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Abstract

Recent work on sample efficient training of Deep Neural Networks (DNNs) proposed a semi-supervised methodology
based on biologically inspired Hebbian learning, combined with traditional backprop-based training. Promising re-
sults were achieved on various computer vision benchmarks, in scenarios of scarce labeled data availability. However,
current Hebbian learning solutions can hardly address large-scale scenarios due to their demanding computational
cost. In order to tackle this limitation, this contribution develops a novel solution by reformulating Hebbian learning
rules in terms of matrix multiplications, which can be executed more efficiently on GPU. We experimentally show that
the proposed approach, named FastHebb, accelerates training speed up to 70 times, allowing us to gracefully scale
Hebbian learning expriments on large datasets and network architectures such as ImageNet and VGG.
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1. Introduction1

Recent efforts from the research community focused2

on the development of biologically plausible alterna-3

tive to the backpropagation algorithms for Deep Neu-4

ral Network (DNN) training. Biological constraints re-5

quire neurons to use only locally available information6

to compute the weight updates, and neuroscientific ob-7

servations suggest that synaptic plasticity follows the8

Hebbian model [1, 2]. In simple terms, the weight up-9

date should be proportional to the input on the respec-10

tive synapse and the neuron output at a given point in11

time. The study of biologically realistic learning models12

is interesting both because they are well suited for neu-13

romorphic applications [3, 4], and for the perspective14

to better understand the mechanisms behind biological15

intelligence and use them to enhance current Artificial16

Intelligence (AI) technologies.17

Among the recently proposed bio-inspired learn-18

ing approaches, Contrastive Hebbian Learning (CHL)19

[5] and Equilibrium Propagation (EP) [6] leverage re-20

current architectures with Hebbian and anti-Hebbian21

∗Corresponding author
Email addresses: gabriele.lagani@isti.cnr.it (Gabriele

Lagani ), fabrizio.falchi@isti.cnr.it (Fabrizio Falchi),
claudio.gennaro@isti.cnr.it (Claudio Gennaro),
hannes.fassold@joanneum.at (Hannes Fassold),
giuseppe.amato@isti.cnr.it (Giuseppe Amato)

phases, showing that the resulting update steps approx-22

imate backprop. More recently, the Forward-Forward23

(FF) approach has been proposed [7] for feedforward24

networks, which is also based on an alternation between25

two phases. While the approaches mentioned above fo-26

cus on supervised learning solutions, a lot of attention27

on bio-inspired methods has converged on unsupervised28

learning. For example, the Similarity Matching crite-29

rion [8, 9, 10, 11] or the Hebbian PCA rule [12, 13] al-30

low neurons to learn to extract the principal components31

from data. Similarly, Hebbian learning with Winner-32

Takes-All (WTA) competition allows neurons to find33

clusters in the data space [14, 15, 16, 17, 18, 19, 20].34

This reveals interesting connections between the Heb-35

bian theory of learning and data science.36

In this work, we focus on a hybrid solution of37

unsupervised Hebbian learning and supervised back-38

prop training, which are combined together in a semi-39

supervised fashion. In fact, supervised training alone40

has the disadvantage of requiring numerous training41

samples to achieve high performances, but the latter are42

often expensive to gather, requiring a consistent man-43

ual effort. To circumvent this issue, a possible direc-44

tion is to pre-train the model on a large amount of unla-45

beled data, with an unsupervised algorithm, and then46

fine-tune with supervision on a small labeled dataset47

[21, 22]. In this scenario, recent work has shown su-48

perior performance of Hebbian-based semi-supervised49
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training, compared to other unsupervised methods for50

