ancestral features of LECA, the Last Eukaryotic Common Ancestor (Gray et al. 2020; 

Bullerwell and Gray 2004; Lang et al. 1997). 

Contrastingly, in the very same eukaryotic supergroup Discoba, the phylum Euglenozoa 

displays completely different mtDNAs. The phylum Euglenozoa is comprised by Symbiontida, 

Euglenida, Kinetoplastea, and Diplonemea (Kaur et al. 2020; Adl et al. 2019; Burki et al. 2019). 

The mtDNA of the ill-famed pathogen Trypanosoma brucei (Kinetoplastea) is organized as a 

kinetoplast body (see Jensen and Englund 2012), a compact network of DNA maxicircles (~25 

kb) and thousands of minicircles (~1 kb), carrying the common mitochondrial genes and small 

RNAs involved in gene editing, respectively (Burger and Valach 2018; Lukeš et al. 2018). Even 

weirder is the organization of mtDNA in Diplonemea: in Diplonema papillatum the mtDNA is 

composed by 81 circular chromosomes that are not interwoven in a kinetoplast body (Burger 

and Valach 2018; Maslov et al. 1999). Chromosomes can be subdivided into two size classes 

(6 and 7 kb-long); chromosomes of the same class share approximately 95% of the sequence, 

while the remainder is unique for each chromosome and carries the only coding region of the 

chromosome, a fragment of a gene ranging 40 to 540 bp in length (Kaur et al. 2020). In other 

diplonemids, some chromosomes bear multiple (sometimes overlapping) cassettes (Burger and 

Valach 2018). Each chromosome is transcribed independently and a complex machinery of 

trans-splicing and post-transcriptional modifications leads to the mature mRNA (Kaur et al. 

2020; Burger and Valach 2018). This unconventional architecture makes diplonemid mtDNA 

a highly disperse genome, and gigantic as well: in the genus Perkinsela, the mitochondrion 

harbors more than six times DNA than the nucleus (Lukeš et al. 2018). 

Among Viridiplantae, mtDNAs from green algae (Chlorophyta) range from >200-kb long 

genomes of Bryopsidales (Repetti et al. 2020) to 95.9-kb long genome of Pseudendoclonium 

akinetum to the very small, highly derived mtDNAs of the genus Chlamydomonas, with a 

reduced set of genes and fragmented rRNAs (Bullerwell and Gray 2004; Denovan-Wright et al. 



1994; Michaelis et al. 1990; Boer and Gray 1988). Charophytes are the closest algal relatives 

to land plants (together comprising Streptophyta) and show mtDNAs smaller than 70 kb 

(Bullerwell and Gray 2004 – but up to 106 kb in Klebsormidium nitens; Hori et al. 2014), while 

larger genomes are found in land plants, up to 570 kb in Zea mays, 2,400 kb in some 

Cucurbitaceae, >6 Mb in some conifers and 11.3 Mb in some species of the genus Silene (Guo 

et al. 2020; Sloan et al. 2012; Bullerwell and Gray 2004; Ward et al. 1981). The enormous size 

of mtDNA in some chlorophytes and vascular plants is typically due to expansions of noncoding 

regions and to the proliferation of introns (Repetti et al. 2020; Bullerwell and Gray 2004), and 

gene content is somewhat conserved among green plants (Wu et al. 2020; Sloan 2013; Sloan et 

al. 2012; but see Skippington et al. 2015; Mower et al. 2012). Moreover, although plant mtDNA 

is conventionally annotated as a single circular molecule, the real structure of plant mtDNA 

involves entangled branching patterns and alternative molecules that coexist within cells (Wu 

et al. 2020; Kozik et al. 2019; Gualberto and Newton 2017; Sloan 2013; Bendich 1993; Palmer 

and Shields 1984), and some mitochondria may contain only partial or no genome at all (Preuten 

et al. 2010). Inter- and intra-mitochondrial recombination is repeatedly reported (Tsujimura et 

al. 2019; McCauley 2013; Abdelnoor et al., 2003), a process which can generate multiple 

subgenomes (Barr et al. 2005). In other cases, however, the mtDNA appears to be subdivided 

into autonomous circles, as is the case in onion (Tsujimura et al. 2019), in some Silene species 

(Sloan et al. 2012) and in the cucumber (Alverson et al. 2011). Finally, extensive 

posttranscriptional modifications are required, including cis- and trans-intron splicing and RNA 

editing (Ichinose and Sugita 2016; Bonen 2012; Mower et al. 2012). 

The large supergroup of Opisthokonta encompasses Metazoa, Fungi and a wide array of 

eukaryotes, showing different mtDNA structures. While basal chytridiomycetes typically show 

circular mtDNAs coding for most genes present in the opisthokont common ancestor, including 

in some cases a full complement of tRNAs, other mtDNAs from Fungi lost many genes 



(Bullerwell and Gray 2004). We mentioned above the broken-circle theory: now it is known 

that mtDNA of yeast is composed by a large population of interspersed linear chromosomes 

(Dujon 2020; Freel et al. 2015; Williamson 2002). 

