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Highlights  

• Effects of different RE addition on a hypoeutectic as cast Al-Si alloy are studied 

• EDX, XRD, and DTA analyses of Al-Si-RE samples are carried out 

• Decrease in eutectic temperature is similar for all Al-Si-RE samples 

• Decrease in Vickers hardness is similar for all Al-Si-RE samples 

• RE addition increases corrosion resistance in 3.5 wt.% NaCl solution 

 

Abstract  

Aluminum silicon based alloys are the most important commercial casting alloys. Their cast microstructure is strongly 

related to their technical properties. By adding other selected alloying elements, the alloy microstructure is known to be 

modified, thus improving its desired properties. Rare earths (RE) can be used as alloying elements to achieve better 

technical performance of Al-Si based alloys. 
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In this work, the effects of individual RE (La, Pr, Nd, Sm, Gd, Tb, Dy or Er) addition on a hypoeutectic as cast Al-Si 

alloy were studied. In order to investigate the correlation between microstructure changes and thermal and corrosion 

behavior, the microstructure of the samples and of the intermetallic phases was examined by scanning electron 

microscopy, electron microprobe analysis, and X-ray powder diffraction. Differential thermal analysis was performed to 

determine ternary eutectic reaction temperature. A similar decrease in eutectic temperature was recorded for all Al-Si-

RE samples. Decreased hardness due to RE addition was shown by Vickers hardness measurements. DC polarization 

potentiodynamic measurements showed that RE addition increased corrosion resistance in 3.5 wt.% NaCl solution. 

 

1. Introduction 

 

Al-Si alloys are important and widely used casting alloys for their excellent properties, such as low density, low thermal 

expansion coefficient, good casting performance, good weldability, high wear resistance, good corrosion resistance, and 

high temperature strength [1,2]. In particular, such properties are very attractive to the transport industry – from 

aerospace to the automotive and naval sector – where better performance and lower environmental impact can be 

achieved through vehicle weight reduction. The addition of other alloying elements, at a very low concentration, has 

been commonly reported in the literature to improve some of the above listed properties [3,4]. Nevertheless, corrosion 

behavior must be carefully evaluated in order to avoid any detrimental effects [5,6].  

Different conversion coatings have been used with the aim of improving Al alloys’ corrosion resistance and extending 

their service time, through both localized corrosion reduction and paint adhesion increase. Chromate-based processes 

have a strong oxidising power, which inhibits corrosion by forming a new, strong, and efficient passive layer on the 

substrate surface [7-9]. For almost a century, chromate conversion coatings and anodising pre-treatments with chromic 

acid had been widely and universally employed. However, they are currently banned in many countries due to their 

toxicity and carcinogenicity [10-12]. Therefore, extensive efforts have been made to develop alternative environment-

friendly conversion films, in compliance with the European Community Regulation on chemicals and their safe use 

(2006). For such purposes, rare earths (RE) have drawn significant attention [13-15].  

RE salts have proven to be the most promising Al alloy corrosion inhibitors [5,11,16-20]. Recent studies have shown 

that RE protective action is closely linked to its power to inhibit the cathodic corrosion process, by decreasing oxygen 

reduction reaction kinetics [11,21-23]. This inhibition efficiency tends to increase with increasing immersion time [24]. 

These results were mainly obtained studying a variety of RE conversion solutions, heated or at room temperature, by 

dip immersion or spray processes.  
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Direct RE addition into the alloys during the synthesis was mainly studied for Al-Mg, Al-Zn-Mg and Al-Zn-Mg-Cu 

alloys [e.g., 25-30]. Direct Sc, Yb, Nd, Pr and Er addition modifies the alloy microstructure (e.g., grain refinement, 

inhibition of recrystallization, etc.) by improving both its mechanical and chemical properties [31-33]. Sc addition 

remarkably increases the mechanical properties of different Al alloys, without significant loss in corrosion properties 