pre-training, such as Variational Auto-Encoders (VAE)51

[23], especially in scenarios where the available labeled52

data is scarce [13, 17]. Due to the difficulty of collect-53

ing labeled data, these scenarios are of strong practical54

interest.55

Despite their promising results, current Hebbian56

learning solutions can hardly be used to address large-57

scale problems, due to their demanding computational58

cost. In this perspective, the goal of our contribution is59

to address the performance limitations of Hebbian algo-60

rithms. For this purpose, we developed a new Hebbian61

learning solution, named FastHebb, which is designed62

to better take advantage of GPU acceleration. This is63

done in two steps. First, we notice that Hebbian learning64

with mini-batch processing evolves in two stages, one65

is the weight update computation for each sample in the66

mini-batch, and the other is the aggregation of updates67

over all the minibatch elements. These two phases can68

be merged together with a significant speedup. Second,69

the resulting Hebbian equations of synaptic updates can70

translated in terms of matrix multiplications, which can71

be executed very efficiently on GPU.72

In order to provide an experimental evaluation of the73

proposed method, we used established computer vision74

benchmarks such as CIFAR10/100 [24], Tiny ImageNet75

[25] and ImageNet [26]. Besides the image classifi-76

cation evaluation, we also studied the performance of77

Hebbian neural features for Content-Based Image Re-78

trieval (CBIR). We considered sample efficient learn-79

ing scenarios, where label information is assumed to80

be available only for a certain percentage of the data81

used for training. Results confirm previous observation82

about the superior performance of Hebbian-based semi-83

supervised approaches, compared to alternative solu-84

tions, especially in label-scarce learning regimes. More-85

over, the FastHebb solution exhibits a significant ac-86

celeration of training times, both compared to previous87

Hebbian learning solutions, and compared to backprop-88

based alternatives. In particular, FastHebb achieves a89

peak improvement in training up to 70 times faster than90

corresponding Hebbian approaches not leveraging Fas-91

tHebb. This allowed to gracefully scale Hebbian al-92

gorithms to large datasets, on the scale of ImageNet,93

and architectures, on the scale of VGG [27]. Extending94

Hebbian learning to other types of architectures, such95

as residual networks [28] and transformers [29], in non-96

trivial and deserves to be explored in a separate work.97

Some of the results on FastHebb were already pre-98

sented in our recent conference publication [30]. How-99

ever, those results were just preliminary and the aim100

of this paper is to significantly extend previous work.101

Compared to [30], this paper performs a more compre-102

hensive evaluation of the method by considering two103

types of test scenarios, image classification and CBIR,104

over four different computer vision benchmarks, includ-105

ing ImageNet. Moreover, we also extend the range of106

backbone architectures on which the approach is ap-107

plied, pushing Hebbian learning to VGG-scale architec-108

tures for the first time, as far as we know.109

In summary, our contribution is twofold:110

1. A scalable solution for Hebbian synaptic updates111

is proposed;112

2. Extensive evaluation of Hebbian algorithms is113

presented, including new experiments on large-114

scale datasets (ImageNet) and architectures (VGG)115

which (to the best of our knowledge) have been out116

of reach for Hebbian algorithms so far.117

Here is the structure of the following Sections: Sec-118

tion 2 illustrates related contributions; Section 3 de-119

scribes the proposed FastHebb method more in detail;120

Section 4 delves into the details of our experimental121

scenarios in sample efficient and large-scale settings; in122

Section 5, the results of our experiments are described;123

conclusive remarks are presented in Section 6.124

2. Background and related work125

Some past contributions focused on addressing the126

biological plausibility problem of backpropagation by127

proposing solutions that can be shown to approximate128

backprop using Hebbian updates. Contrastive Hebbian129

Learning (CHL) [31] and Equilibrium Propagation (EP)130

[6] approaches do so by leveraging recurrent network131

architectures with two phases of activity. A free phase132

fixes the values of input neurons to represent a given133

sample, while output neurons and the remaining hidden134

units are left free. The recurrent dynamics lead the net-135

work to settle down into a steady state, where an anti-136

Hebbian update is performed. During the forced phase,137

the activations of output neurons are also fixed to a value138

closer to the desired target. Again, the recurrent dynam-139

ics will induce the network into another steady state,140

where a Hebbian update is performed. This combina-141

tion of updates can be shown to approximate backprop142

at each neuron, using only local information. Another143

approach with strong biological support is Predictive144

Coding (PC) [32], in which a layer optimizes a local loss145

function that accounts for the error in predicting the next146

layer activations. Optimization is performed in a nested147

fashion. First, neuron activations are optimized to meet148
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the objective, which leads to the emergence of recur-149