At the animal-fungal boundary, among Ichthyosporea (Adl et al. 2019), Amoebidium 

parasiticum (order Ichthyophonida) has a large (>200 kb) mtDNA bloated with introns, consists 

of hundreds of linear chromosomes, and only the 20% of the molecule is coding (Burger et al. 

2003); conversely, Sphaerotecum destruens (order Dermocystida) has a compact (~24 kb), 

intronless mtDNA, where more than the 96% of the molecule is coding (Sana et al. 2020). 

Within Holozoa, the only (to our knowledge) choanoflagellate whose complete mitochondrial 

DNA has been sequenced is Monosiga brevicollis, that exhibits a 76-kb long mtDNA; though 

coding for 55 genes, the coding region covers the 47% of the genome (Sana et al. 2020;  Osigus 

et al. 2013; Bullerwell and Gray 2004). 

Non-bilaterian animals show a wide array of different mtDNA structures, organizations, and 

gene contents. The mitochondrial genome of placozoans is probably the closest to the ancestral 

animal mtDNA (Bernt et al. 2013): it is a large, circular molecule with a full complement of 

tRNAs (Signorovitch et al. 2007); however, the atp8 gene is lacking and introns are commonly 

found, including a one-base long micro-exon (Osigus et al. 2017, 2013). Sponges have a 

variable number of tRNAs, from 2 to 27, and some PCGs are uniquely found, like tatC and 

atp9; notably, whereas most sponges have a single, circular mtDNA (Lavrov and Pett 2016), 

the calcareous sponge Clathrina clathrus has six linear mitochondrial chromosomes (Osigus et 

al. 2013), but other calcaronean sponges have hundreds (Lavrov and Pett 2016). Introns and 

very few tRNAs have been found in cnidarians (see, f.i., Chi et al. 2019; Zhang et al. 2017; 

Osigus et al. 2013); while anthozoans display single, circular mitochondrial chromosomes, 

other cnidarians display linear mitochondrial chromosomes, ranging from one in scyphozoans 

to one or two in hydrozoans to eight in cubozoans (Lavrov and Pett 2016; Osigus et al. 2013). 



Ctenophores harbor single, circular, very small mtDNAs, with rapid evolutionary rates and 

without many genes that are common in bilaterians (tRNAs, atp6, atp8; Schultz et al. 2020; 

Lavrov and Pett 2016; Bernt et al. 2013; Kohn et al. 2012; Pett et al. 2011) – on the other hand, 

unidentified open reading frames (URFs), not connectible to each other, are described in 

ctenophore mtDNA (Schultz et al. 2020; Arafat et al. 2018). 

Most bilaterians animals do share a single, circular mitochondrial chromosome, with a 

relatively stable complement of genes (e.g., Boore 1999; Breton et al. 2014); however, many 

exceptions to that are actually known. Linear molecules and concatenamers have been reported 

from mammals (Pohjoismäki and Goffart 2011; and references therein). Species of the genus 

Globodera (Nematoda) have at least six recombining circular chromosomes (Gibson et al. 

2007a,b), and many insect genera show a mtDNA structured into several minicircles, up to 20 

in mammalian sucking lice and 17 in avian feather lice (Sweet et al. 2020; Shao et al. 2017; Shi 

et al. 2016; Dickey et al. 2015; Herd et al. 2015; Shao et al. 2015; Dong et al. 2014a; Dong et 

al. 2014b; Jiang et al. 2013; Shao et al. 2012; Wei et al. 2012; Shao et al. 2009). While in 

Globodera the minicircles harbor multiple copies of the mitochondrial genes, as well as 

pseudogenes, in the parasitic louse Columbicula each minicircle harbors a single PCG and a 

total of two genes on average, including minicircles with tRNAs only (Sweet et al. 2020; Gibson 

et al. 2007a). 

Finally, even the “canonical” gene content shows some peculiarities. Open Reading Frames 

(ORFs) with no known homology to other genes (termed ORFans or URFs) are known in some 

bilaterian mtDNAs, including brachiopods, bivalves, and humans (Plazzi et al. 2016, 2013; 

Breton et al. 2014; Cohen 2014; Lee et al. 2013; Endo et al. 2005). Mitochondrial introns are 

almost completely absent, yet they have been signaled in a few annelid species (Vallès et al. 

2008; Richter et al. 2015). Long and small noncoding RNAs have been signaled to transcribe 

from the mtDNA (Larriba et al. 2018; Riggs et al. 2018; Dong et al. 2017; Vendramin et al. 



2017; Ro et al. 2013; Landerer et al. 2011; Mercer et al. 2011; Rackham et al. 2011), and some 

of these elements play a role even in nuclear gene regulation (smithRNAs; Passamonti et al. 

2020; Pozzi et al. 2017). Bilaterian tRNAs lost many identity elements and this must have 

entailed a complex coevolution of nucleus-encoded aminoacyl-tRNA synthetases (Kuhle et al. 

2020).  