[34-37] and, after specific heat treatments, even with increased resistance to stress corrosion cracking. . Small amounts 

of Sc improve ductility and strength of Al-Mg alloys due to the formation of fine Al3Sc precipitates which not only 

refine grains, but also provide some precipitation hardening [38,39]. Moreover, Sc addition also permits superplasticity 

in Al-Mg alloys [40]. No significant deleterious effects of Sc addition on general corrosion or pitting corrosion behavior 

of Al-Mg alloys have been reported [35,36]. Unfortunately, the prohibitively high cost of Sc strictly limits its 

application. Yb - with Zr and Cr - addition to Al-Mg and Al-Zn-Mg-Cu alloys improve the alloy mechanical 

performance without significant  corrosion resistance loss [41,42]. Nd addition to Al-Mg alloys increases alloy hardness 

without any significant effect on pitting or general corrosion. On the contrary, the extent of intergranular corrosion 

following sensitization decreases substantially [43]. Pr (with Zr and Cr) and Er (with Zr and Cr) addition to Al-Zn-Mg-

Cu alloys after specific heat treatments, increases resistance to intergranular corrosion, exfoliation corrosion, and stress 

corrosion, while simultaneously improving strength, fracture toughness, and ductility [44,45]. However, to the best of 

our knowledge, no study about the effects of direct RE addition on corrosion behavior of Al-Si alloys has ever been 

performed.  

Previous studies of direct RE addition to a casting (hypoeutectic or hypereutectic) Al-Si alloy mainly focused on 

changes of its microstructure inducing a eutectic temperature lowering. Hence, the measure of such decrease has been 

proposed as a method to verify any alloy microstructure changes by means of thermal analysis measurements [46-48]. 

As far as Al-Si-RE phase diagrams are concerned, only few and only partially investigated, Al-Si-RE isothermal 

sections have been reported in the literature (see [49] and the references therein). 

Due to the commercial relevance of Al-Si based casting alloys, the purpose of our work was to study the thermal effects 

of direct individual RE addition  (La, Pr, Nd, Sm, Gd, Tb, Dy, or Er) to a hypoeutectic Al-Si alloy in as cast conditions,. 

Microstructures and crystallography were investigated by scanning electron microscopy (SEM) and electron probe 

microanalysis based on energy dispersive X-ray spectroscopy (EDX). Differential thermal analysis (DTA) was used to 

determine the phase transition temperature and eutectic temperature depression.  

Furthermore, in this work, we also investigated corrosion inhibition following addition of La, Pr, Sm, or Tb to Al-Si 

alloys exposed to a chloride corrosive solution. Electrochemical techniques - such us potentiodynamic polarization - 

and surface analysis - like SEM coupled with EDX - were used in order to provide information on the interaction 

between RE compounds and the corroding surface. 
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2. Experimental procedure 

 

2.1 Synthesis of samples 

The composition concentration range of industrially relevant Al-Si alloys usually lies near the binary Al-Si eutectic 

composition concentration, to which the RE mischmetal is usually added. In this work, all Al-Si samples were prepared 

with direct individual addition of a RE (La, Pr, Nd, Sm, Gd, Tb, Dy or Er) according to the composition reported in 

Table 1. A hypoeutectic Al-Si alloy was prepared as reference for each measure. The elements used as starting materials 

were Al 99.999 wt. % nominal purity, Si 99.99 wt. % nominal purity, and RE 99.9 wt. % nominal purity, supplied by 

NewmetKoch, Waltham Abbey, England.  

For each sample, an Al-Si master alloy was prepared. Stoichiometric amounts of the metals were weighed as small 

pieces that were arc melted under vacuum. The selected RE was then added to the Al-Si sample remelting the sample to 

obtain the ternary as cast alloy; the weight of each sample was about 3g. Mass loss was less than 0.5 wt.%. Slices were 

obtained from the bulk sample by cutting it with a precision cut-off machine equipped with an abrasive precision cut-off 

wheel, suitable for 500-800 Vickers hardness alloys. Small 1–1.5 mm thick discs, were obtained. 