rent interactions among neurons, followed by optimiza-150

tion of the weights. Again, the resulting updates can be151

shown to match backprop updates using only local in-152

formation [33]. The PC approach has been successfully153

applied in different flavors to DNN training [34, 35, 36].154

More recently, the Forward-Forward (FF) approach has155

been proposed [7]. This is based on standard feedfor-156

ward architectures, but using an input vector composed157

of both sample and target. The approach alternates a158

positive phase, where sample and the correct target are159

provided to the network, which is required to maximize160

its activations, and a negative phase, where the sample161

is paired with a randomly generated target, and the net-162

work is required to minimize its activations. In a pre-163

vious work [37], we have used a similar method for164

training biologically realistic models of in vitro cultured165

neural networks, where sample and target are provided166

simultaneously to the network, and Hebbian plasticity167

reinforces the connection between the two, so that at168

test time, when a sample with no target is provided, the169

network can recall the association. A weight normaliza-170

tion mechanism plays the role of the negative phase in171

this case.172

In addition to these attempts to model supervised173

learning from a biologically plausible perspective, other174

efforts have been focused on modeling bio-inspired un-175

supervised learning mechanisms. Past works used Heb-176

bian learning with WTA competition models to train177

feature extractors in feedforward and/or convolutional178

CNNs [14, 15, 16, 17, 18, 19, 20], showing impressive179

convergence speed. In particular, a recent work [38]180

showed that soft-WTA training of DNNs allows the net-181

work to extract increasingly abstract representations, in182

the same vein as backprop training, but at the cost of183

using very wide layers. The authors also provide exper-184

imental results with Hebbian learning on ImageNet, al-185

though only for a single training epoch. The method that186

we propose allows us to run a full training session (20187

epochs or more) even on ImageNet scale. Miconi [39]188

proposed translations of some Hebbian synaptic update189

equations into optimizable objective functions, which190

are more relatable to common frameworks for DL. An-191

other line of research explored the Similarity Matching192

objective as a possible direction to derive biologically193

plausible neural models for principal subspace extrac-194

tion [8, 9, 10, 11], with extensions also to the supervised195

end-to-end recurrent training case [40, 41].196

In our past contributions, we took a hybrid ap-197

proach, and explored Hebbian WTA and PCA train-198

ing of DNNs in semi-supervised scenarios, using unsu-199

pervised Hebbian algorithms as a tool for pre-training200

[12, 13, 42]. Experiments showed promising results,201

compared to backprop-based alternative methods, espe-202

cially in scarce data learning scenarios. Due to the diffi-203

culty of gathering manually labeled data, these scenar-204

ios are of strong practical interest. Given the promising205

results obtained in previous works, in this contribution206

we further enhance previous solutions towards achiev-207

ing higher efficiency and scalability to more complex208

scenarios.209

Other works have explored semi-supervised ap-210

proaches exploiting unsupervised pre-training with211

backprop-based auto-encoding architectures [43, 44, 21,212

22]. A different direction towards semi-supervised213

learning is instead based on pseudo-labeling or214

consistency-based methods [45, 46, 47, 48]. Since215

our approach belongs to the unsupervised pre-training216

category, we will focus our comparisons in this set-217

ting. However, it is worth mentioning that the other218

approaches are not mutually exclusive with unsuper-219

vised pre-training, and, indeed, these can be integrated220

together, as also suggested in Sec. 6221

3. Speeding Up Hebbian learning with FastHebb222

In this Section we present the FastHebb method. We223

start by introducing a convenient notation, that will be224

used to translate Hebbian synaptic update equations into225

the FastHebb formulation. Then, we illustrate the learn-226

ing rules that are analyzed in this work, and we derive227

their FastHebb-enhanced counterpart.228

3.1. A convenient notation229

When working with common packages for DL, such230

as Pytorch, data are typically represented as tensors. In231

this context, a tensor is simply a data array with multiple232

dimensions. We wish to introduce a notation for ten-233

sors that is better suited for relating mathematical for-234

malism with the corresponding implementation in DL235

packages. For example, a tensor has a number of di-236

mensions, whose interpretation lies in the mind of the237

programmer (e.g. batch, channel, height, and width di-238

mensions for images). Given a tensor, packages such as239

Pytorch allow us to transpose or permute any of its di-240

mensions, which corresponds to reordering indexes. We241

can also unsqueeze singleton dimensions or squeeze242

them out, which correspond to adding or removing sin-243

gleton indexes, i.e. indexes of dimension 1. Therefore,244

in essence, the notation that we introduce is motivated245

by a more straightforward mapping to the programming246

formalism for working with tensors.247

We consider tensors, denoted by capital letters, fol-248

lowed by one index per dimension. The symbol used249
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to denote the index denotes its meaning. For example,250

we can use an index p = 1...M to represent the batch251

dimension, an index q = 1...Q to represent the chan-252

nel dimension, and index m = 1...M to represent the253

weight vector dimension. A 1 symbol used as an index254

represents a singleton. For example, a neural feature255

map at some layer can be denoted as Ap,q,1, which is256

a tensor with one element for each mini-batch element257

(dimension p) and for each neuron (dimension q). The258

last dimension is a singleton because the output of each259

neuron for each mini-batch element is a scalar. Simi-260

larly, a weight matrix can be denoted by B1,q,m, because261

it does not extend along the mini-batch dimension, but262

it has a number of channels (one per neuron), and each263

corresponds to a weight vector. Concerning the input264

tensors, for example images, they have a mini-batch,265

channel, height, and width dimensions. However, due to266

the convolutional processing, a patch will be extracted267

from each horizontal and vertical location of each im-268

age, which is treated, for the Hebbian learning purposes,269

as a separate input. Therefore, our mini-batch is the col-270

lection of all patches extracted from all images. Each271

patch is flattened into a vector, whose size corresponds272

to the weight vector size of the next neural layer. On the273

other hand, this tensor does not extend along the neu-274

ron dimension. Overall, our input tensors can be repre-275

sented as Cp,1,m.276

This notation is convenient, because it allows us to277

easily swap indexes, or squeeze and unsqueeze sin-278

gleton dimensions. If tensors have compatible dimen-279

sions, we can also perform element-wise operations (ad-280

ditions, multiplications, etc.). When a dimension is281

a singleton, it automatically undergoes broadcasting,282

i.e. the tensor is replicated along that direction until it283

matches the corresponding dimension of the other ten-284

sor involved in the operation.285

Matrix multiplication plays an important role in DNN286

processing. We make the usage of matrix multipli-287

cations explicit in our notation, by writing bmm(·, ·)288

(which stands for batch matrix multiplication):289

Zi, j,l =
∑

k

Ui, j,kVi,l,k

=
∑

k

Ui, j,kVi,k,l := bmm(Ui, j,k,Vi,k,l)
(1)

