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Improved autonomy in robotic systems is needed for innovation in, e.g., the marine sector. Autonomous robots that are let loose in
hazardous environments, such as underwater, need to handle uncertainties that stem from both their environment and internal state.
While self-adaptation is crucial to cope with these uncertainties, bad decisions may cause the robot to get lost or even to cause severe
environmental damage. Autonomous, self-adaptive robots that operate in uncontrolled environments full of uncertainties need to be
reliable! Since these uncertainties are hard to replicate in test deployments, we need methods to formally analyse self-adaptive robots
operating in uncontrolled environments. In this paper, we show how feature-oriented techniques can be used to formally model and
analyse self-adaptive robotic systems in the presence of such uncertainties. Self-adaptive systems can be organised as two-layered
systems with a managed subsystem handling the domain concerns and a managing subsystem implementing the adaptation logic.
We consider a case study of an autonomous underwater vehicle (AUV) for pipeline inspection, in which the managed subsystem of
the AUV is modelled as a family of systems, where each family member corresponds to a valid configuration of the AUV which can
be seen as an operating mode of the AUV’s behaviour. The managing subsystem of the AUV is modelled as a control layer that is
capable of dynamically switching between such valid configurations, depending on both environmental and internal uncertainties.
These uncertainties are captured in a probabilistic and highly configurable model. Our modelling approach allows us to exploit
powerful formal methods for feature-oriented systems, which we illustrate by analysing safety properties, energy consumption, and
multi-objective properties, as well as performing parameter synthesis to analyse to what extent environmental conditions affect the
AUV. The case study is realised in the probabilistic feature-oriented modelling language and verification tool ProFeat, and in particular
exploits family-based probabilistic and parametric model checking.
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1 INTRODUCTION

More than 70 percent of the surface of Earth is covered in water. The blue economy, which includes expanding sectors
such as marine energy, bio-industry and food production, water desalination, mining, underwater construction and
ecosystem monitoring, is crucially dependent on underwater vehicles that are able to operate in environments that are
inaccessible or hostile to humans. The sustained growth of the blue economy and control of undesirable environmental
impacts essentially depends on two factors: increased autonomy in underwater robotics and reliability of underwater
operations, as control shifts from human operators to the robots themselves, expanding their range of activities.
However, this growth is slowed down by a gap between what the underwater robotics industry delivers today and the
required level of autonomy and reliability. While there is currently a significant push towards increased autonomy,
many underwater robots are still controlled by human operators at the mission level. The need for human operators
significantly increases cost and restricts the activities in which underwater robots can engage. Due to low bandwidth
underwater, such control goes via cable between the underwater robot and the operator on land or on ship.

For autonomous mission control in underwater robotics, a particular challenge stems from the environments in which
the robots operate. Generally, these environments are not fully understood and may be subject to change, potentially
causing surprises for the robot. For example, a robot performing underwater pipeline inspection may need to change
how it performs its mission because of unexpected underwater currents, reduced water visibility, or even a landslide.
One approach to dealing with such environments is through self-adaptation [86]. Self-adaptation enables the robots to
autonomously adapt their mission-level control strategies to the environment in which they operate—during the mission
itself. Enabling robots to adapt in this way provides several advantages. Self-adaptive mission control expands the range
of scenarios in which the robots are able to operate, resulting in a higher level of autonomy. Self-adaptive mission control
has been realised in, e.g., Metacontrol [55], in which control strategies can be manipulated by activating, deactivating or
adjusting them on the fly; MROS [17] implements Metacontrol for the Robot Operating System (ROS) [74].

Let us briefly recall how a self-adaptive system (SAS) can be realised using a two-layered architecture which
decomposes the system into a managed and a managing subsystem [61], see Figure 1. The managed subsystem deals
with the domain concerns and tries to reach the goals set by the system’s user, e.g., navigating a robot to a specific
location. The managing subsystem handles the adaptation concerns and defines an adaptation logic that specifies
a strategy on how the system can fulfil the goals under uncertainty [86], e.g., adapting to changing environmental
conditions. While the managed subsystem may affect the environment via its actions, the managing subsystem monitors
the environment and the internal state of the managed subsystem. By using the adaptation logic, the managing
subsystem decides whether and which changes are needed and adapts the managed subsystem accordingly.

Unless done in the right way, autonomous controllers for underwater vehicles can potentially be both damaging and
expensive, as vehicles may get lost and even, in the worst case, cause harm to installations or the marine environment.
However, it is cumbersome to validate new designs for autonomous mission-level control of underwater vehicles in situ:
vehicles may get lost during validation and only a few real-life scenarios get tested in practice. To address this problem, it
is useful to validate the mission control in simulation. This leads to the emergence of configurable simulators that target
the mission control layer of robotic software stacks. Using simulation scenarios, the autonomous mission control layer of
the underwater robot can be tested and validated much more efficiently. Simulators, such as the open-source exemplars
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UNDERSEA [45] and SUAVE [76], allow scenarios formission-level control to be tested and compared in simulation, based
on a realistic robot software stack, and enable the comparison of different strategies for autonomous mission control.

Managed Subsystem

(domain concerns)

monitor

Managing Subsystem

(adaptation logic)

monitor adapt

Self-Adaptive System

Environment

monitor effect

Fig. 1. The architecture of a two-layered SAS with a
mangaged subsystem implementing the application
logic and a managing subsystem implementing the
adaptation logic ([69])

However, testing and validation might not be enough to assure the
system operators that the autonomous robots will operate as desired.
Therefore, in addition to testing and validation, rigorous analysis tech-
niques such as model checking [5] are often applied in industry [7] to
help provide safety guarantees for these and other (mission-critical)
systems even in the presence of uncertainties. Our work considers
analysis techniques for autonomous underwater robots, based on
model checking, and complements simulation-based validation tech-
niques for autonomous underwater vehicles (AUVs). Specifically, our
goal in this paper is to model and analyse a case study of mission
control for an AUV, realised as a two-layered self-adaptive system
which was taken from the exemplar SUAVE. To this aim, we organise
the adaptation space of the self-adaptive system as a reconfiguration
problem, using feature-oriented modelling techniques [22, 23]. The
functionalities of the managed subsystem of the AUV are modelled in
a feature model, making the dependencies and requirements between the components of the AUV explicit. The behaviour
of the managed subsystem is modelled as a featured Markov decision process, i.e., a probabilistic transition system were
feature-guarded transitions can only be taken in a system configuration with matching features. Thus, the managed sub-
system of the AUV is modelled as a family of systems whose family members correspond to valid feature configurations
which can be understood as modes of operation of the AUV. As the behaviour of the AUV depends on environmental and
internal conditions, which are both hard to control, we opted for a probabilistic model in which uncontrolled events, like
a thruster failure, occur with given probabilities. We model the behaviour of the managing subsystem as a control layer
that switches between the feature configurations of the managed subsystem according to input from the probabilistic
environment model and the managed subsystem. In our case study, we consider an abstract version of an AUV, focusing
on core functionalities of the AUV with limited features and variability. The resulting model can be refined and extended
in several ways depending on the necessary degree of realism to verify specific requirements. Finally, we model the
environment as a probabilistic transition system which abstracts from the real environments in which AUVs operate,
yet captures essential aspects of changes in the environment that can affect the behaviour of the AUV.