 

1.3. Genome molecular synapomorphies 

Not only is the mitochondrial genome highly plastic in terms of structure and organization: the 

genome plasticity often displays phylogenetic patterns, with peculiar mtDNA features 

associated to precise clades (e.g., Gray et al. 2020; Guo et al. 2020; Schultz et al 2020; Sweet 

el at. 2020; Žihala and Eliáš 2019; Li et al. 2018; Lavrov and Pett 2016; Plazzi et al. 2016; Freel 

et al. 2015; Bernt et al. 2013; Osigus et al. 2013): indeed, Song and colleagues (2019) proposed 

to erect a clade for the monophyletic cluster comprised by the three mammal-associated louse 

lineages, naming it Mitodivisia, which in fact underlines a peculiar mitochondrial feature to 

distinguish the clade itself. In this paper, we present the updated and improved version of the 

Hyper-Empirical Relative Mitochondrial Evolutionary Speed index (HERMES; Plazzi et al. 

2016), which has been developed in order to quantify the amount of mitochondrial evolution 

that led to mitochondrial molecular synapomorphies in the group of interest, detecting taxa or 

clades that underwent peculiar processes of mitochondrial evolution. The HERMES approach 

can be used to trace the evolution of mtDNA in a focal group of organisms. 

 



2 Material and Methods 

2.1 Global overview 

We presented the basics of the HERMES index approach in a previous paper (Plazzi et al. 

2016), in the context of bivalve mitogenomics. Even if the method was developed working on 

bilaterian mitogenomes, it has now been improved and it can be virtually applied to all 

eukaryotes. In this section, we describe the main outlines of the method. (i) Hyper-Empirical. 

The basic idea of this method is to compute from annotated complete mitochondrial genomes 

many different variables, related to nucleotide composition, gene content, phylogeny, and more 

(see below). Therefore, the analysis is carried out after phylogenetic and genomic analyses. 

These empirical measurements are then summarized in a single number (the HERMES index 

of a given mtDNA) using a maximum likelihood factor analysis. (ii) Relative. The amount of 

molecular evolution of focal mtDNAs is quantified using a user-selected taxon as a benchmark. 

This taxon should be chosen since it retains most genomic plesiomorphies of the group, given 

the state-of-art knowledge about mitogenomics of the group of interest. (iii) Mitochondrial. The 

method can cope with single-chromosome, as well as multiple-chromosome mtDNAs, be they 

linear or circular; moreover, simple adjustments may account for plastid genomes (basically, a 

new gene nomenclature dictionary would be needed; see below). (iv) Evolutionary Speed. We 

term “evolutionary speed” the amount of genomic change, at different molecular organization 

levels (i.e., from nucleotide composition to gene arrangement), that each mtDNA underwent 

with respect to the benchmark taxon. This can be useful to trace single taxa, as well as groups 

of taxa, that experienced characteristic patterns of molecular evolution. 

We developed a tool to compute the HERMES index, providing GenBank annotations or a list 

of GenBank Accession Numbers, gene alignments and a phylogenetic tree. The tool was written 

in Python3 and R (R Development Core Team 2008). Moreover, the software RAxML 8.2.12 



(Stamatakis 2014) is needed to run HERMES and is called internally. The tool is freely 

available for download at https://github.com/federicoplazzi/HERMES. 

 

2.2 Genomic variables 

At first, the following 14 variables are computed for each provided mtDNA. 

(i) Unassigned Region (UR) content. The percentage of URs within the mtDNA is computed, 

i.e. the amount of genomic positions not annotated as genes. 

(ii) Amount of Mitochondrial Identical Gene Arrangement (AMIGA). Following Plazzi et al. 

(2016), AMIGA is defined as follows. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼 − 1
𝑁𝑁 − 1

 

where NIGA is the number of taxa in the group of interest that share an Identical Gene 

Arrangement (IGA) on the molecule with the focal taxon (including the focal taxon itself), and 

N is the number of taxa. Taxa with unique gene arrangements will therefore score an AMIGA 

equal to 0; on the other hand, if all taxa share the same gene arrangement, every taxon will 

score an AMIGA equal to 1. Values between 0 and 1 are associated to an intermediate degree 

of conservation of the gene arrangement. Because of the variability of rRNA and tRNA 

positions in many taxa, they are excluded from the analysis, and the AMIGA index relies on 

PCGs only. 

(iii) Strand Usage (SU) skew. Following Plazzi et al. (2016), SU skew is defined as follows. 

𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝐻𝐻 − 𝐿𝐿
𝐻𝐻 + 𝐿𝐿

 

where H is the number of genes annotated on (what is regarded as) the H strand and L is the 

number of genes annotated on (what is regarded as) the L strand. In case of a perfectly 

balanced SU, H = L, and the SU skew is equal to 0. Conversely, a negative SU skew indicates 

a bias towards the L strand, and a positive SU skew indicates a bias towards the H strand. 



(iv) Root-to-tip distance. It computed for each OTU on the user-supplied best-known likelihood 

(BKL) tree using the Python package ETE (Huerta-Cepas et al. 2010). 

(v) Maximum Likelihood (ML) distance from an outgroup. The ML distance is computed 

between the focal taxon and a benchmark outgroup taxon selected by the user; the ML estimate 

is carried out with RAxML 8.2.12 specifying the same model that was used to compute the 

BKL tree. 

(vi) AT content. 