 

2.2 Structure characterization and hardness measurements 

The samples were analyzed by scanning electron microscopy (SEM) and electron probe microanalysis based on energy 

dispersive X-ray spectroscopy (EDX), in order to investigate both microstructure and phase composition. Smooth 

specimen surfaces for microscopic observation were prepared by using SiC papers and diamond pastes down to 1 μm 

grain size. For quantitative analysis, 20 kV acceleration voltage was applied for 50 s, and a cobalt standard was used for 

calibration. Inca Energy (Oxford Instruments, Analytical Ltd., Bucks, U.K.) software package was employed to process 

X-ray spectra.  

In order to determine the crystal structures and calculate lattice parameters, X-ray diffraction analysis (XRD) was 

performed on powdered samples by using X’Pert MPD (Philips, Almelo, The Netherlands) vertical diffractometer. 

Obtained diffraction data were indexed by comparison with literature or calculated data (Powder Cell software[50]).  

Lattice parameters of the phases were calculated using LATCON software [51]. 

Vickers hardness was measured with a Reicherter instrument, with 20 Kg indentation charge. All hardness data are the 

average values of three experimental measurements. 

 

2.3 Differential thermal analysis 
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Differential thermal analysis (DTA) was used to establish the phase transition temperature for each alloy under 

investigation, focusing on the ternary eutectic temperature corresponding to the so-called eutectic temperature 

depression. DTA was performed both on heating - to study the as cast alloys without the undercooling effect typical of 

aluminum alloys - and cooling. We used a Netzsch 404 C mod. Pegasus instrument, equipped with a model TASC 

414/4 temperature controller. The measurements were carried out in open alumina crucibles, under a 30 mL/min Argon 

flux, at 5 K/min temperature rate. In the considered range, temperature accuracy was estimated to be within 0.5% of the 

measured value. The thermocouples were calibrated by using high purity elements such as Al, Ag, and Au as calibration 

materials. Melting temperature and transformation temperature points were obtained from the DTA curves using 

extrapolated onset temperatures, given by the intersection with the extrapolated baseline of the tangent drawn at the 

point of greatest slope on the leading edge of the peak.  

 

2.4 Corrosion measurements 

Corrosion behavior due to the addition of La, Pr, Sm or Tb to the Al-Si alloy was studied. The inhibiting properties of 

the different RE, added to the Al-Si alloy, were assessed by DC polarization potentiodynamic measurements. Curves 

were obtained using a Metrohm Autolab PGStat 30 potentiostat, controlled by Metrohm GPES software. These tests 

were carried out with 250µV/s scanning rate on specimens previously free corroded for 2, 72 and 168 hours. A three-

electrode cell was used consisting of an abraded sample (down to 800 grit by SiC emery paper, suitably prepared) with 

an about 1 cm
2 
area (working electrode), Pt spring (counter electrode), and standard calomel electrode (SCE, reference 

electrode) combined with a fine Lugging capillary. The corrosive solution was an aqueous 3.5 wt.% NaCl solution,  

pH=5.8 and D.O. (Dissolved Oxygen) = 6.5 ppm. All the experiments were conducted at room temperature (25 °C), 

P=1 atm and in unstirred conditions. 

The working electrode consisted of an alloy incorporated into an epoxy resin with stable electric contact, in order to 

have a flat and regular surface. Electrochemical parameters were calculated from polarization curves. With regard to 

free corrosion potential (open circuit potential) and starting from -0.50 V (SCE), the working electrode potential,Efc, 

was increased. To calculate the corrosion current density (Icorr) by following the Stern and Geary method [52],. a 

domain was selected  of about -/+25 mV around Efc with a linear log I vs. E relationship  Passive film breakdown 

potential (critical pitting potential) (Ep) and pitting protection potential (Epp) were also measured. For this purpose, the 