Notice that the matrix multiplication operation is290

equivalent to taking the element-wise product between291

tensors U and V , identifying the common index i and292

summing over (or contracting) index k. Specifically, in-293

dex i represents a batch dimension, and the operation294

is a batch matrix multiplication between i matrix pairs.295

For each pair, the two matrices have indices ( j, k) and296

(k, l), which are mapped to indices ( j, l): ( j, k)× (k, l)→297

( j, l). The operation generalized to tensors with more298

that three dimensions as follows: all dimensions except299

the last two are considered as batch dimensions, while300

the last two dimensions represent rows and columns of301

the matrices being batch-multiplied. Batch dimensions302

must correspond between the two tensors, or be single-303

ton (in which case, broadcasting takes place).304

3.2. Hebbian synaptic updates: from computation to305

aggregation306

We consider two types of Hebbian learning rules:307

Hebbian PCA (HPCA) and soft-Winner-Takes-All308

(SWTA). In this paper, we just give the definition of309

these learning rules, but the interested reader can find310

more details in [20, 19, 13, 12].311

Given a layer of neurons whose activations are de-
noted by aq (index q refers to the q-th neuron in the
layer), whose weight vectors are denoted by bq, and
whose input vector is denoted by c, the SWTA synap-
tic update equation is the following:

∆bq = α sq (c − bq) (2)

Where α stands for the learning rate and sq is the soft-
max of the activations with temperature T [49]:

sq =
aq/T∑
k ak/T

(3)

Essentially, this modulates the update steps so that neu-312

rons with higher activations will also ’win’ larger up-313

dates.314

The HPCA learning rule, instead, is the following:

∆bq = α aq (c −
q∑

k=1

akbk) (4)

This rule can be shown to induce neurons to extract the315

principal components from data [50, 51].316

When working with images and convolutional lay-317

ers, these weight updates need to be computed for each318

patch extracted from a given image. However, due to the319

constraints of convolutional layers, neurons at different320

offsets need to maintain shared weights, hence they are321

bound to follow the same synaptic modifications. This322

can be achieved by aggregating the different weight up-323

dates, obtained from patches at different locations, into324

a unique update. Aggregation needs to be performed325

for all the images in a mini-batch as well. The overall326

two-phases approach is depicted in Fig. 1.327

Aggregation is performed simply by averaging, in328

the HPCA case, or by a weighted average, where the329

weights are sq coefficients, for SWTA.330
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Figure 1: Two phases of weight update: update computation for each patch, followed by aggregation of several updates.

3.3. From Hebbian synaptic updates to FastHebb331

The Hebbian rules presented above can be rewritten
in matrix form, including the aggregation step, using the
notation outlined at the beginning of this Section:

∆B1,q,m =
∑

p

Dp,q,1 ∆Bp,q,m = bmm(Dq,1,p,∆Bq,p,m)

(5)

where ∆Bp,q,m is the collection of all weight updates that332

need to be aggregated, and Dp,q,1 is the tensor of coeffi-333

cients for the aggregation.334

Now that the two phases of weight computation and335

aggregation are merged together, we proceed differently336

depending on the specific learning rule.337

FastHebb for SWTA. Let’s rewrite the SWTA update338

rule as follows:339

∆B1,q,m = α
∑

p

Dp,q,1 S p,q,1

(
Cp,1,m − B1,q,m

)
= α
∑

p

(D S )p,q,1 (C − B)p,q,m

= α bmm
(
(D S )q,1,p, (C − B)q,p,m

) (6)

Where Dp,q,1 =
S p,q,1∑
p S p,q,1

.340

The computational complexity required by this algo-341

rithm is O(P Q M) in time. Moreover, if we wish to342

exploit GPU parallelism, we need to keep a P × Q × M343

tensor in memory, thus requiring O(P Q M) space com-344

plexity as well, which can be prohibitive for large-scale345

scenarios.346

However, it is possible to improve over these bounds347

by contracting the aggregation index p (which is typi-348

cally the largest dimension) early:349

∆B1,q,m = α
∑

p

Dp,q,1 S p,q,1

(
Cp,1,m − B1,q,m

)
= α
∑

p

(D S )p,q,1 Cp,1,m − α
∑

p

(D S )p,q,1 B1,q,m

= α bmm
(
(D S )1,q,m,C1,q,m

)
− α
∑

p

(D S )p,q,1 B1,q,m

= α bmm
(
(D S )1,q,p,C1,p,m

)
− α E1,q,1 B1,q,m

(7)

Where E1,q,1 =
∑

p(D S )p,q,1.350

This requires only O(Q (P + M)) space complexity.351

Concerning the time complexity, this depends on the352

specific matrix multiplication algorithm adopted, but353

this can be made lower than O(P Q M). This is the Fas-354

tHebb formulation for SWTA.355

FastHebb for HPCA. Similarly to the SWTA case, we356

can rewrite the HPCA equation, together with the ag-357

gregation phase (in this case, the coefficient Dp,q,1 is just358

1
P ), with the proposed notation:359
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∆B1,q,m = α
1
P

∑
p

Ap,q,1

(
Cp,1,m −

q∑
q′=1

Ap,q′,1 B1,q′,m

)
= α

1
P

∑
p

Ap,q,1

(
Cp,1,m −

Q∑
q′=1

Tq,q′ Ap,q′,1 B1,q′,m

)
= α

1
P

∑
p

Ap,q,1 Fp,q,m

= α
1
P

bmm
(
Aq,1,p, Fq,p,m

)
(8)