(vii) AT skew. Following Reyes et al. (1998), AT skew is defined as follows. 

𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝐴𝐴 − 𝑇𝑇
𝐴𝐴 + 𝑇𝑇

 

where A is the percentage of A on the reference sequence and T is the percentage of T on the 

reference sequence. 

(viii) GC skew. Following Reyes et al. (1998), GC skew is defined as follows. 

𝐺𝐺𝐺𝐺 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝐺𝐺 − 𝐶𝐶
𝐺𝐺 + 𝐶𝐶

 

where G is the percentage of G on the reference sequence and C is the percentage of C on the 

reference sequence. 

(ix) Number of (annotated) genes. 

(x) Length of the molecule (bp). 

(xi) Codon Adaptation Index (CAI). Following Sharp and Li (1987) and recommendations by 

Xia (2007), CAI is defined as follows. 

𝐶𝐶𝐶𝐶𝐶𝐶 = ��𝑤𝑤𝑙𝑙

𝐿𝐿

𝑙𝑙=1

�

1
𝐿𝐿

= ��
𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐿𝐿

𝑙𝑙=1

�

1
𝐿𝐿

 

or, to overcome real number underflow problems in computer calculations, 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑒𝑒�
1
𝐿𝐿 ∑ ln𝑤𝑤𝑙𝑙

𝐿𝐿
𝑙𝑙=1 � 



which is the geometric mean of the relative adaptiveness w of the L codons of the mtDNA, 

excluding initiation and termination codons. In turn, the relative adaptiveness of the l-th codon 

of the genome (wl) is defined as follows. If this codon is the j-th codon of a codon family for 

the amino acid i, its relative adaptiveness is its number of occurrences Nij divided by the number 

of occurrences Nimax of the most frequently used codon (within its codon family) for the amino 

acid i. All the codons that enter the geometric mean are obviously used at least one time, so that 

Nij > 0 in our case. Finally, all codons in the standard mitochondrial genetic code table have at 

least one synonym, therefore no codon should be subtracted from L. 

(xii) Tolopogy of the molecule. This is set to 1 for linear chromosome and 0 for circular 

chromosome. When the mitochondrial genome is split into several chromosomes, a different 

topology can be handled for each of them. 

(xiii) AT content of URs. 

(xiv) Median length of URs. 

 

2.3 Factor analysis 

The factor analyses are carried out using the psych (Revelle 2014) package of R; plots are 

prepared using the ggplot2 package. The factor analyses use normalization and varimax 

rotation; correlation preserving is used to get factor scores; correlations are found following the 

Pearson method; given the possible presence of a missing value, missing data are imputed using 

the median. As a major improvement with respect to the original version of HERMES (Plazzi 

et al. 2016), the R script which is called internally by HERMES tests all the possible 

combinations of at least two variables from the list above, therefore there is no need for the user 

to look for the best-performing combinations, which is automatically selected by the software. 

Each factor analysis is evaluated using different goodness-of-fit tests, following the 

recommendations proposed by Hu and Bentler (1999): Tucker-Lewis Index (TLI; Tucker and 



Lewis 1973) > 0.95; root mean square of the residuals (SRMR) < 0.08; root mean squared error 

of approximation (RMSEA) and relative confidence interval < 0.06; moreover, the  Kaiser-

Meyer-Olkin index (KMO; Kaiser 1970) is also computed. The best-performing factor analysis, 

as well as the source combination of variables, is automatically selected and output to the user. 

We define the single loading obtained for each OTU in the best-performing factor analysis the 

HERMES score of that OTU. 

 

2.4 Test of the method 

In our previous paper, we applied a basic HERMES approach to the mitogenomics of bivalve 

molluscs (Plazzi et al. 2016). In the present paper, we test the improved and updated HERMES 

approach to ten datasets that were selected among recent phylogenetic studies based on 

complete mitochondrial genomes. Datasets were selected in order to maximize the phylogenetic 

representativeness among bilaterians, i.e. spanning across Deuterostomia, Ecdysozoa, and 

Spiralia. Namely, these datasets were produced for Asteroidea (Echinodermata; Quek et al. 

2019), Paridae (Aves; Li et al. 2017, 2016), Phasianidae (Aves; Wang et al. 2017), Trematoda 

(Platyhelminthes; Semyenova et al. 2017), Acariformes (Arachnida; Xue et al. 2017), 

Pseudoniphargidae (Amphipoda; Stokkan et al. 2018), Ensifera (Orthoptera; Zhou et al. 2017), 

Conoidea (Gastropoda; Uribe et al. 2018), Mytilidae (Bivalvia; Lee et al. 2019), and 

Aphroditiformia (Annelida; Zhang et al. 2018). Outgroups were selected following the 

phylogenetic setup of the original publication and are listed in Table 1. 

 



3 Results 

Best-performing combinations are listed in Table 1 for each dataset. As shown in Figure 1, the 

AMIGA index, accounting for the uniquity or sharedness of the gene arrangement of a given 

mtDNA, and the ML distance to the outgroup are the most commonly used variables, entering 

six out of ten best-performing combinations. All ‘best-performing’ combinations are based on 

five or six genomic variables, and up to seven for Paridae (Table 2); the mean total communality 

is 0.4980. TLI, SRMR, and RMSEA confidence interval passed the goodness-of-fit test for all 

the best-performing combinations, with the exception of Paridae dataset SRMR (0.0880), which 

is slightly greater than the selected threshold (0.08); moreover, KMO was greater than 0.6 in 

all cases (Table 2). Below, we briefly present HERMES results for each dataset. 