The analysis of the resulting model considers five different aspects: (1) safety guarantees concerning a mission’s
duration and energy usage that can be used for the deployment of the AUV; (2) safety guarantees concerning unsafe
states; (3) the impact of different environments on the safety guarantees; (4) parameter synthesis to analyse to what
extent environmental conditions affect the AUV; and (5) trade-offs between mission duration and energy usage. Together,
the analyses provide a good indication of the feasibility of model checking as a viable technique to analyse AUVs. The
case study is modelled in ProFeat [23], a tool for probabilistic family-based model checking, which provides a means
to simultaneously model check, in a single run, properties of all different configurations in a family model [82]. The
analysis of the model was carried out in the backends for ProFeat, in PRISM [62] and Storm [54], depending on the
analysed properties. We close the paper with a discussion about the suitability of family-based modelling techniques
for analysing self-adaptive systems such as AUVs, and the relation of these techniques to dynamic software product
lines (SPLs) [14, 33, 40, 49, 80].
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4 J. Päßler et al.

Contribution. This paper is an extension of the conference publication by Päßler et al. [69] and the related artefact [70],
recently published as an original software publication [68], which used techniques from SPLs to model and analyse the
case study of a self-adaptive AUV as a two-layered system, providing the following contributions:

• a case study of an SAS from the underwater robotics domain, modelled as a probabilistic feature-guarded
transition system with dynamic feature switching [69];

• automated verification of (quantitative) properties that are important for roboticists, using family-based analy-
sis [69];

• a configurable software model of a dynamic SPL, reflecting the self-adaptive AUV [68, 70].

In more detail, this extended version of the work additionally provides the following contributions:

• enabling more variants of the case study which can include another environment and an AUV that can operate
at more altitudes (see Section 4), enabling analysis of how the environment and the number of possible altitudes
influence the analysis results;

• extending the analysis with
– an analysis of how the number of possible altitudes influences the analysis results using PRISM (see Sections 5.2
and 5.3),

– an analysis of how the environments influence the analysis results using PRISM experiments (see Section 5.4),
– an analysis of how the probability of currents influences the analysis results using parametric model checking
with Storm (see Section 5.5), and

– multi-objective queries where we explore achievability, numerical and Pareto queries using Storm (see Sec-
tion 5.6);

• a discussion about the suitability of using SPL techniques and tools for modelling and analysing SASs (see
Section 7.1).

To the best of our knowledge, we are the first to showcase the applicability of feature-oriented verification using Storm
and performing parameter synthesis.

Outline. Section 2 presents the case study of pipeline inspection with an AUV, setting up the context of the SAS
analysed in this article. The analysis technique of family-based model checking and a brief account on (dynamic) SPLs
and ProFeat is provided in Section 3. Section 4 explains both the behaviour of the managed and managing subsystem of
the AUV and the environment, as well as their implementation in ProFeat. Section 5 presents quantitative analyses
conducted on the case study, involving the tools ProFeat, PRISM, and Storm. Section 6 summarises related work and
Section 7 discusses our results and ideas for future work.

2 CASE STUDY: PIPELINE INSPECTION BY AUV

In this section, we introduce the case study of this article, an AUV used for pipeline inspection. The case study is
inspired by the case study of the exemplar SUAVE [76]. In SUAVE, the AUV has been implemented in a simulator using
ROS2 [66] to enable the comparison of different self-adaptation strategies, i.e., different implementations of a managing
subsystem. The full SUAVE model would clearly exceed the limits when turning towards a formal analysis. We hence
abstracted the case study to its essential characteristics, aiming towards verification of the core functionalities and
self-adaptivity of the AUV in various exemplary environments.
Manuscript submitted to ACM
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As within the SUAVE case study, an AUV has the mission to first find and then follow and inspect a pipeline located
on a seabed. For moving in different directions, the AUV has several thrusters. All thrusters are needed for a reliable
operation of the AUV, however, thruster failures are possible. Furthermore, the AUV can operate at different altitudes,
where a higher altitude provides a wider field of view and thus increases the AUV’s chances of finding the pipeline.
We assume that switching between altitudes increases the energy consumption. The only aspect of the environment
considered in this case study is the water visibility: it reflects the maximum distance at which the AUV can perceive
objects; we assume that it changes probabilistically during runtime, e.g., due to currents that swirl up the seabed. By
assuming probabilistic behaviour of the environment, we assume to have partial knowledge of the environment which
is in line with the fact that it is in general difficult to understand.

The AUV’s operation is influenced by thruster failures, the water visibility, and its tasks (searching for the pipeline
and following it). When a thruster fails, the AUV starts drifting off its intended path and the thruster has to be restarted
before the AUV can continue its mission. Thruster failures are more likely at a lower altitude because seaweed might
wrap around the thrusters. If a thruster failure happens while following the pipeline and the AUV drifts too much off its
path, the pipeline can be lost and the AUV needs to search for it again. The water visibility determines the maximum
altitude at which the AUV can perceive the seabed, and thus the maximum altitude at which it can operate. The higher
the visibility, the higher the maximum possible operational altitude. The task determines whether the AUV switches
between altitudes or stays at one altitude. When following the pipeline, the AUV does not benefit from a wider field of
view and should thus operate at the lowest possible altitude to keep the energy consumption low by not switching
between altitudes. However, when searching for the pipeline, the AUV can operate at every altitude.

As in SUAVE, the AUV is separated into a managed and a managing subsystem. The managed subsystem is responsible
for searching for and following the pipeline. It has different configurations that consist of a task and an altitude where a
configuration can be understood as a mode of operation of the AUV. Thus, the managed subsystem can in fact be seen as
a family of systems where each family member corresponds to a system configuration. The managing subsystem chooses
a configuration of the managed subsystem depending on the current task and the water visibility. When following the
pipeline, the lowest possible altitude is chosen to decrease the energy consumption. When searching for the pipeline, a
higher altitude is preferred because it increases the probability of finding the pipeline and it decreases the probability of
a thruster failure. However, the altitudes at which the AUV can operate are determined by the water visibility. The
higher the visibility, the higher the maximum operational altitude. Considering, e.g., three possible altitudes at which
the AUV can operate, the managed subsystem consists of four family members: one family member for searching at
each possible altitude and one for following the pipeline at the lowest altitude. The managing subsystem switches
between the first three during the search for the pipeline depending on the current water visibility and activates the last
one when the pipeline should be followed. Note that, unlike in SUAVE, we assume that thruster failures are handled by
the managed subsystem and not the managing subsystem.

In this article, we present an extension of the first formal modelling of the AUV case study by Päßler et al. [69]. While
the original case study only considered three possible altitudes, we additionally provide a setting with five altitudes to
invest the impact of a more fine-grained implementation of adaptation by the managing subsystem. These settings are
hereafter referred to as the three-altitudes case study and the five-altitudes case study, respectively; SUAVE corresponds
to the three-altitudes case study.

Manuscript submitted to ACM
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3 SOFTWARE PRODUCT LINES AND FAMILY-BASED MODEL CHECKING

Software product line (SPL) engineering concerns the management of commonality and variability, usually defined
in terms of core and optional features, across families of software products [1, 29, 71]. There exist many different
definitions of what constitutes a feature [27], ranging from “an increment in product functionality” [6] to the approach
adopted in this paper, namely “anything users or client programs might want to control about a concept is a feature” [32,
Chapter 4: Feature Modeling]. Selected features provide a feature configuration, from which those that give rise to an
actual software product are collected in a set of valid configurations. Such sets of valid configurations are commonly
modelled in a variability or feature model, most prominently using structures such as feature diagrams [59] (see, e.g.,
[12, 81] for surveys). The actual behaviour of software products to be deployed can be modelled choosing annotative [26],
compositional [79], or hybrid approaches [40, 60]. In annotative approaches, the behaviour of the whole SPL is modelled
in one behavioural model where parts of behaviour are annotated by features, specifying the behaviour of the products
containing this feature. Compositional approaches specify the behaviour of each single feature in an isolated feature
module, and the feature modules are then composed to determine the behaviour of the software product. In this paper,
we opt for a hybrid approach, where the behaviour of (sets of) features is modelled in feature modules that may also
contain feature guarded behaviour to specify feature interactions or fine-grained variability [40].