Where Fp,q,m =
(
Cp,1,m −

∑Q
q′=1 Tq,q′ Ap,q′,1 B1,q′,m

)
,360

and Tq,q′ is simply a lower-triangular matrix with all361

ones on and below the main diagonal and all zeros362

above.363

The computation of the HPCA equation is slightly364

more complex, requiring O(PQ2M) space and time, but365

this can be improved by reordering the sums:366

∆B1,q,m = α
1
P

∑
p

Ap,q,1

(
Cp,1,m −

Q∑
q′=1

Tq,q′ Ap,q′,1 B1,q′,m

)
= α

1
P

∑
p

Ap,q,1 Cp,1,m

− α
1
P

∑
p

Ap,q,1

Q∑
q′=1

Tq,q′ Ap,q′,1 B1,q′,m

= α
1
P

bmm
(
A1,q,p,C1,p,m

)
− α

1
P

Q∑
q′=1

∑
p

Ap,q,1 Ap,q′,1 Tq,q′ B1,q′,m

= α
1
P

bmm
(
A1,q,p,C1,p,m

)
− α

1
P

Q∑
q′=1

bmm
(
A1,q,p, A1,p,q′

)
Tq,q′ B1,q′,m

= α
1
P

bmm
(
A1,q,p,C1,p,m

)
− α

1
P

Q∑
q′=1

G1,q,q′ B1,q′,m

= α
1
P

bmm
(
A1,q,p,C1,p,m

)
− α

1
P

bmm
(
G1,q,q′ , B1,q′,m

)
(9)

Where, G1,q,q′ = bmm
(
A1,q,p, A1,p,q′

)
Tq,q′ .367

Figure 2: Backbone neural network model used for our experiments.

Figure 3: Bigger neural network model for ImageNet experiments.