 

3.1 Asteroidea 

A single combination of parameters maximized the number of acceptable goodness-of-fit test 

statistics. The variable set was AMIGA + root-to-tip distance + ML distance + AT + GC skew 

+ length (TLI=0.9818; KMO=0.7100), for a total communality of 0.6641 (Table 1 and 2). In 

the work of Quek et al. (2019) the complete mitochondrial genome of Archaster typicus is 

presented. Its HERMES score is similar to that of the strictly related Acanthaster species (Ac. 

brevispinus and Ac. planci; Quek et al. 2019; Mah and Blake 2012; Knott and Wray 2000); 

conversely, the sea star Echinaster brasiliensis (family Echinasteridae) stands out for its higher 

HERMES score among the remaining asteroideans (Figure 2A). Finally, it is worth noting that 

the two sea urchins included in the analysis (genus Strongylocentrotus) have significantly lower 

HERMES scores, which suggests a lower rate in mitochondrial molecular change with respect 

to the common ancestor of non-crinozoan echinoderms. 

 

3.2 Paridae 



Three combinations of variables maximized the number of acceptable goodness-of-fit test 

statistics. The best-performing one (TLI=0.9820; KMO=0.7056) used seven variables: URs, 

root-to-tip distance, GC skew, length, CAI, UR AT content, and UR median length, for a total 

communality of 0.5360 (Table 1 and 2). The work of Li and colleagues (2017, 2016) focuses 

on the genus Parus and on the Tibetan ground tit Pseudopodoces humilis, which was recently 

moved to the family Paridae (James et al. 2003) and which did nest within the Parus clade (Li 

et al. 2017, 2016). The parid species Sylviparus modestus is consistently recovered as the sister 

species of this clade: indeed, the HERMES analysis uncovered a similar evolutionary pace for 

all the Parus/Pseudopodoces species, while evidencing a more derived status of S. modestus 

(Figure 2B). Moreover, Ps. humilis scores the lowest HERMES index within the 

Parus/Pseudopodoces clade, possibly evidencing a less derived mtDNA for this genus. 

 

3.3 Phasianidae 

Eighteen combinations of variables maximized the number of acceptable goodness-of-fit test 

statistics. The best-performing one (TLI=1.0289; KMO=0.7742) used five variables: AMIGA, 

SU skew, AT skew, genes, and length, for a total communality of 0.6427 (Table 1 and 2). The 

HERMES score is somewhat conserved among Phasianidae, with the exception of Gallus 

gallus, which shows a slightly higher score, and of a small group of species which conversely 

show lower scores: Argusianus argus, Rhizothera longirostris, Caloperdix oculeus, Lerwa 

lerwa, Ithaginis cruentus, and Tetrastes bonasia (Figure 2C). Interestingly, three of these 

species are either sister group or basal within the so-called “erectile” clade (Kimball and Brown 

2008): namely, Ithaginis and Lerwa comprise a monophyletic clade, which is the sister group 

of the “erectile” clade (Wang et al. 2017; Meiklejohn et al. 2014; Shen et al. 2014; Wang et al. 

2013). In fact, the two mtDNAs analyzed for A. argus showed two very different HERMES 

scores; the same holds for R. longirostris. While Wang and colleagues (2017) notice the 



possibility of cryptic species diversity in this group of Galliformes, it has to be noted that a 

handful of mtDNAs used in their study, including those of A. argus and R. longirostris, have 

not been completely sequenced and annotated, which leads to misleading results about genomic 

variables like the number of annotated genes or the percentage of URs. 

 

3.4 Trematoda 

A single combination of parameters maximized the number of acceptable goodness-of-fit test 

statistics. The variable set was AMIGA + root-to-tip distance + ML distance + AT skew + genes 

+ UR AT content (TLI=1.0906; KMO=0.6925), for a total communality of 0.6839 (Table 1 and 

2). The resulting HERMES analysis evidences four groups of species (Figure 2D): the two 

Fasciola species exhibit the lowest scores, followed by the two Trichobilharzia species. The 

genus Schistosoma is associated to the highest HERMES values, which are in turn lower for S. 

mekongi and S. japonicum, and higher for S. mansoni and S. haematobium. Finally, the species 

Paragonimus westermani has a HERMES score similar to those of Trichobilharzia. HERMES 

analysis appears to be highly driven by the phylogenetic relationships of the species, included 

as root-to-tip and ML distances: the longer the branch in the tree presented by Semyenova et 

al. (2017), the higher the HERMES score. The HERMES analysis thus unveils a higher rate of 

genomic evolution for the mtDNA of Schistosomatidae with respect to Fasciolidae and 

Paragonimidae among Trematoda. 