Since the number of potential software products is exponential in the number of features, the analysis of SPLs is a
challenging task [82]. Many different analysis approaches for SPLs have been proposed using model checking [28], static
analysis [8], theorem proving [83], or testing [16]. A one-by-one analysis, investigating every product in isolation, easily
becomes infeasible. Hence, when giving a behavioural model of the SPL, an all-in-one analysis is to be preferred, where
the behaviour of all products is modelled in a family model and analysed in a single analysis step [26]. As products of an
SPL typically share a large amount of features and behaviour, this family model can usually be compactly represented
and analysed by exploiting symbolic representations and analysis techniques [25]. In this paper, we consider the SPL
model-checking problem, which was first recognised in the seminal paper of [28]. It generalises the classical model-
checking problem as follows: given a logic formula 𝜑 , determine for every valid configuration whether 𝜑 is satisfied
(and provide a counterexample for each configuration not satisfying 𝜑). The straightforward one-by-one approach to
solve this problem is by product-based model checking, applying classical model checking to each of the products in the
SPL. Family-based model checking implements an all-in-one approach where all products of a family model, modelling
the combined behaviour of all products, are simultaneously checked [82]. The answer to the SPL model-checking
problem is obtained by projecting the results gained from the family model to single configurations. This approach is
also well-suited for analysing reliability or other quantitative aspects of SPLs through family-based probabilistic model

checking [11, 42]. Another dimension where the use of family models for SPLs excels is in modelling and analysing
dynamic SPLs where feature configurations can be switched during runtime [49, 51]. Such reconfigurations can be
modelled in a similar way as modelling actual behaviour in feature modules, leading to feature controllers where each
feature corresponds to a variable of the module (see, e.g., [40]). As a family model contains the behaviour of all valid
feature configurations, a feature controller can select the possible behaviour of the current feature configuration within
the family model during runtime, and change between the behaviours of the products.

The tool ProFeat1 [23] implements this kind of analysis for dynamic SPLs through choosing a hybrid modelling
approach combined with family-based probabilistic model checking. Thereby, all possible products and reconfigurations
between products can be analysed in one run. In particular, ProFeat provides a means to model probabilistic system

1https://pchrszon.github.io/profeat
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families in an intuitive specification language as well as perform family-based quantitative analysis on them. It extends
the probabilistic model checker PRISM2 [62] with functionalities such as family models, feature modules, and the
feature controller. Technically, ProFeat performs a translation of the feature-oriented model to PRISM’s input language,
which is then analysed with family-based probabilistic model checking. Hence, all of the analysis capabilities of PRISM
carry over to ProFeat as well. Further, note that this translational approach also enables the use of other analysis tools
supporting PRISM’s input language, e.g., the state-of-the-art probabilistic model checker Storm [54]. The translation
ensures feature-specific properties such as reconfiguration within the valid configurations and respecting the rules
for reconfiguration. Analysis results from the model checkers are translated back automatically in a feature-aware
representation, including compact symbolic representations through decision diagrams [23].

4 FEATURE-ORIENTED MODELLING OF THE AUV CASE STUDY

In this section, we show that feature-oriented modelling is well-suited to formally specify the structure and behaviour
of the AUV case study. First, we observe that the formal model to describe the behaviour of the AUV has to support
quantitative aspects such as failure probabilities, time, and energy consumption. Hence, probabilistic feature-oriented
modelling approaches [11, 42] have to be preferred compared to non-probabilistic ones [10, 26]. Further, the managing
subsystem has to be able to switch between configurations of the managed subsystem such that dynamic reconfigurations

are supported as well [11, 23, 84]. Due to the clear separation of concerns between behaviour of features and the
reconfiguration component, we decided to model the case study with the probabilistic feature-oriented engineering
framework ProFeat.

Similar to an SAS, a ProFeat model can be seen as a two-layered model, as illustrated in Figure 1. The behaviour
of a family of systems that differ in their features, such as the managed subsystem of an SAS, can be specified. Then
a so-called feature controller can activate and deactivate the features during runtime, and thus change the behaviour
of the system, such as the managing subsystem of an SAS that changes the configuration of the managed subsystem.
Furthermore, the environment can be specified as a separate module that interacts with the managed and managing
subsystem. Thus, ProFeat is well suited to model and analyse the case study described in Section 2.

Technically, a ProFeat model consists of three parts: an obligatory feature model that specifies features and their
relations and constraints, obligatory modules that specify the behaviour of the features, and an optional feature
controller that activates or deactivates features. This structure is also reflected in our implementation of the two case
study variants in ProFeat.3

Both pipeline inspection case studies ultimately specify a Markov decision process, i.e., a state-based operational
model that includes non-deterministic and probabilistic state transitions. The probabilities and parameters used in our
model are estimates and have not been validated by experiments. This article aims to show the practical feasibility of
using feature-oriented modelling for quantitative SAS verification, not to model a realistic AUV. More realistic values
can be obtained by doing experiments with a real AUV and by consulting domain experts and are left for future work.

In this section, we follow the modelling structure of the two case study variants in ProFeat. First, we introduce
the feature-oriented view of the case study along with its implementation as a feature model in Section 4.1. Then we
explain the behaviour of the managing subsystem, i.e., how the managing subsystem switches between valid feature
configurations of the feature model, and its implementation as a feature controller in ProFeat in Section 4.2. Lastly, we
describe the behaviour of the managed subsystem and the environment as well as their implementation as modules in

2https://www.prismmodelchecker.org/manual
3The models are publicly available [67].
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Fig. 2. Feature model of the five-altitudes model; the three-altitudes model does not contain the features with a grey background

ProFeat in Sections 4.3 and 4.4, respectively. For each of the modelling components, we describe both case studies by
focusing on the three-altitudes case study and explaining the additions for the five-altitudes case study.

4.1 The Feature Model

Feature-Oriented View of the Case Study. The important characteristics of the managed subsystem for self-adaptation
are the tasks of the AUV and the possible altitudes. Thus, we consider them to be the AUV’s features. The features
corresponding to the tasks of the AUV are called search and follow, and the features corresponding to the possible
altitudes are called low, med (for medium), and high in the three-altitudes case study with additional features lowmed

and medhigh in the five-altitudes case study. The basis for feature-oriented modelling is the so-called feature model

that abstractly relates how features can be combined, i.e., which activation of features yields a valid configuration of
the system. Feature diagrams [1, 59] constitute the standard feature model formalism. They hierarchically structure
features to specify the high-level dependencies between the features. Specifically, an activation of a subfeature implies
the activation of its parent feature. To create a feature model for the AUV case study, the altitude features are considered
to be subfeatures of the feature navigation, the task features to be subfeatures of the feature pipeline inspection, in both
cases connected by an exclusive or relation, and navigation and pipeline inspection are considered to be mandatory
subfeatures of the root feature robot. Furthermore, since following the pipeline requires a low altitude, the feature follow
is connected to the feature low with a requires relationship. The resulting feature model can be seen in Figure 2 where
the feature model of the three-altitudes case study does not contain the features with the grey background.

Each configuration of the AUV contains the features robot, navigation, and pipeline_inspection as well as exactly
one sub-feature for navigation and one for pipeline inspection, while moreover the feature follow requires the feature
low. This yields four different configurations of the managed subsystem of the AUV in the three-altitudes case study
(one including the leaf features search and high, one including search and med, one including search and low, and the
last one including follow and low) and two additional configurations in the five-altitudes case study (one including
the leaf features search and medhigh and including one search and lowmed). Therefore, the valid configurations of the
three-altitudes case study are the following (where the leaf features are displayed in bold font):

{robot, navigation, pipeline_inspection, search, high}, {robot, navigation, pipeline_inspection, search,med},

{robot, navigation, pipeline_inspection, search, low}, {robot, navigation, pipeline_inspection, follow, low}.