working electrode potential was again increased up to Ep value, indicated by a sharp anodic current increase. When Ep 

was established, the working electrode potential was decreased until the backward curve crossed the forward curve. The 

difference between Efc and Ep was named Pd (passivity domain), while the difference between Efc and Epp was 

defined as perfect passivity domain, (PPd). 
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Al-Si-RE alloys were also exposed to free corrosion for a period of 168 h, using the same experimental conditions as in 

the electrochemical tests. In order to characterize the corrosion layer and investigate surface film morphology by SEM 

with EDX probe, the samples, with an exposed area sometimes less than 1 cm
2
, were held by a corner with a small 

rubber ring. and dipped in 3.5 wt.% NaCl solution . The chemical composition of the compounds in the surface first 

micron layer was identified by SEM-BSE (back-scattered electrons) acquisition mode. 

 

3. Results and discussion 

 

3.1 Microstructure, crystallography, and hardness of samples 

EDX analysis of the sample microstructure (Figure 1) indicates that all the samples are made up of three phases: 

primary dendrites of (Al) surrounded by a ternary eutectic made up of (Al) + (Si) + Al2Si2RE. In all Al-Si-RE systems, 

the Al2Si2RE compound is formed and crystallizes into a hexagonal hP5-CaLa2O2 type crystal structure. The phases of 

the samples were confirmed by XRD analysis. Analytical results both for phase composition and lattice parameters are 

reported in Table 1.  Figure 2 shows the XRD pattern of the Al-Si-La sample as an example: the peaks of the three 

phases are evident.  

Although hardness is decreased by the addition of 1 wt. % RE to the Al-Si alloy, no regular trend can be identified from 

these initial measurements on going from La to Er in the RE series (see Table 1). 

 

3.2 Thermal behavior 

DTA measurement results, both on heating and cooling, are reported in Table 2. Thermal analyses were carried out 

under the same conditions for all the considered samples, with a 5 °C/min heating and cooling rate. Figure 3 shows 

DTA cooling curves, for three selected samples, as an example. Temperature values in Table 2 refer to primary (Al) 

crystallization and ternary eutectic transformation (L Al + Si + Al2Si2RE), a reaction deeply studied in the Al-Si-Sm 

system by [53]. 

When a 1 wt. %, concentration of RE is added, a ternary eutectic transformation takes place and eutectic temperature is 

slightly depressed. Eutectic temperature decreases by maximum four degrees if measured on heating, and from two to 

seven degrees if measured on cooling. The most relevant finding of these measurements is that eutectic temperature 

decrease seems independent of any specific RE added. There is no appreciable difference and trend in eutectic 

temperature lowering between the different RE elements. In the studied concentration range, the phases that have 

formed are (Al), (Si), and the ternary compound Al2Si2RE that crystallizes into all the studied ternary Al-Si-RE systems. 
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Figure 4 shows the micrographic appearance of Er-Al-Si samples after DTA analysis with (Al) primary crystals and the 

ternary eutectic (Al + Si + Al2Si2RE). 

 

3.3 Corrosion behavior 

Table 3 shows the electrochemical parameters obtained by polarization potentiodynamic curves for the Al-Si-RE alloys 

after different exposure times in 3.5 wt.% NaCl solution (Figure 5). These data show that Icorr of the Al-Si alloys 

containing RE is always lower than Icorr of the Al-Si alloy, except for the 2h exposure time. This behavior can be 

related to passive film formation inhibiting the corrosion process. 

As a rule, the passivation film protective power can be evaluated by its inhibitory power (I%), using Icorr obtained 

from electrochemical tests [54]. 

Inhibitory power (I%), present in Table 3, was calculated with the following equation: 

  

   
                         

         
         

 

where IcorrAlSi and IcorrAlSiRE are the corrosion current density of the Al-Si alloys without and with RE addition, 

respectively.  A negative or low inhibitory power after a 2h exposure would thus suggest that the surface film had not 

completely formed, so it cannot protect the substrate. With increasing exposure time, the inhibitory power increases. 