The overall computation now has O(Q2 + QM) com-368

plexity in space, and up to O(PQM + PQ2 + Q2M) in369

time. This is the FastHebb formulation for HPCA.370

4. Evaluation scenario371

We evaluated the proposed methodology on a num-372

ber of established computer vision benchmarks: CI-373

FAR10/100 [24], Tiny ImageNet [25], and ImageNet374

[26]. We performed an evaluation of Hebbian-based375

approaches in semi-supervised learning settings, on a376

backbone network model described in the following,377

compared to a Variational Auto-Encoder (VAE) [23, 21]378

baseline. In addition, we provide a FastHebb evaluation379

on VGG [27], to show the scalability of the proposed380

approach to large architectures. We evaluated the per-381

formance both in terms of classification accuracy, and in382

terms of training speedup achieved with FastHebb. We383

also provide an evaluation of Hebbian neural features384

for large-scale image retrieval tasks.385

4.1. Neural network backbone for evaluation386

In order to provide an evaluation for the proposed387

approach, we need to define a suitable backbone net-388

work architecture for our experiments. For this purpose,389

we need a network that presents the common architec-390

tural features of Convolutional Neural Networks (pool-391

ing and convolutional layers [52], batch normalization392

[53], etc.). On the other hand, we need to exclude more393

recent features such as residual connections [28] or at-394

tention layers [29], for Hebbian algorithms are not triv-395

ial to generalize to these cases, which deserve to be an-396

alyzed in a separate work. For a first experimentation397

stage, we do not need to consider a very large model; it398

is instead preferable to consider a more compact archi-399

tecture, which enables faster experimentation, and eas-400

ier analysis of deep features, also on a layer-by-layer401

basis. It also makes reproducibility by other researchers402

more accessible. Therefore, we opted for an AlexNet-403

inspired [52] architecture shown in Fig. 2, with 6 layers,404

which is also consistent with previous works [20, 30].405

For larger-scale experiments on ImageNet we used an406

6



extended version of the previous model with 10 layers,407

shown in Fig. 3, as well as a VGG model [27].408

4.2. Semi-supervised training protocol for sample-409

efficient learning410

We evaluated the proposed approach assuming a con-411

dition of scarcity of available labeled training data. We412

define a sample efficiency regime as the percentage of413

available labeled samples, over the total number of414

training samples. For each of the considered datasets,415

we performed experiments in eight different sample ef-416

ficiency regimes: 1%, 2%, 3%, 4%, 5%, 10%, 25%, and417

100%.418

In order to take advantage of both labeled and un-419

labeled training samples, for each sample efficiency420

regime, we followed a semi-supervised training proto-421

col in two phases: first, the network is pre-trained using422

one of the proposed unsupervised Hebbian algorithms,423

exploiting all the available training samples; second,424

end-to-end fine-tuning is performed, using supervised425

backprop training on a cross-entropy loss, and exploit-426

ing the labeled samples only. Finally, both the resulting427

classification accuracy and the training time (in terms of428

epoch duration, number of epochs, and total duration)429

were recorded.430

As a baseline for comparison, we used unsupervised431

pre-training based on the Variational Auto-Encoder432

(VAE) approach [54]. In this case, pre-training was433

performed by using the deep layers (excluding the fi-434

nal classifier) of the proposed architectures as encoder,435

mapping their output to 256 gaussian latent variables.436

This was augmented with a another network branch,437

acting as decoder, with a specular structure w.r.t. the en-438

coder (i.e. pooling layers replaced with unpooling, and439

convolutions with transpose convolutions), mapping the440

latent variables to a decoded sample. The overall mod-441

els were trained in the encoding-decoding task, opti-442

mizing the β-VAE Variational Lower Bound [55], in an443

end to end fashion, using all the available training sam-444

ples. At this point, the decoder was dropped, a linear445

classifier was placed on top of the latent features, and446

supervised backprop-based end-to-end fine tuning was447

performed, using only the available labeled samples for448

the given sample efficiency regime. Essentially, this is449

the standard semi-supervised training approach based450

on state-of-the-art VAE architectures [21]. Notice that451

in this case, however, the pre-training phase, even if un-452

supervised, is still backprop-based, while Hebbian algo-453

rithms enable pre-training without requiring backprop.454

4.3. Retrieval with neural features455

Deep features extracted from pre-trained networks456

were also used as vector descriptors for multimedia con-457

tent indexing and retrieval [56, 57, 58]. The perfor-458

mance of the resulting feature representation was eval-459

uated in Content-Based Image Retrieval (CBIR) tasks.460

The CBIR systems architecture works as follows: in461

a first phase, feature representations are computed for462

all images in a given database, by extracting the deep463

representations from the convolutional part of the net-464

work. These feature representations are then mapped465

to a binary 256-dimensional descriptor which is then466

used for indexing the database images. This is done467

as in [57] by training another piece of network, with468

a 256 units hidden layer with tanh activations and a fi-469

nal classifier. This is trained in the classification task,470

so that the feature representation is mapped to the cor-471

rect class, but passing through a compression stage into472

the desired 256 dimensional vector. The tanh activation473

is a ”soft” proxy for the binarization operation, which474

doesn’t block gradients from flowing backward during475

training. The 256 dimensional representation is then bi-476

narized by a thresholding operation: positive values are477

mapped to 1 and negative values are mapped to 0.478

Test set images are used as sample queries: at test479

time, their 256-dimensional binary feature representa-480

tion is computed as well, and the database images are481

ranked against the query based on the Hamming dis-482

tance between feature representations. Retrieved im-483

ages are considered to be a correct match if they belong484

to the same class as the query.485

The evaluation measure used for the CBIR task is the
Average Precision Score (APS) :

APS =
K∑

i=1

Pi (Ri − Ri−1) (10)

where Pi is the precision at the ith retrieved item, Ri is486

the corresponding recall. This score is renormalized (so487

that its maximum value is always 1) and averaged over488

all the queries, thus obtaining the mean Average Preci-489

sion (mAP).490

4.4. Implementation details491

The experiments, implemented in Pytorch, depend on492

a number of hyperparameters, whose search was pur-493

sued by Coordinate Descent (CD) [59], optimizing, for494

each dataset, the accuracy results of the trained models495

on the respective validation set. In the following, the496

resulting parameters and implementation details are il-497

lustrated.498
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All training sessions were performed over 20 epochs499