 

3.5 Acariformes 

Twenty-seven combinations of variables maximized the number of acceptable goodness-of-fit 

test statistics. The best-performing one (TLI=0.9873; KMO=0.8086) used six variables: 

AMIGA, ML distance, AT skew, length, CAI, and UR AT content, for a total communality of 

0.6130 (Table 1 and 2). The HERMES index seems to precisely adhere to the systematics of 



Acariformes (Figure 2E) and to the phylogenetic reconstruction proposed by Xue and 

colleagues (2017): family Tetranychidae (here represented by genera Tetranychus and 

Panonychus) show the highest scores, followed by the superfamily Eriophyoidea sensu lato, 

which was recovered as the sister group to the order Sarcoptiformes (but see Klimov et al. 

2018), and the genus Demodex (family Democidae), which was recovered as the sister group 

to Tetranychidae. Finally, with the exception of Steganacarus magnus, Sarcoptiformes yielded 

higher HERMES scores than the remaining Trombidiformes. 

 

3.6 Pseudoniphargidae 

Twenty-two combinations of variables maximized the number of acceptable goodness-of-fit 

test statistics. The best-performing one (TLI=1.0000; KMO=0.6759) used five variables: 

AMIGA, root-to-tip distance, GC skew, CAI, and UR median length, for a total communality 

of 0.4537 (Table 1 and 2). The study of Stokkan and colleagues (2018) focuses on species of 

the genus Pseudoniphargus (family Pseudoniphargidae): these consistently scored the lowest 

HERMES values (with the only exception of the hadziid Bahadzia jaraguensis; Figure 2F). 

Moreover, all the included isopod mtDNAs and the three metacrangonyctid amphipod mtDNAs 

showed higher degrees of molecular mitochondrial change with respect to remaining 

amphipods, thus unveiling a different evolutionary pace between isopods and amphipods in 

mtDNA. 

 

3.7 Ensifera 

Two combinations of variables maximized the number of acceptable goodness-of-fit test 

statistics. The best-performing one (TLI=1.3759; KMO=0.6294) used five variables: ML 

distance, AT, AT skew, genes, and CAI, for a total communality of 0.2869 (Table 1 and 2). 

HERMES scores seem quite unrelated to systematics and/or ecology in this case (Figure 2G): 



among the top five HERMES scores, however, all the representatives of the subfamily 

Aemodogryllinae were found (genera Diestrammena and Diestramima), which suggests a 

different mitochondrial evolutionary pace for this subfamily within the family 

Raphidophoridae. 

 

3.8 Conoidea 

Seven combinations of variables maximized the number of acceptable goodness-of-fit test 

statistics. The best-performing one (TLI=1.2869; KMO=0.6294) used six variables: SU skew, 

root-to-tip distance, AT, GC skew, genes, and length, for a total communality of 0.3422 (Table 

1 and 2). The seminal work of Puillandre et al. (2011) subdivided the sixteen conoidean families 

(Bouchet et al. 2011) into two sister clades; the same clades were recovered as strongly 

supported by Uribe et al. (2018). With the exception of Glyphostoma sp. (Clathurellidae) and 

Lilliconus sagei (Conidae), the HERMES analysis did result into two clear groups as well, yet 

with no apparent phylogenetic meaning (Figure 2H). 

 

3.9 Mytilidae 

A single combination of parameters maximized the number of acceptable goodness-of-fit test 

statistics. The variable set was URs + AMIGA + ML distance + AT + AT skew (TLI=1.3618; 

KMO=0.7328), for a total communality of 0.4149 (Table 1 and 2). The phylogenetic study by 

Lee et al. (2019) aims to unravel the evolutionary relationships between the subfamilies of the 

family Mytilidae. The subfamily Mytilinae scored the highest HERMES values within genera 

Mytilus and Crenomytilus, while the genus Perna showed lower amount of mitochondrial 

evolution (Figure 2I). With the exception of Bathymodiolus thermophilus and Modiolus 

modiolus, members of the subfamilies Bathymodiolinae and Modiolinae (Mytilidae Clade 1 

sensu Liu et al. 2018) show intermediate HERMES index values; the other subfamily largely 



sampled in the study of Lee et al. (2019), Brachidontinae, resulted in a low amount of 

mitochondrial evolution for Mytilisepta keenae and M. virgata and in a low-to-intermediate one 

for the genus Brachidontes. 

 

3.10 Aphroditiformia 

Seven combinations of variables maximized the number of acceptable goodness-of-fit test 

statistics. The best-performing one (TLI=1.0489; KMO=0.6031) used six variables: ML 

distance, AT, genes, CAI, UR AT content, and UR median length, for a total communality of 

0.3425 (Table 1 and 2). The HERMES scores computed for the species of the suborder 

Aphroditiformia included in the study by Zhang and colleagues (2018) appear somewhat related 

to the phylogenetic reconstruction of the suborder, for example by recovering similar HERMES 

values for sigalionids polychaetes (Figure 2H). Moreover, we evidenced an increasing 

HERMES trend in the family Polynoidae. Specifically, lower HERMES scores were observed 

in Melaenis sp. (subfamily Polynoinae; sampled one meter below the surface), Halosydna sp., 

and Lepidonotus sp. (subfamily Lepidonotinae; both sampled one meter below the surface), 

followed by increasing scores for Lepidonotopodinae: Levensteiniella iris (sampled at a depth 

of 2,400 m) and Lepidonotopodium okinawae (sampled at a depth of 1,555 m), up to 

Branchipolynoe longqiensis (~2,800 m), Branchinotogluma japonicus (1,555 m) and 

Branchipolynoe pettiboneae (1,122 m), thus also uncovering a trend of higher amount of 

molecular evolution of the mtDNA for deep sea polynoid species. 