This indicates that the surface film is more protective, revealing the contribution from different RE in the passive layer. 

Pitting susceptibility measurements (Table 3) show that the passivity domain (Pd) and the perfect passivity domain 

(PPd) of all the Al-Si alloys containing RE increase in comparison with Al-Si alloy. No significant change is visible 

after a 2h exposure: perhaps, no consistent surface layer can be formed in such a short time. This behavior may be  due 

to the formation of a passive film on the corroded surface, highly affected by RE presence in the substrate. High Pd and 

PPd are shown for Al-Si-Pr and Al-Si-Tb specimens, also due to a noticeable decrease in free corrosion potential (Efc). 

In general, Pd and PPd may be correlated to protective power and protection against defects of the passive film formed 

on the specimen surface. As shown in Table 3, Pd and PPd domains are practically non existent for the Al-Si alloy. This 

confirms that RE presence can significantly modify the substrate corrosion behavior. For Al-Si-Pr and Al-Si-Tb 

samples, a slight reduction in Pd and PPd for longer exposure time is observed. This behavior could be related to an 

initial decline in passive film protective power. This degradation is probably due to the long contact period between the 

substrate and the highly aggressive solution, containing Cl
-
 ions, likely to lead, for longer exposure times, to localized 

corrosion attacks. 
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Figure 6 shows SEM-BSE images of the analyzed samples. Only for Al-Si alloy, a deep localized attack can be 

observed. This form of corrosion is not present in the Al-Si-RE alloys exposed samples. All samples, due to their small 

exposure area , show a similar surface morphology. The Al-Si alloy sample (Figure 5a) reveals two separate zones, one 

partially oxidized, rich in Al and Si elements with, sometimes, localized corrosion attacks. The other one, slightly 

darker in colour, is mainly composed of aluminium oxidation products. 

Conversely, all the Al-Si-RE alloy samples show three different areas, without any significant localized corrosion attack 

(Figure 6 b, c, d, e). In Table 4, EDX analysis results are reported for the different Al-Si-RE samples. From these results 

it is interesting to note: 

- a clearer interphase shape area, containing a high amount of RE elements, the Al2Si2RE compound; 

- another quite ‘clear’, partially oxidized zone, containing mainly Al, O, and Si; 

- a third, slightly darker in colour, area, where the oxide film has homogeneously formed, in which mainly O, 

Al, with Cl, Na and Si traces, are present. 

In these last two areas, no significant RE presence was found. 

These differences in the surface layer are probably due to the small specimen size and to the rubber ring which was 

holding the different samples, in a significantly invasive way. 

 

4. Conclusions 

Microstructural, thermal, and corrosion effects of direct individual RE addition to a hypoeutectic Al-Si alloy in as cast 

condition were investigated.  

EDX, and XRD analyses showed that all the samples obtained by direct La, Pr, Nd, Sm, Gd, Tb, Dy, or Er addition to 

the Al-Si alloy consisted of three phases: primary dendrites of (Al) surrounded by the ternary eutectic made up of  (Al) 

+ (Si) + Al2Si2RE. Vickers hardness measurements pointed to decreased hardness, but no regular trend could be 

observed in such decrease on going from La to Er. 

Eutectic temperature decrease due to RE addition was evident, and similar for all considered RE. Such decrease can be 

useful in the industrial field to control alloy structure changes induced by RE in the as cast alloys. For this purpose, is 

more interesting to investigate the heating curves. 