Manuscript submitted to ACM
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The five-altitudes case study includes the following configurations in addition to those of the three-altitudes case study:

{robot, navigation, pipeline_inspection, search,medhigh}, {robot, navigation, pipeline_inspection, search, lowmed}.

By differentiating between configurations depending on the selected features, distinct behaviour of the AUV can be
specified depending on the configuration as described in Section 4.3.

The ProFeat Implementation of the Feature Model. We show how the feature model of the case study is expressed in
ProFeat, including connections and constraints among features. Each feature is specified within a feature . . . endfeature
block, and the declaration of the root feature is done in a root feature . . . endfeature block. An excerpt of the
implementation of the root feature of the pipeline inspection case study according to Figure 2 is displayed in Listing 1.
The root feature can be decomposed into subfeatures; in this case, in only one, the subfeature robot, see Line 2. The
all of keyword indicates that all subfeatures have to be included in the feature configuration if the parent feature, in
this case the root feature, is included. It is, e.g., also possible to use the one of keyword if exactly one subfeature has to
be included, see Line 2 of Listing 2. The modules modelling the behaviour of the root feature are specified after the
keyword modules. In our case studies, the root feature is the only feature specifying modules, thus, the behaviour of all
features is modelled in the modules auv and environment described in Sections 4.3 and 4.4, respectively.

Contrary to an ordinary feature model, ProFeat allows to specify feature-specific rewards in the declaration of a
feature. Reward structures allow to annotate quantitative measures to behaviour and can be interpreted in various
ways. Reward structures whose aim is to be reduced are implementing costs such as energy or time. Differently, reward
structures with favourable properties usually have an objective to be increased, such as utility, successfully transferred
packages, points earned, or alike. Each reward structure is encapsulated in a rewards . . . endrewards block. In the
three-altitudes case study, we consider the rewards time and energy_3alt, see Lines 4–18 of Listing 1. Additionally to
these rewards, the five-altitudes case study contains the reward energy_5alt, see Lines 19–28. During each transition
the AUV module takes, the reward time is increased by 1; it is a transition-based reward, see Line 5. We assume that one
time step corresponds to one minute, allowing us to compute an estimate of a mission’s duration. The energy rewards
are state-based rewards, which are gained when entering a state. We distinguish between the one that takes all states of
the three-altitudes model into account (energy_3alt), and the one that additionally gives rewards to the states of the
five-altitudes model (energy_5alt).

Both energy rewards can be used to estimate the necessary battery level for mission completion. Since the reward
energy_3alt does not take all states of the five-altitudes model into account, using it with the five-altitudes model is
only done to compare the two models. In both reward structures, a reward of two energy units is given if a thruster of
the AUV failed and needs to be recovered, see, e.g., Line 9. Furthermore, switching between the search altitudes requires
significant energy. Since the altitude is switched if the AUV is in a search state and a navigation subfeature that does
not correspond to the current search altitude is active, a higher energy reward is given in these states. The given energy
reward corresponds to the number of switched altitude levels. For example, if the AUV needs to switch between high
and low, lowmed, med, or medhigh altitude, a reward of 4, 3, 2, or 1 energy units, respectively, is given (see Lines 13,
24, 14, or 23, respectively). The reward energy_3alt only contains rewards for the switches between low, med, and high,
whereas the reward energy_5alt contains all possible switches. Since the altitude must be changed to low once the
pipeline has been found, these cases also receive an energy reward as explained above, see Lines 15–16 and 25–26.
All other states receive an energy reward of 1, where the reward energy_3alt only assigns rewards to states of the
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1 root feature
2 a l l o f r obo t ;
3 modules auv , env i ronment ;
4 rewards " t ime "
5 [ s t ep ] t r u e : 1 ;
6 endrewards
7 rewards " e n e r g y _ 3 a l t "
8 / / C o s t s f o r b e i n g i n a r e c o v e r y s t a t e o f t h e t h r e e − a l t i t u d e s model
9 ( s = r e c o v e r _h i gh ) : 2 ;
10 / / . . om i t t e d c od e . .
11

12 / / C o s t s f o r s w i t c h i n g a l t i t u d e s low −med− h igh
13 ( s = s ea r ch_h igh ) & a c t i v e ( low ) : 4 ;
14 ( s = s ea r ch_h igh ) & a c t i v e (med ) : 2 ;
15 ( s = found ) & a c t i v e ( h igh ) : 4 ;
16 ( s = found ) & a c t i v e (med ) : 2 ;
17 / / . . om i t t e d c od e . .
18 endrewards
19 rewards " e n e r g y _ 5 a l t "
20 / / . . om i t t e d c od e . .
21

22 / / C o s t s f o r s w i t c h i n g a l t i t u d e s low −lowmed −med−medhigh − h igh
23 ( s = s ea r ch_h igh ) & a c t i v e ( medhigh ) : 1 ;
24 ( s = s ea r ch_h igh ) & a c t i v e ( lowmed ) : 3 ;
25 ( s = found ) & a c t i v e ( medhigh ) : 3 ;
26 ( s = found ) & a c t i v e ( lowmed ) : 1 ;
27 / / . . om i t t e d c od e . .
28 endfeature

Listing 1. An excerpt of the declaration of the root feature of the five-altitudes model; the root feature of the three-altitudes model
does not contain the reward energy_5alt

1 feature na v i g a t i o n
2 one o f low , lowmed , med , medhigh , h igh ;
3 i n i t i a l c o n s t r a i n t a c t i v e ( low ) ;
4 endfeature

Listing 2. The declaration of the navigation feature of the five-altitudes model; the navigation feature in the three-altitudes model
does not contain the features lowmed and medhigh

three-altitudes model. We use the function active to determine which feature is active, i.e., included in the current
feature configuration; given a feature, the function returns true if it is active and false otherwise.

The remainder of the feature model is implemented similarly to the root feature, but the features do not contain
feature-specific modules or rewards. The features are implemented and named according to the feature model in
Figure 2. To have only one initial state, we initialise the model with the features search and low active, using the
keyword initial constraint, see Line 3 of Listing 2. As an example of the implementation of another feature, the
declaration of the feature navigation of the five-altitudes model can be seen in Listing 2.
Manuscript submitted to ACM
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Fig. 3. The behaviour of the managing subsystem of the AUV in the three-altitudes case study ([69]); transition guards are written
in black, actions in grey following a vertical bar; actions reflect the activated features, conflicting features are deactivated; by
(de)activating features, transitions of the managed subsystem are (de)activated

4.2 The Managing Subsystem

The Behavioural Model of the Managing Subsystem. The managing subsystem implements the AUV’s adaptation
logic. Here, adaptation during runtime is achieved by switching between the different configurations of the managed
subsystem, activating and deactivating the subfeatures of navigation and pipeline inspection. Note that adaptations have
to adhere to the feature model in Figure 2, i.e., the resulting feature configuration has to be valid. By switching between
the configurations of the managed subsystem, the managing subsystem enables different behaviour.

The behaviour of the managing subsystem in the three-altitudes model is displayed in Figure 3. The grey area of the
figure includes the transitions that can be taken during the search for the pipeline, and the white area the transitions once
the pipeline has been found. Each transition contains a guard, written in black, and an action, written in grey after a verti-
cal bar. The managing subsystem of the five-altitudes model contains two more states, search altitude lowmed and search
altitude medhigh, as well as transitions from these states to each other and to all states in Figure 3. The actions on these
transitions follow the same pattern as in Figure 3 and the guards are assigned as described below and shown in Table 1.