  



4 Discussion 

4.1 Case studies 

The HERMES analysis allowed to immediately and straightforwardly identify phylogenetic 

clusters (i.e., clades) or single species with marked differences in the amount of molecular 

change in mtDNAs, most likely mirroring a more derived or a more ancestral status of the 

genome with respect to the supposed common ancestor. These can be considered as molecular 

synapomorphies specific of the mitochondrial genome as a whole: it is the case, for example, 

of the sea urchins (Fig. 2A); of Pseudopodoces humilis and Sylviparus modestus (Fig. 2B); of 

the genera Fasciola, Trichobilharzia, and Schistosoma (Fig. 2D); of the family Tetranychidae 

and of the superfamily Eriophyoidea (Fig. 2E); of isopods (Fig. 2F); of the subfamilies 

Bathymodiolinae and Modiolinae (Fig. 2I). 

The HERMES analysis also allowed to identify species whose marked difference in 

mitochondrial evolutionary speed is most likely associated to peculiar ecological or 

physiological conditions. It is tempting, for example, to associate the HERMES scores of the 

genus Mytilus (which are the highest among Mytilidae; Fig. 2I) to the Doubly Uniparental 

Inheritance (DUI) of mtDNA, a phenomenon widespread in this genus (see, f.i., Zouros and 

Rodakis 2019; Gusman et al. 2016; Zouros, 2013; Passamonti and Ghiselli, 2009; Breton et al. 

2007), which was previously demonstrated to be connected with selective pressures on mtDNA 

(Plazzi and Passamonti 2018). A further example of HERMES scores associated to a peculiar 

condition is given by Lepidonotopodinae annelids, that showed increasing amount of molecular 

evolution for deep sea species, a condition which was expectedly shown to result in selective 

pressures on energetic metabolic pathways and, thus, on mitochondria (see, f.i., Shen et al. 

2019; Yang et al. 2019; Mu et al. 2018; Zhang et al. 2018, 2017). 

In few cases, the HERMES analysis did not add anything significant to the phylogenetic 

analysis. This may well be expected, in that not all the mtDNA features are under direct 



phylogenetic control: adaptations to specific environments and local modifications occurring in 

single lineages lead to fluctuations and molecular novelties. Whenever this holds for many 

different taxa in a given clade, we expect the HERMES signal to be blurred by such interfering 

contingencies. 

For example, HERMES scores seem somewhat scattered around among Ensifera and the total 

communality is low (Tab. 2). The family Raphidophoridae globally exhibits high HERMES 

values, but this does not hold for Troglophilus neglectus (Fig. 2G). Raphidophorids are basal 

in the “tettigonioid” clade (Gwynne 1995; Ander 1939) and have often been regarded as 

somewhat “transitional” between “grylloids” and the other Ensifera (Zhou et al. 2017; Desutter-

Grandcloas 2003; Ander 1939). It is possible that the results of the HERMES analysis have a 

meaning in this context, but it is also possible that different species underwent different patterns 

of mtDNA molecular evolution, so that even the best-performing combination of variables 

yields a very low signal, as measured by the total communality. Similarly, we detected two 

groups of HERMES values for conoideans (Fig. 2H), but a close look to the best combination’s 

goodness-of-fit tests suggests that a significant discussion of the HERMES scores is not sound. 

In fact, these clusters of mtDNAs may associate to other features, like ecology, bathymetry, 

energy metabolism; however, the HERMES scores is particularly dependent upon the SU skew 

(which is slightly higher for taxa with higher HERMES scores) and to the number of annotated 

genes (which is 37 instead of 36 for taxa with higher HERMES scores): these genomic features 

are clearly connected to each other and this simple difference may be sufficient to result in the 

observed HERMES dichotomy, recall the low total communality (~34%; Tab. 2). 

 

4.2 The application of the HERMES index 

The HERMES approach, originally presented in the context of an appraisal of bivalve 

mitogenomics (Plazzi et al. 2016), has proved to be suitable in the wider context of bilaterians. 



In the present paper, the HERMES approach is evaluated using ten case studies. In few cases, 

the best-performing combination did appear to only weakly describe mtDNA features: in the 

Aphroditiformia, Conoidea, and Ensifera datasets, the total communality is smaller than 40. 

Nonetheless, in the vast majority of cases, the best-performing combination yielded a loading 

set that robustly summarized many genomic features, up to 7 for Paridae (see Tab. 2). 