No in-depth investigations have been found in the literature on the effects on corrosion behavior of Al-Si Alloy with 

directly added RE as a further alloying metal. In this paper, corrosion behavior due to the addition of La, Pr, Sm or Tb 

to an Al-Si alloy was studied in 3.5 wt.% NaCl solution. After a 2h exposure, a homogeneous surface layer was not 

completely formed, and it was not able to protect the substrate. With increasing exposure time, the presence of a passive 

film on Al-Si-RE alloys was proved. This layer had protective characteristics and revealed the contribution of the 
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different RE. As expected due to experimental conditions, the layer morphology was complex. If transferred to 

industrial field, direct RE direct addition to Al-Si alloys could reduce or eliminate the pre-treatment processes before 

the application of the primer and top coat on the substrate, thus offering a significant advantage in terms of 

manufacturing time and costs. 
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Table 1. Gross composition, phase analysis and Vickers hardness of the Al-Si-RE alloys. 

 

Al-Si Alloy 
Nominal composition 

 (wt. %) 

Phase analysis and 

crystal structure 

XRD results 

EDX results (wt. %) Lattice parameters (nm) 

Vickers 

hardness 

(Kgmm-2) 

 Al, Si, RE  Al, Si, RE a c  

Al-Si 88.5, 11.5, 0.0 
(Al) cF4-Cu 

(Si) cF8 C(diamond) 

98.4, 1.6, 0.0 

0.0, 100.0, 0.0 

  
74.5 

Al-Si-La 87.0, 12.0, 1.0 

(Al) cF4-Cu 

(Si) cF8 C(diamond) 

LaAl2Si2 hP5-CaLa2O2 

99.0, 1.0, 0.0 

7.0, 93.0, 0.0 

20.0, 22.5, 57.5 

0.4048(1) 

0.5429(1) 

0.4225(3) 

 

 

0.6985(3) 

44.0 

Al-Si-Pr 91.0, 8.0, 1.0 

(Al) cF4-Cu 

(Si) cF8 C (diamond) 

PrAl2Si2 hP5-CaLa2O2 

99.0, 1.0, 0.0 

2.5, 97.5, 0.0 

20.0, 23.0, 57.0 

0.4050(1) 

0.5430(1) 

0.4219(4) 

 

 

0.6873(3) 

44.0 

Al-Si-Nd 90.0, 9.0, 1.0 

(Al) cF4-Cu 

(Si) cF8 C(diamond) 

NdAl2Si2 hP5-CaLa2O2 

90.0, 10.0, 0.0 

1.5, 98.5, 0.0 

* 

0.4050(1) 

0.5430(2) 

0.4231(0) 

 

 

0.6747(3) 

56.0 

Al-Si-Sm 88.0, 11.0, 1.0 

(Al) cF4-Cu 

(Si) cF8 C (diamond) 

SmAl2Si2 hP5-CaLa2O2 

98.5, 1.5, 0.0 

1.0, 99.0, 0.0 

19.5, 21.5, 59.0 

0.4054(2) 

0.5438(1) 

0.4190(5) 

 

 

0.6716(5) 

49.0 

Al-Si-Gd 88.5, 10.0, 1.5 

(Al) cF4-Cu 

(Si) cF8 C (diamond) 

GdAl2Si2 hP5-CaLa2O2 

97.5, 2.5, 0.0 

1.5, 98.5, 0.0 

* 

0.40483) 

0.5423(1) 

0.4172(6) 

 

 

0.6638(3) 

67.5 

Al-Si-Tb 87.5, 11.0, 1.5 

(Al) cF4-Cu 

(Si) cF8 C (diamond) 

TbAl2Si2 hP5-CaLa2O2 

98.5, 1.5, 0.0 

5.0, 95.0, 0.0 

20.0, 20.0, 60.0 

0.4053(1) 

0.5430(3) 

0.4184(4) 

 

 

0.6605(4) 

58.0 

Al-Si-Dy 88.5, 10.0, 1.5 

(Al) cF4-Cu 

(Si) cF8 C (diamond) 

DyAl2Si2 hP5-CaLa2O2 

98.0, 2.0, 0.0 

2.0, 98.0, 0.0 

20.0, 22.0, 58.0 

0.4057(0) 

0.5437(1) 

0.4187(3) 

 

 

0.6567(1) 

65.0 

Al-Si-Er 87.5, 11.5, 1.0 

(Al) cF4-Cu 

(Si) cF8 C (diamond) 

ErAl2Si2 hP5-CaLa2O2 

98.0, 2.0, 0.0 

0.0, 100.0, 0.0 

* 

0.4049(1) 

0.5428(3) 

0.4175(2) 

 

 

0.6479(4) 

46.0 

*crystals too small to be analyzed by means of EDX 
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Table 2. Thermal effect measured by DTA (on heating and on cooling) on the Al-Si-RE alloys. 