During the search for the pipeline, i.e., when the feature search is active, reflected in the grey area of Figure 3 (plus the
states search altitude lowmed and search altitude medhigh and their transitions in the five-altitudes model), the managing
subsystem activates and deactivates the subfeatures of navigation according to the current water visibility (which
reflects the maximum distance at which the AUV can perceive objects). To do so, thresholds lowmed_visib, med_visib,
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Table 1. The possible altitudes for different water visibilities in the five-altitudes case study, where the water visibility reflects the
maximum distance at which the AUV can perceive objects

Possible Altitude
water visibility (wv) low lowmed med medhigh high
wv < lowmed_visib ✓ ✗ ✗ ✗ ✗

lowmed_visib ≤ wv < med_visib ✓ ✓ ✗ ✗ ✗

med_visib ≤ wv < medhigh_visib ✓ ✓ ✓ ✗ ✗

medhigh_visib ≤ wv < high_visib ✓ ✓ ✓ ✓ ✗

high_visib ≤ wv ✓ ✓ ✓ ✓ ✓

medhigh_visib, and high_visib that depend on the environment that the AUV operates in are introduced. In the three-
altitudes case study, only low can be activated if the water visibility is belowmed_visib, both low andmed can be activated
if it is between med_visib and high_visib, and all of them can be activated if it is above high_visib. In the five-altitudes
case study, the possible altitudes for different water visibilities can be found in Table 1. In Figure 3, the activated feature is
displayed in grey on the transition, implicitly the other subfeatures of navigation and pipeline_inspection are deactivated.
Note that the transitions in the grey area implicitly carry the guard s != found, i.e., the AUV is not in the state found,
because they represent the transitions during the search for the pipeline. This guard was omitted for better readability.

Once the pipeline has been found, i.e., the managed subsystem is in the state found, one of the transitions in the
white area (plus the transitions from search altitude lowmed and search altitude medhigh to following in the five-altitudes
model), guarded by 𝑠 = found, is taken. These transitions include the action of activating low and follow, and thus
deactivating the other navigation subfeatures and search. When the AUV loses the pipeline, i.e., it is in the state lost
pipe, the managing subsystem activates search and deactivates follow. Since the AUV is following the pipeline at a low
altitude, the AUV will start searching at a low altitude.

The Implementation of the Managing Subsystem in ProFeat. As usual in the PRISM input language and thus in ProFeat
as well, behaviour is specified in modules, containing a set of probabilistic guarded commands of the following form:

[action] guard -> prob_1: update_1 + ... + prob_n: update_n;

A command may have an optional label action to annotate it or to synchronise with other modules. In PRISM, the
guard is a predicate over global and local variables of the model, which can also come from other modules. ProFeat
extends the capability of guards to also support a predicate active that yields whether a given feature is active or not. If
the guard is true, then the system state is changed with probability prob_i using update_i for all 𝑖 . An update describes
how the system should perform a transition by giving new values for variables, either directly or as a function using
other variables. To model feature switches, ProFeat provides a specific module, called feature controller, that specifies
commands over features. Through keywords activate and deactivate, the feature controller can activate and deactivate
features in the update of a command. Several features can be activated and deactivated simultaneously. If the resulting
feature configuration does not adhere to the feature model, then ProFeat blocks this transition.

Due to its close correspondence, the managing subsystem of the AUV is implemented as a feature controller in
ProFeat. In the pipeline inspection case study, subfeatures of navigation (i.e., the different altitudes at which the AUV
can operate) and subfeatures of pipeline_inspection (i.e., the tasks the robot has to fulfil) can be switched by the
feature controller during runtime, see Listing 3 for an excerpt of the three-altitudes feature controller. The feature
Manuscript submitted to ACM
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1 formula l owmed_v i s ib = ( 4 ∗ m in_ v i s i b +max_v i s i b ) / 5 ;
2 formula med_v i s i b = ( 3 ∗ m in_ v i s i b +2∗ max_v i s i b ) / 5 ;
3 formula medh igh_v i s i b = ( 2 ∗ m in_ v i s i b +3∗ max_v i s i b ) / 5 ;
4 formula h i g h _ v i s i b = ( m in_ v i s i b +4∗ max_v i s i b ) / 5 ;
5

6 cont ro l l e r
7 / / Change a l t i t u d e d ep end ing on wa t e r v i s i b i l i t y
8 [ s t ep ] ( s ! = found ) & a c t i v e ( s ea r ch ) & wa t e r _ v i s i b < med_v i s i b
9 −> a c t i v a t e ( low ) & d e a c t i v a t e ( h igh ) & d e a c t i v a t e (med ) ;
10 [ s t ep ] ( s ! = found ) & a c t i v e ( s ea r ch )
11 & med_v i s ib <= wa t e r _ v i s i b & wa t e r _ v i s i b < h i g h _ v i s i b
12 −> a c t i v a t e ( low ) & d e a c t i v a t e (med ) & d e a c t i v a t e ( h igh ) ;
13 [ s t ep ] ( s ! = found ) & a c t i v e ( s ea r ch )
14 & med_v i s ib <= wa t e r _ v i s i b & wa t e r _ v i s i b < h i g h _ v i s i b
15 −> a c t i v a t e (med ) & d e a c t i v a t e ( low ) & d e a c t i v a t e ( h igh ) ;
16 / / . . om i t t e d c od e . .
17

18 / / Sw i t c h t a s k from " s e a r c h " t o " f o l l o w "
19 [ s t ep ] ( s = found ) & a c t i v e ( s ea r ch )
20 −> d e a c t i v a t e ( s ea r ch ) & a c t i v a t e ( f o l l ow ) & a c t i v a t e ( low )
21 & d e a c t i v a t e (med ) & d e a c t i v a t e ( h igh ) ;
22

23 / / Sw i t c h t a s k from " f o l l o w " t o " s e a r c h "
24 [ s t ep ] ( s = l o s t _ p i p e ) & a c t i v e ( f o l l ow )
25 −> d e a c t i v a t e ( f o l l ow ) & a c t i v a t e ( s ea r ch ) ;
26

27 / / Enab l e t r a n s i t i o n s when f o l l o w i n g t h e p i p e l i n e
28 [ s t ep ] ( s ! = l o s t _ p i p e ) & a c t i v e ( f o l l ow ) −> t r u e ;
29 endcontrol ler

Listing 3. An excerpt of the ProFeat feature controller of the three-altitudes model

controller of the five-altitudes model is implemented similarly, respecting the restrictions in Table 1. We will describe the
implementation of the three-altitudes model here, briefly highlighting additions in the five-altitudes model in brackets.

When the feature search is active and the pipeline has not been found yet, the feature controller activates and
deactivates the altitudes non-deterministically, but according to the current water visibility, as described before. Whether
or not the pipeline has been found is reflected in the state s of the managed subsystem (as described in Section 4.3) which
the feature controller accesses. The minimum and maximum water visibility can be set by the user during design time
and influence the altitudes associated with the features low, med and high (plus lowmed and medhigh in the five-altitudes
model); i.e., it influences when the feature controller is able to switch features. To reflect this, the variables med_visib
and high_visib are declared as in Lines 2 and 4 (plus the variables lowmed_visib and medhigh_visib in Lines 1 and 3 in
the five-altitudes model). A formula in PRISM and ProFeat can be used to assign an identifier to an expression. If the
water visibility is less than med_visib, the feature controller activates the feature low (see Lines 8–9) because the AUV
cannot perceive the seabed from a higher altitude. The variable water_visib reflects the current water visibility and is
declared in the environment module which also updates this variable, see Section 4.4. If the water visibility is between
med_visib and high_visib, the feature controller chooses non-deterministically between low and med (see Lines 10–15),
whereas it chooses non-deterministically between all three altitudes if the water visibility is above high_visib. (In the
five-altitudes model, it activates the features non-deterministically according to Table 1.) Note that it is also possible
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to deactivate or activate a feature if it is already inactive or active, respectively. The computation of med_visib and
high_visib is different from the one in our previous paper to align the three and five-altitudes models.