(which were enough for the models to converge). Data500

were processed in mini-batches of 64 samples each,501

and each sample was an RGB image of 32 pixels in502

height and width for the 6-layer CIFAR10/100 and Tiny503

ImageNet network, 210 pixels for the 10-layer Ima-504

geNet network, and 224 pixles for VGG (specifically,505

the VGG-11 model was used), pre-normalized to zero506

mean and unit variance.507

Concerning Hebbian pre-training, the learning rate508

parameter was set to 10−3. For ImageNet training, we509

also introduced an adaptive learning rate mechanism to510

cope with the high variance of weight updates due to the511

high dimensionality of the feature maps (causing insta-512

bility during training), which divides the learning rate513

by the square root of the input size (this corresponds514

to normalizing the output variance, assuming the inputs515

are normalized). For SWTA training only, whitening516

pre-processing was also necessary, as in [60, 24], al-517

though this step did not show any benefit on the other518

approaches. SWTA uses 0.02 as inverse temperature pa-519

rameter 1/T .520

Batch-norm layers used momentum 0.9.521

Backprop-based training (i.e. both fine-tuning and522

VAE pre-training) leveraged Stochastic Gradient De-523

scent (SGD) optimization with learning rate 10−3, and524

momentum 0.9, with Nesterov acceleration [61]. After525

10 training epochs, learning rate was reduced by half526

every 2 epochs until the end of the training session. The527

best training epoch in terms of validation results was528

then selected as final model (early stopping).529

β-VAE training used coefficient β = 0.5.530

Supervised fine-tuning was regularized by dropout531

with 0.5 rate, and L2 weight decay with penalty equal532

to 5 · 10−2, 10−2, 5 · 10−3, 1 · 10−3, for CIFAR10, CI-533

FAR100, Tiny ImageNet, ImageNet, respectively.534

The implementation used Pytorch version 1.8.1 and535

Python 3.7, with an Ubuntu 20.4 system running on536

an I7 series 10700K Intel Processor, 32GB RAM, and537

12GB NVidia Geforce 3060 GPU.538

5. Results539

The results of the experiments described in the pre-540

vious Section are illustrated hereafter. First, we re-541

port the recorded training speed, in terms of epoch du-542

ration, number of epochs for convergence, and total543

duration, on CIFAR10/100, Tiny ImageNet, and Ima-544

geNet datasets, comparing VAE pre-training, ordinary545

Hebbian learning, and FastHebb. Second, we report546

the classification and retrieval results of the various ap-547

proaches in the label-scarcity scenarios described ear-548

lier. Finally, we report the results on the VGG archi-549

tecture as well. The results were obtained from averag-550

ing five independent experiment iterations, and t-testing551

confirmed the observed differences to be statistically552

significant with p-values below 0.05.553

5.1. Training speed analysis554

Table 1 shows a comparison between the considered555

approaches in terms of computational performance of556

training, on the 10-layer (for ImageNet) and 6-layer (for557

the other datasets) architectures. The Table shows the558

single epoch duration, the number of epochs until con-559

vergence (measured as the point after which validation560

results stop improving), and the total training duration 1.561

These results are specifically focused on the pre-training562

duration, while we observed no statistically significant563

difference in the duration of the successive fine-tuning564

phase for different pre-training approaches.565

We can observe that FastHebb methods are signif-566

icanly faster (up to 50 times for HPCA and HPCA-567

FH on ImageNet) than the traditional Hebbian coun-568

terparts, with an epoch duration becoming comparable569

to backprop-based VAE training. This enables Hebbian570

approaches to scale gracefully to complex datasets such571

as ImageNet, where the best speed-up by a factor of572

50, in terms of epoch duration, is observed for HPCA.573

Moreover, the overall training duration of Hebbian ap-574

proaches becomes faster (up to 5 times on ImageNet)575

than VAE, thanks to the lower number of epochs re-576

quired to convergence. Among the Hebbian approaches,577

soft-WTA has lower time complexity, and it is in fact578

faster.579

5.2. Label scarcity results580

Table 2 illustrates the classification results, in terms581

of accuracy (top-1 for CIFAR10, and top-5 for the other582

datasets, since they contain many more classes), in var-583

ious sample efficiency regimes, comparing the alterna-584

tive approaches. Notice that in the results for HPCA and585

SWTA there is no difference between using FastHebb586

or not. In fact, despite the computational speedup, from587

the algebraic point of view FastHebb is equivalent to588

ordinary Hebbian learning, leading to the same results.589

Therefore, we show these results just once.590

1For Hebbian approaches not using FastHebb, the training dura-
tion would be unfeasible to measure explicitly; instead, it was es-
timated by multiplying the single epoch duration by the number of
epochs
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Table 1: Analysis of algorithm performance on each dataset, for VAE, Hebbian PCA (HPCA), Hebbian PCA with FastHebb (HPCA-FH), soft-WTA
(SWTA), and soft-WTA with FastHebb (SWTA-FH) methods, on the 10-layer (for ImageNet) and 6-layer (for the other datasets) networks.