Alloy 

Differential thermal analysis results (°C) 

heating cooling 

(Al) Eutectic (Al) Eutectic 

Al-Si  597 580 596 575 

Al-Si-La  601 580 604 568 

Al-Si-Pr  595 579 600 572 

Al-Si-Nd  595 580 612 575 

Al-Si-Sm  605 578 605 572 

Al-Si-Gd  606 578 606 573 

Al-Si-Tb  610 577 604 570 

Al-Si-Dy  603 577 602 573 

Al-Si-Er 597 576 599 567 
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Table 3. Electrochemical parameters obtained by polarization potentiodynamic curves of different Al-Si-RE alloys, 

after different exposure times in 3.5 wt.% NaCl solution. 

Alloy Exposure 

time (h) 

I corr 

(µA cm
-2

) 

E fc 

(mV) 

E p 

(mV) 

E pp 

(mV) 

P d 

(mV) 

PP d 

(mV) 

I  

(%) 

Al-Si 

 

2 

72 

168 

0,21 

0,35 

0.80 

-750 

-745 

-750 

----- 

-728 

----- 

----- 

-745 

----- 

----- 

17 

----- 

----- 

0 

----- 

---- 

---- 

---- 

Al-Si-La 2 

72 

168 

0.07 

0.15 

0.09 

-740 

-780 

-795 

----- 

-704 

-718 

----- 

-740 

-728 

----- 

76 

77 

----- 

40 

67 

67 

57 

89 

Al-Si-Pr 2 

72 

168 

0.41 

0.18 

0.14 

-737 

-950 

-930 

----- 

-700 

-720 

----- 

-775 

-782 

----- 

250 

210 

----- 

175 

148 

-95 

49 

83 

Al-Si-Sm 2 

72 

168 

0.26 

0.17 

0.25 

-733 

-850 

-860 

----- 

-710 

-718 

----- 

-758 

-783 

----- 

140 

142 

----- 

92 

77 

-24 

52 

69 

Al-Si-Tb 2 

72 

168 

0.20 

0.20 

0.08 

-741 

-990 

-930 

----- 

-725 

-730 

----- 

-760 

-777 

----- 

265 

200 

----- 

230 

153 

5 

43 

90 

Reference Electrode: SCE (Standard Calomel Electrode) 
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Table 4. EDX analysis results for the different Al-Si-RE alloys, after 168 h exposure time in 3.5 wt.% NaCl solution. 

Alloy 

Point of 

analysis 

EDX analysis results (wt. %) 

O Al Si Na Cl R 

Al-Si 

 

1 

2 

18,3 

57,1 

68,7 

35,2 

12,1 

1,2 

0,6 

3,9 

0,3 

2,6 

----- 

----- 

Al-Si-La 

1 

2 

3 

6,7 

20,8 

59,0 

13,2 

62,1 

33,0 

10,6 

14,3 

1,0 

0,9 

1,8 

2,1 

0,3 

1,0 

4,9 

68,3 

0,0 

0,0 

Al-Si-Pr 

1 

2 

3 

9.7 

45,2 

68,0 

15,3 

51,6 

32,0 

27,7 

2,9 

0.0 

0,0 

0,2 

0,0 

0,2 

0,3 

0,0 

47,1 

0,0 

0,0 

Al-Si-Sm 

1 

2 

3 

13,3 

27,1 

59,5 

19,3 

70,3 

36,5 

18,0 

2,2 

1,3 

0,1 

0,2 

1,7 

0,3 

0,2 

1,0 

49,0 

0,0 

0,0 

Al-Si-Tb 

1 

2 

3 

6,2 

17,8 

64,3 

22,8 

80,1 

31,6 

23,2 

1,7 

0,5 

0,0 

0,2 

1,0 

0,0 

0,2 

2,6 

47,8 

0,0 

0,0 
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Figure captions 

 