When the pipeline is found, i.e., the managed subsystem is in state found, the feature controller activates the feature
follow and deactivates search, see Lines 19–21. Since the AUV should be at a low altitude while following the pipeline,
the feature controller also deactivates the features high and med (plus lowmed and medhigh in the five-altitudes model)
and activates low. If the AUV lost the pipeline, i.e., the managed subsystem is in state lost_pipe, the feature controller
deactivates follow and activates search to start the search for the pipeline, see Lines 24–25.

The feature controller synchronises with the auv and environment modules via the action label step. Since all
transitions of the modules and feature controller have the same action label, they can only execute a transition if there
is a transition with a guard evaluating to true in both modules and in the feature controller. Thus, the feature controller
needs to include a transition doing nothing if the feature follow is active and the AUV is not in state lost_pipe, see Line 28.

Let us reflect on technical details how ProFeat ensures a sound encoding of the SAS into PRISM models. During
the translation of the ProFeat model into the PRISM language, features are expressed by standard PRISM variables
in the feature controller module, where the value of the variable reflects whether the feature is active or inactive. To
ensure that the system adapts only within valid configurations, ProFeat automatically includes several constraints
into guards and updates of PRISM commands. The constraints on valid feature configurations are added as guards to
every command in the feature controller and to the initial state expression of the model. Further, these constraints are
also incorporated into the potential updates of the feature controller (for details, see [23]). For every feature module,
guards of commands are extended by the corresponding feature to be active, while an additional unblocking command
is added that is only enabled if the corresponding feature is inactive (for proofs of this translation to be sound, we refer
to [40, 41]). These transformations ensure that the SAS is always in a valid configuration during runtime, even when
adapting to changing environments.

4.3 The Managed Subsystem

The Behavioural Model of the Managed Subsystem. The behaviour of the managed subsystem of the AUV is described
as a featured Markov decision process (fMDP) [41, 42]. Here, each transition results from a guarded command comprising
a feature guard and a state guard on the state variables of the system. A transition can be taken if and only if both
the feature guard is fulfilled in the current configuration of the managed subsystem and the state guard is fulfilled
by the current values of the state variables. The possible configuration switches done by the managing subsystem
can resolve the feature guards, leading to an MDP where features are encoded into the state-space of the system [42].
Figure 4 depicts such an MDP for the AUV in the three-altitudes setting, where some details have been omitted to
avoid cluttering (in particular, all probabilities). The details can be obtained from the publicly available model.4 The
five-altitudes model contains four more states, search_lowmed, and search_medhigh together with their respective
recovery states and the transitions following the same pattern as in the three-altitudes model, which is further explained
below. The probabilistic model allows to easily model the possibilities of, e.g., finding and losing the pipeline depending
on the system configuration.

The MDP consists of the behaviour of the configurations of the manged subsystem together with the switches
between the configurations induced by the managing subsystem. Therefore, we distinguish between two kinds of
transitions in Figure 4: black transitions that model the behaviour of a certain configuration of the managed subsystem

4The models are publicly available [67].
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Fig. 4. The behaviour of the configurations of the managed subsystem and the switches between configurations in the three-altitudes
case study ([69]); transitions with a feature annotation are guarded by the respective feature; transitions without annotation are not
guarded by features; blue transitions are enabled by a feature (de)activation of the managing subsystem; black transitions are taken if
the managing subsystem did not (de)activate features; probabilities are omitted for better readability

and blue transitions that switch between configurations, enabled by the managing subsystem during runtime. The
labels search, follow, low, med, and high on the transitions represent the features that have to be active to execute the
respective transition, i.e., they represent the feature guard. The blue transitions between configurations implicitly carry
the action to start the task or go to the altitude specified by the feature associated with the transition.

The behaviour of one configuration, i.e., the behaviour associated to a set of features 𝐹 compliant with the feature
model, is modelled by the projection of the MDP on the sub-MDP containing only features in 𝐹 . More concretely, it is
modelled by the MDP consisting of all black transitions with feature guards satisfied by 𝐹 and the states that these
transitions connect. Consider for example the configuration with the features robot, navigation, pipeline_inspection,
low, and search. Then the behaviour of this configuration is represented by the states start_task, search_low with its
associated recovery state, and found as well as the transitions between them and the self-loops of search_low and its
recovery state. Hence, the behaviour of the MDP corresponding to this configuration consists of the AUV starting its
task search and going to the state search_low where it remains until either a failure occurs and it goes to the associated
failure state, or until it finds the pipeline and transitions to the state found and then again to start_task.

The managing subsystem can switch between configurations (and thus change behaviour) by activating another
subfeature of navigation during the search for the pipeline, or by activating another subfeature of pipeline_inspection if
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the pipeline was found or lost, reflected by the states found and lost pipe of the managed subsystem. These switches
between configurations are reflected by the blue transitions in Figure 4. Consider for example the same configuration
as before which consists of the features robot, navigation, pipeline_inspection, low, and search. Then the managing
subsystem can activate another subfeature of navigation during the search of the pipeline, i.e., in the state search_low
which implies deactivating the feature low. If this happens, the black transitions within the current configuration cannot
be taken anymore because the feature low is inactive. Only the blue transition with the newly activated navigation

subfeature to a new configuration can be taken. If, for example, the feature med has been activated, the blue transition
from search_low to search_med will be taken which implicitly carries the action to go to a medium altitude.

The behaviour of the AUV can then be described as follows. At deployment time, i.e., in state start task, the AUV
can either immediately start following the pipeline if it was deployed above it, indicated by the feature follow in the
initial configuration, or start searching for it, indicated by the feature search in the initial configuration. During the
search for the pipeline, i.e., when the AUV is in the grey area labelled search, the managing subsystem might switch
between the subfeatures of navigation during a transition as described in Section 4.2 which causes a configuration
change of the managed subsystem, reflected by taking a blue transition. If the managing subsystem does not switch
between configurations, then the AUV keeps searching for the pipeline, it transitions to a thruster failure state to repair
its broken thrusters, or it finds the pipeline and transitions to the state found. Once the pipeline has been found, the
AUV transitions to the state start_task again. As described in Section 4.2, the managing subsystem deactivates the
feature search during this transition and activates the feature follow. When the AUV is following the pipeline, i.e., in
the grey area labelled follow, it can also lose the pipeline again, transitioning to the state lost_pipe, e.g., because of
sand covering the pipeline or because the AUV drifted off its path due to thruster failures. In this case, the managing
subsystem activates the feature search during the transition from lost_pipe to start_task (see Section 4.2) such that the
AUV will start its search again.

Additionally to the states and transitions displayed in Figure 4, the five-altitudes model contains the states search
lowmed and search medhigh with their respective recovery states. The states follow the same pattern as the ones of
the three-altitudes model: the search states are connected with configuration changing (blue) transitions to the other
search states, guarded by the corresponding feature, and they contain a self-loop and a transition to their respective
recovery state, guarded by their respective feature (black transitions). The recovery states each contain a self-loop and
a (black) transition back to the corresponding search state.

The ProFeat Implementation of the Managed Subsystem. In ProFeat, each feature can be implemented by several feature
modules, each comprising a set of guarded probabilistic commands (see Section 4.2). We encapsulate the behaviour
of the managed subsystem of the AUV in a module auv. Feature modules in ProFeat can exhibit guards in commands
that include the function active, evaluating to true if the corresponding feature is active. To this end, configuration-
dependent behaviour can easily be specified in feature modules. Figure 4 shows the behavior of the module together
with feature switches through the feature controller for the three-altitudes model and with the additional states in the
five-altitudes model as described before. In this section, we will describe the implementation of the three-altitudes
model (see Listing 4 for an excerpt). As in Section 4.2, the additions for the five-altitudes model as described above are
briefly introduced in brackets.