It is well beyond the scope of the present paper to provide a thorough evaluation of each case 

study, and evolutionary and ecological implications of our results have been summarized 

elsewhere (see sections 3 and 4.1). Generally speaking, from the present work it is evident that 

HERMES contributes with further pieces of information to the available knowledge about the 

evolution of a focal group in many cases, unveiling molecular evolutionary dynamics that are 

not explicitly addressed in phylogenetic analyses, like CAI or strand usage: see, f.i., the case of 

Trematoda, Acariformes, Mytilidae, or Aphroditiformia; see also the case of bivalves in Plazzi 

et al. (2016). Therefore, we regard to HERMES as a cost-effective approach to be applied to 

phylogenetic reconstructions and genomic surveys, looking for significant insights on mtDNA 

evolution. 

 

4.3 Future perspectives 

The present version of HERMES (3.0) is well suited to analyze circular and linear, single-

chromosome and multi-chromosome mitochondrial genomes; in case of multi-chromosome 

mitochondrial genomes, however, they will be assigned the same topology. Given the state-of-

art of research on mitochondrial genome architectures, this makes the HERMES approach 

suitable for most eukaryotic mtDNAs. Moreover, it is also possible to provide custom-

annotated genomes; however, in this case, a single chromosome is allowed and the circular 

topology will be assumed. 



However, many different architectures and organizations are currently known for mtDNAs, and 

possibly more are to be discovered (see section 1). Extending the scope of the HERMES 

approach is possible as well. It is conceivable, for example, to insert a descriptor for the 

presence of introns, or, better, for their extent in terms of base pairs. 

Concluding, future improvements of HERMES, which are currently under development, aim to 

handle custom-annotated, multi-chromosomes mtDNAs; the presence of introns; multiple 

genetic codes in the same dataset. This will hopefully allow to further extend the HERMES 

approach to all eukaryotes. 

 

  



Data Availability Statement 

The version 3.0 of HERMES is freely available for download from 

https://github.com/federicoplazzi/HERMES. The package performs all the analyses described 

in the present paper and directly provide the final HERMES scores. 
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Table 1. Outgroups and best-performing combinations. 

Dataset Outgroup Best-performing combination 

Asteroidea Glyptocidaris crenularis AMIGA, RtoTdist, MLdist, AT, GCskew, length 

Paridae Remiz consobrinus URs, RtoTdist, GCskew, length, CAI, URs_AT, URs_MedLen 

Phasianidae Rhynchortyx cinctus AMIGA, SUskew, ATskew, genes, length 

Trematoda Diphyllobothrium latum AMIGA, RtoTdist, MLdist, ATskew, genes, URs_AT 

Acariformes Paratemnoides elegantus AMIGA, MLdist, ATskew, length, CAI, URs_AT 

Pseudoniphargidae Neomysis orientalis AMIGA, RtoTdist, GCskew, CAI, URs_MedLen 

Ensifera Locusta migratoria MLdist, AT, ATskew, genes, CAI 

Conoidea Galeodea echinophora SUskew, RtoTdist, AT, GCskew, genes, length 

Mytilidae Anadara sativa URs, AMIGA, MLdist, AT, ATskew 

Aphroditiformia Nephtys sp. MLdist, AT, genes, CAI, URs_AT, URs_MedLen 

  



Table 2. HERMES goodness-of-fit tests for the best-performing combination. 

Dataset Variablesa KMO TLI SRMR Lower RMSEAb RMSEA Upper RMSEAc Total communality 

Asteroidea 6 0.7100 0.9818 0.0762 0.0000 0.0000 0.3892 0.6641 

Paridae 6 0.7056 0.9820 0.0880 0.0000 0.0000 0.3107 0.5360 

Phasianidae 5 0.7742 1.0289 0.0756 0.0000 0.0000 0.2824 0.6427 

Trematoda 6 0.6925 1.0906 0.0756 0.0000 0.0000 0.4049 0.6839 

Acariformes 6 0.8086 0.9873 0.0699 0.0000 0.0429 0.2482 0.6130 

Pseudoniphargidae 5 0.6759 1.0000 0.0589 0.0000 0.0000 0.2214 0.4537 

Ensifera 5 0.6294 1.3759 0.0194 0.0000 0.0000 0.0000 0.2869 

Conoidea 6 0.6294 1.2869 0.0556 0.0000 0.0000 0.0000 0.3422 

Mytilidae 5 0.7328 1.3618 0.0297 0.0000 0.0000 0.0000 0.4149 

Aphroditiformia 6 0.7108 4.8472 0.0687 0.0000 0.0000 0.0000 0.3425 
a Number of variables in the best-performing combination (see Tab. 1 for details). 
b Lower bound of the 95% RMSEA confidence interval. 
c Upper bound of the 95% RMSEA confidence interval. 

  



Figure Captions 

Figure 1. Selected genomic variables. An overall count of genomic features that entered best-

performing combinations in the ten presented HERMES factor analyses. 

 

Figure 2. HERMES index for ten case studies. A, Asteroidea; B, Paridae; C, Phasianidae; D, 

Trematoda; E, Acariformes; F, Pseudoniphargidae; G, Ensifera; H, Conoidea; I, Mytilidae; J, 

Aphroditiformia. 


	HERMES - An Improved Method to Test Mitochondrial Genome Molecular Synapomorphies among Clades_v2.0.pdf