Dataset Method Epoch Duration Num. Epochs Total Duration

CIFAR10

VAE 14s 17 3m 58s
SWTA 4m 14s 1 4m 14s

SWTA-FH 18s 1 18s
HPCA 6m 23s 12 1h 16m 36s

HPCA-FH 19s 12 3m 48s

CIFAR100

VAE 15s 15 3m 45s
SWTA 4m 16s 1 4m 16s

SWTA-FH 18s 1 18s
HPCA 6m 25s 7 44m 55s

HPCA-FH 19s 7 2m 13s

Tiny ImageNet

VAE 33s 20 11m
SWTA 9m 41s 1 9m 41s

SWTA-FH 41s 1 41s
HPCA 14m 20s 14 3h 20m 40s

HPCA-FH 43s 14 10m 2s

ImageNet

VAE 2h 59m 19s 16 47h 49m 4s
SWTA 105h 13m 24s 3 315h 40m 12s

SWTA-FH 3h 38m 6s 3 10h 54m 18s
HPCA 155h 41m 39s 3 467h 4m 57s

HPCA-FH 3h 39m 18s 3 10h 57m 54s

The results show that, in conditions of label scarcity591

(sample efficiency regimes below 4-5%), Hebbian ap-592

proaches perform significantly better than VAE. On the593

other hand, it is only when far more labels are available594

for the supervised fine-tuning phase that VAE-based595

pre-training really kicks in. In these scenarios, however,596

the performance of Hebbian approaches is comparable597

or only slightly lower, but this is compensated by the598

speedup in training time observed before. Comparing599

HPCA and SWTA, it appears that the former performs600

typically better.601

5.3. Retrieval experiments602

Table 3 shows the retrieval mAP results obtained603

on the various dataset, for each of the considered ap-604

proaches, on the 10-layer (for ImageNet) and 6-layer605

(for the other datasets) architectures.606

This second scenario confirms the previous observa-607

tions that, in conditions of extreme label scarcity (be-608

low 10%), Hebbian-based neural features achieve better609

results than VAE counterparts. Again, VAE-based pre-610

training improves in higher regimes, but, as observed611

before, this is fairly compensated by the training time612

advantage of Hebbian approaches. Comparing HPCA613

and SWTA, also in this case it appears that the former614

performs typically better.615

5.4. Experiments on VGG616

In Tab. 5, we report the training times required for the617

pre-training phase of VGG models using the different618

approaches considered so far. We do not consider VAE-619

type training of the VGG model, because that requires620

a large decoder, making the overall model very deep,621

which we found to be untrainable due to vanishing gra-622

dients [62, 63]. On the other hand, Hebbian pre-training623

was straightforward to apply in this case, as it requires624

no gradient backpropagation. Instead, as a baseline for625

comparison, we used Xavier initialization [64] (note626

that, since this is not properly a training method, it is627

not included in Tab. 5). In fact, it is known that ap-628

propriate initialization methods can achieve competitive629

results compared to end-to-end pre-training [64, 65].630

Training times show once more the effectiveness of631

FastHebb methods in training large scale architectures,632

while using ordinary Hebbian learning would be unfea-633

sible. In the best case, a speedup of almost 70 times is634

reached, comparing HPCA-FH with HPCA.635

Finally, in Tab. 5, we report the results, both in terms636

of classification accuracy and retrieval mAP, achieved637

by training the VGG model in the semi-supervised task.638

We show the results achieved with Xavier initialization,639

HPCA pre-training, and SWTA pre-training.640

When the scale of the architecture increases, it ap-641
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Table 2: Accuracy results on each dataset (top-1 for CIFAR10, and top-5 for the other datasets, since they have many more classes), for the various
approaches explored, on the 10-layer (for ImageNet) and 6-layer (for the other datasets) networks.

Regime Method CIFAR10 CIFAR100 Tiny ImageNet ImageNet

1%
VAE 22.54 12.28 5.55 2.72

SWTA 30.23 15.30 6.20 6.69
HPCA 39.75 22.63 11.38 8.65

2%
VAE 26.78 15.25 6.74 6.14

SWTA 36.59 20.76 8.56 11.52
HPCA 45.51 30.83 15.71 13.64

3%
VAE 29.00 16.44 7.74 15.35

SWTA 41.54 23.69 10.26 15.67
HPCA 48.80 35.04 18.23 17.28

4%
VAE 31.15 17.89 8.45 23.97

SWTA 45.31 26.91 11.52 19.95
HPCA 51.28 38.89 20.55 20.39

5%
VAE 32.75 18.48 9.29 29.04

SWTA 48.35 29.57 12.55 24.87
HPCA 52.20 41.42 22.46 23.28

10%
VAE 45.67 23.80 13.51 43.73

SWTA 58.00 38.26 16.70 41.54
HPCA 57.35 48.93 28.13 34.27

25%
VAE 68.70 52.59 37.89 61.33

SWTA 69.85 56.26 24.96 59.34
HPCA 64.77 58.70 37.10 56.92

100%
VAE 85.23 79.97 60.23 76.84

SWTA 85.37 79.80 54.94 76.10
HPCA 84.38 74.42 53.96 77.28

pears that SWTA approach improves over HPCA. Pre-642

vious observations about Hebbian methods performing643

better in low sample efficiency regimes (5% and below)644

are confirmed. In particular, SWTA outperforms the645

network with no pre-training by a margin up to 5 per-646

cent points in accuracy, in the 1-2% sample efficiency647

regimes. In terms of mAP, Hebbian pre-training is still648

slightly superior, although the difference is not statisti-649

cally significant.650

6. Conclusions and future work651

In this article, we have illustrated the FastHebb ap-652

proach for Hebbian learning, which leverages a matrix653

multiplication formulation of Hebbian synaptic updates654

to achieve higher efficiency. This makes Hebbian learn-655

ing more scalable, enabling teh use of Hebbian neural656

features also on large datasets (ImageNet) and architec-657

tures (VGG), which (to the best of our knowledge) have658

been computationally prohibitive for Hebbian learning659

so far. Experimental scenarios of label scarcity show660

promising results of Hebbian pre-training compared to661

backprop-based alternatives such as VAE, considering662

classification accuracy, retrieval mAP, and training time.663

Even though, in this paper, we have shown that it is664

possible to scale Hebbian training to large models such665

as VGG, further work needs to be done to adapt Heb-666

bian approaches to more recent architectures, such as667

residual networks [28] or Transformers [29]. Moreover,668

additional performance improvements might come from669

the combination of Hebbian-based pre-training with670

pseudo-labeling and consistency-based semi-supervised671

methods [66, 48]. Finally, in line with recent efforts672

towards backprop-free learning (such as the Forward-673

Forward algorithm [7]), we plan to explore strategies674

to combine Hebbian approaches with local supervision675

signals.676
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