As in Figure 4, there are thirteen enumerated states (seventeen in the five-altitudes model) in the ProFeat module
with names that correspond to the state labels in the figure. The recovery states are named according to the state they
are connected to (e.g., the recovery state connected to search_high is called recover_high). The variable s in Line 2 in
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1 module auv
2 s : [ 0 . . 1 2 ] i n i t s t a r t _ t a s k ;
3 d_ insp : [ 0 . . i n s p e c t ] i n i t 0 ;
4 t _ f a i l e d : [ 0 . . i n f l _ t f ] i n i t 0 ;
5

6 / / To t h e c o r r e c t t a s k
7 [ s t ep ] ( s = s t a r t _ t a s k & a c t i v e ( s ea r ch ) ) −> 1 : ( s ' = s t a r t _ s e a r c h ) ;
8 [ s t ep ] ( s = s t a r t _ t a s k & a c t i v e ( f o l l ow ) ) −> 1 : ( s ' = f o l l ow i n g ) ;
9

10 / / . . om i t t e d c od e . .
11 / / From s e a r c h s t a t e t o a n o t h e r s t a t e
12 [ s t ep ] ( s = s ea r ch_h igh & a c t i v e ( h igh ) )
13 −> 0 . 5 9 : ( s ' = found )
14 + 0 . 4 : ( s ' = s ea r ch_h igh )
15 + 0 . 0 1 : ( s ' = r e c o v e r _h i gh ) ;
16 [ s t ep ] ( s = s ea r ch_h igh & a c t i v e (med ) ) −> 1 : ( s ' = search_med ) ;
17 [ s t ep ] ( s = s ea r ch_h igh & a c t i v e ( low ) ) −> 1 : ( s ' = sea r ch_ low ) ;
18 / / . . om i t t e d c od e . .
19

20 / / Go t o o t h e r t a s k i f p i p e l i n e i s f ound
21 [ s t ep ] ( s = found ) −> 1 : ( s ' = s t a r t _ t a s k ) ;
22

23 / / F o l l ow i n g t h e p i p e l i n e
24 [ s t ep ] ( s = f o l l ow i n g ) & ( d_insp < i n s p e c t ) & ( t _ f a i l e d =0 )
25 −> 0 . 9 2 : ( s ' = f o l l ow i n g ) & ( d_insp ' = d_ insp +1 )
26 + 0 . 0 5 : ( s ' = l o s t _ p i p e )
27 + 0 . 0 3 : ( s ' = r e c o v e r _ f o l l ow i n g )
28 & ( t _ f a i l e d ' = ( t _ f a i l e d < i n f l _ t f ? t _ f a i l e d +1 : t _ f a i l e d ) ) ;
29 [ s t ep ] ( s = f o l l ow i n g ) & ( d_insp < i n s p e c t ) & ( t _ f a i l e d >0 )
30 −> 0 . 9 2 ∗ ( 1 − t _ f a i l e d / i n f l _ t f ) : ( s ' = f o l l ow i n g )
31 & ( d_insp ' = d_ insp +1 ) & ( t _ f a i l e d ' = t _ f a i l e d −1 )
32 + 0 . 0 5 ∗ ( 1 + ( ( 0 . 9 2 ∗ t _ f a i l e d ) / ( 0 . 0 5 ∗ i n f l _ t f ) ) ) : ( s ' = l o s t _ p i p e )
33 + 0 . 0 3 : ( s ' = r e c o v e r _ f o l l ow i n g )
34 & ( t _ f a i l e d ' = ( t _ f a i l e d < i n f l _ t f ? t _ f a i l e d +1 : t _ f a i l e d ) ) ;
35 [ s t ep ] ( s = f o l l ow i n g ) & ( d_ insp = i n s p e c t ) −> ( s ' = done ) ;
36

37 / / L o s t t h e p i p e l i n e
38 [ s t ep ] ( s = l o s t _ p i p e ) −> 1 : ( s ' = s t a r t _ t a s k ) & ( t _ f a i l e d ' = 0 ) ;
39

40 / / R e c o v e r y s t a t e s
41 [ s t ep ] ( s = r e c o v e r _h i gh ) −> 0 . 5 : ( s ' = r e c o v e r _h i gh ) + 0 . 5 : ( s ' = s ea r ch_h igh ) ;
42 / / . . om i t t e d c od e . .
43 endmodule

Listing 4. An excerpt of the ProFeat AUV module of the case study

Listing 4 represents the current state of the AUV and is initialised using the keyword init with the state start_task.
To record how many meters of the pipeline have already been inspected, the variable d_insp in Line 3 represents the
distance of the pipeline that the AUV has already inspected, it is initialised with 0. The variable inspect represents the
desired inspection length and it can be set by the user during design time. Since the number of times a thruster failed
impacts how much the AUV deviates from its path, the variable t_failed can be increased if a thruster fails while the
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AUV follows the pipeline. It is bounded by the influence a thruster failure can have on the system (infl_tf) that can be
set by the user during design time.

As an example for the use of the active keyword, consider the command in Lines 12–15, which can be read as
follows. If the system is in state search_high and the feature high is active, then with a probability of 0.59, the system
changes its state to found, with a probability of 0.4 it changes to search_high and with a probability of 0.01 it changes to
recover_high. These are exactly the black transitions shown in Figure 4 exiting from state search high. This command
also has an action label, step. Using this action label, it synchronises with the environment module and the feature
controller. The blue transitions exiting state search high in Figure 4 are modelled in Lines 16–17 (in the five-altitudes
model, additional transitions to the states search_lowmed and search_medhigh with the respective guards are added). If
the model is in state search_high, but the feature low or med is active, indicating that the AUV should go to the respective
altitude, then the state is changed to the respective search state. The transitions exiting the states search_med and
search_low are modelled similarly (as well as the transitions existing the states search_lowmed and search_medhigh in
the five-altitudes model). However, the probability of going to the state found is highest from state search_high and
lowest from search_low because the AUV has a wider field of view when performing the search at a higher altitude.
Furthermore, the probability of a thruster failure, i.e., of going to the respective recover state, is highest in state
search_low and lowest in state search_high because the probability of seaweed getting stuck in the thrusters is higher
at a lower altitude. If the AUV found the pipeline, then a transition to start_task is taken, see Line 21.

From the state start_task, a transition to either start_search or following can be taken, depending on which
subfeature of pipeline_inspection is currently active, see Lines 7–8.

From the following state, the transitions that can be taken depend on the variables d_insp and t_failed. Lines 24–28
consider the case where the distance of the pipeline that has already been inspected (d_insp) is less than the distance
the pipeline should be inspected (inspect) and the variable t_failed is 0, indicating that there were no recent thruster
failures. Then the AUV stays in the following state and inspects the pipeline one more meter, it loses the pipeline, or a
thruster fails and it transitions to the failure state and increases t_failed if t_failed is not at its maximum. Lines 29–34
consider the case where d_insp is less than inspect and t_failed is greater than 0. In this case, the probabilities of
following and of losing the pipeline depend on the value of t_failed. The bigger the value, the more likely it is to lose
the pipeline because it indicates that the AUV’s thrusters did not work for some time, causing it to drift off its path. If
the already inspected distance is equal to the required inspection distance, the AUV transitions to the done state (see
Line 35) and finishes the pipeline inspection. If the AUV lost the pipeline (see Line 38), then a transition to start_task

is taken and the variable t_failed is set to 0 again.
When the AUV is in a recovery state, it can either stay there for another time step or exit it again to the state from

where the recovery was triggered (see Line 41).
All commands in the module auv are labelled with step. Thus, every transition receives a time reward of 1, i.e., the

time advances with every transition the AUV takes, see Lines 4–6 of Listing 1.