Figure 1: SEM-BSE images: a) Al-Si-La, b) Al-Si-Pr, c) Al-Si-Nd, d) Al-Si-Sm, e) Al-Si-Gd, f) Al-Si-Tb, g) Al-Si-Dy, 

and  h) Al-Si-Er alloy samples. Each sample is constituted by primary black (Al) crystals surrounded by the ternary 

eutectic decomposition: (Al) + (Si) + Al2Si2RE. 

 

Figure 2: XRD pattern of the Al-Si-La alloy (Al-87 wt. % Si-12 wt. % and La-1 wt. %). From X-ray diffraction 

analysis the following intermetallic phases have been recognized: (Al) cF4-Cu, (Si) cF8-Cdiam and LaAl2Si2 hP5-

CaAl2O2. 

 

Figure 3: SEM-BSE image of the Er-Al-Si alloy, after DTA analysis, showing the primary (Al) crystal surrounded by 

the ternary eutectic decomposition: (Al) + (Si) + Al2Si2Er. 

 

Figure 4: DTA cooling curve of: a) Al-Si-La, b) Al-Si-Gd, and c) Al-Si-Er alloys. 

 

Figure 5: Polarization potentiodynamic curves for the Al-Si-RE alloys after different exposure times (a= 2h, b=72h, 

c=168h) in 3.5 wt.% NaCl solution. 

 

Figure 6: SEM-BSE images of some Al-Si-RE alloy samples, after 168 h of free exposure time in 3.5 wt.% NaCl 

solution. a) Al-Si, b) Al-Si-La, c) Al-Si-Pr, d) Al-Si-Sm, e) Al-Si-Tb. In each figure are marked the analysed points (see 

Table 4); point analysis (circles), area analysis (squares). 

 



Highlights  

• Effects of different RE addition on a hypoeutectic as cast Al-Si alloy are studied 

• EDX, XRD, and DTA analyses of Al-Si-RE samples are carried out 

• Decrease in eutectic temperature is similar for all Al-Si-RE samples 

• Decrease in Vickers hardness is similar for all Al-Si-RE samples 

• RE addition increases corrosion resistance in 3.5 wt.% NaCl solution 

 

*Highlights (for review)



Figure
Click here to download high resolution image

http://ees.elsevier.com/jalcom/download.aspx?id=2526875&guid=a2a48ebf-8259-4e44-b070-761f5e30cb36&scheme=1


Figure
Click here to download high resolution image

http://ees.elsevier.com/jalcom/download.aspx?id=2526877&guid=96c5aa64-0319-4d52-b111-58e4efc6710f&scheme=1


Figure
Click here to download high resolution image

http://ees.elsevier.com/jalcom/download.aspx?id=2526878&guid=7750a0ec-6c4f-4e28-b2d6-c99636591df1&scheme=1


Figure
Click here to download high resolution image

http://ees.elsevier.com/jalcom/download.aspx?id=2526879&guid=935c5adb-47c2-42ed-9e02-2a5970037f23&scheme=1


 

 

 

 

 

 

 

 

    a) 

 

 

 

 

 

 

 

    b) 

 

 

 

 

 

 

 

    c) 

Figure



 

a)               b)  

 

 

    

 

 

 

 

 

 

 

 

 

c)            d) 

 

 

 

 

 

 

 

 

 

e) 

1 
2 

2 

1 

3 

2 

 

1 
3 

1 

2 

1 

2 3 

3 

Figure