4.4 The Environment

The Behavioural Model of the Environment. The only parameter of the environment we consider in our model is the
water visibility. We model it with a value that we assume to be bounded by a minimum and a maximum visibility that
depend on where the AUV is deployed and can be set by the user during design time. We assume that changes in the
water visibilty occur probabilistically with a probability of currents which also depends on the place of deployment of
the AUV and can be set by the user during design time. Thereby, we reflect the uncertainty about how the environment
Manuscript submitted to ACM
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min
visibility

max
visibility

min
visibility

+ 1

max
visibility

- 1
...1-inc_prob 1-dec_prob

1-(dec_prob+inc_prob)
inc_prob

dec_prob

inc_prob inc_prob
1-(dec_prob+inc_prob)

inc_prob

dec_prob dec_prob dec_prob

Fig. 5. The behaviour of the environment (modified from [69]); the probabilities of increasing and decreasing water visibility (inc_prob
and dec_prob, respectively) can be used to model different behaviour of the environment; the minimum and maximum visibility
depend on where (in which kind of water conditions) the AUV is deployed

will behave. We used two different behavioural models for the environment, a symmetric and an asymmetric one. Their
behaviour is depicted in Figure 5, where inc_prob denotes the probability of an increasing water visibility and dec_prob

the probability of a decreasing water visibility. With the asymmetric behaviour of the environment, the water visibility
decreases by 1 with the probability of currents cp, i.e., dec_prob=cp, while it stays the same or increases by 1 with
probability (1-cp)/2, i.e., inc_prob=(1-cp)/2. If the water visibility is already at the minimum visibility, the water visibility
stays the same with probability (1+cp)/2 = 1-inc_prob and, at maximum visibility, it stays the same with probability 1-cp
= 1-dec_prob. With the symmetric behaviour, we set inc_prob=dec_prob=cp and calculate the cases for minimum and
maximum visibility as shown in Figure 5. . The focus of this paper is on modelling and verifying an abstract variant
of the AUV, not prioritising a realistic model. Therefore, we chose two simple environment behaviours to analyse if
and how the environment can influence the behaviour of the AUV. The environment model can easily be enhanced
with more realistic specifications. Instantiating the values of minimal and maximal visibility as well as probability of
currents of the environment together with selecting a desired length of pipeline that should be inspected provides
scenarios which we will use for analysis, see Section 5.1.

The Implementation of the Environment in ProFeat. The environment is modelled in a separate environment module,
see Listing 5. The variable water_visib in Line 2 reflects the current water visibility and is initialised parametrically,
depending on the minimum and maximum visibility. The function round() is pre-implemented in the PRISM language
and rounds to the nearest integer. The environment module synchronises with the AUV module via the label of its
action, step. Since the guard of the only action in the environment module is true, the environment executes a transition
every time the AUV module does. By decoupling the environment module from the AUV module, we obtain a separation
of concerns which makes it easier to change the model of the environment if needed.

For the asymmetric environment, the variables for increasing and decreasing the water visibility are instantiated
as inc_prob=(1-current_prob)/2 and dec_prob=current_prob whereas for the symmetric environment these variables
are instantiated as inc_prob=dec_prob=current_prob/2 where current_prob is the variable reflecting the probability of
currents.

5 ANALYSIS

ProFeat automatically converts models to the PRISM input language for quantitative analysis, e.g., by statistical or
probabilistic model checking. To analyse a PRISM model, properties can be specified in the PRISM property specification
language, which includes several probabilistic temporal logics like PCTL [53], CSL [3], or probabilistic LTL [4]. For
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1 module env i ronment
2 wa t e r _ v i s i b : [ m in_ v i s i b . . max_v i s i b ] i n i t round ( ( max_v i s ib −m in_v i s i b ) / 2 ) ;
3 [ s t ep ] t r u e −> dec_prob : ( wa t e r _ v i s i b ' =
4 ( w a t e r _ v i s i b =m in_v i s i b ? m in_v i s i b : wa t e r _ v i s i b −1 ) )
5 + inc_p rob : ( wa t e r _ v i s i b ' =
6 ( w a t e r _ v i s i b =max_v i s i b ? max_v i s i b : w a t e r _ v i s i b +1 ) )
7 + ( 1 − ( dec_prob+ in c_p rob ) ) : t r u e ;
8 endmodule

Listing 5. The ProFeat environment module of the case study, where the variables dec_prob and inc_prob have to be instantiated to
model different behaviours of the enviornment

family-based analysis, ProFeat extends this specification language to include properties depending on feature selection
through the keyword active.5

The model translated into the PRISM input and property specification language can be interpreted by various
(probabilistic) model checking tools. In our experiments, we report on analyses with PRISM and Storm 6 [54], depending
on the properties to be investigated. Since PRISM works well together with ProFeat, we used it whenever possible.
However, for parametric model checking and multi-objective reasoning, Storm is considered as the state-of-the-
art [35, 58], providing in general better functionality and performance. We thus opted to use Storm for parameter
synthesis and multi-objective reasoning experiments (see reporting in Sections 5.5 and 5.6).

In our analysis, we used the standard settings for both PRISM and Storm. For the parametric analysis with Storm,
the chosen parameters are reported in the respective section. All experiments were conducted on a MacBook Pro with
an Apple M1 chip and 16GB memory.

The analysis of the model considered five different aspects: (1) the rewards time, energy_3alt and energy_5alt were
used to compute safety guarantees that can be used for the deployment of the AUV using PRISM, see Section 5.2;
(2) reachability of safe/unsafe states was analysed using PRISM, see Section 5.3; (3) we analysed how the different
environments introduced in Section 4.4 influence the analysis results using PRISM, see Section 5.4; (4) minimal and
maximal rewards with unspecified probability of currents were computed to determine the possible range of the rewards
using Storm, see Section 5.5; (5) finally, we analysed trade-off properties between the time and energy rewards using
Storm in Section 5.6. Note that it is not necessary to analyse whether the model satisfies the constraints of the feature
model because ProFeat automatically ensures this. Of course, a more complex analysis can be done in addition to the
analyses presented in this paper. Our intention in this section is to give a taste of possible analyses that demonstrate
the feasibility and applicability of our approach.

5.1 Parameter Setup for the Scenarios

The operators used for analysis in this paper are P and R, which reason about probabilities of events and about expected
rewards, respectively. Since we use Markov decision processes (which involve non-determinism), these operators
must be further specified to ask for the minimum or maximum probability and minimum or maximum expected cost,
respectively, for all possible resolutions of non-determinism.

5ProFeat constructs within PRISM properties are specified using bracketing ${...} to ensure a well-formed translation to the PRISM property
specification language.
6https://www.stormchecker.org/index.html
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Table 2. Four different scenarios used for analysis; in Scenarios 3 and 4 the probability of currents current_prob is left as a parameter

Scenario min_visib max_visib current_prob inspect
1 (North Sea) 1 10 0.6 10
2 (Caribbean Sea) 3 20 0.3 30
3 (Parametric North Sea) 1 10 x 10
4 (Parametric Caribbean Sea) 3 20 x 30

In our analyses, we used four different scenarios, two of them with an undefined value for the probability of currents.
The values used in these scenarios are reported in Table 2. Scenario 1 is in the North Sea, where the minimum and
maximum water visibility (in 0.5 meter units) is relatively low and the probability of currents is relatively high. In this
case, only 10 meters of the pipeline have to be inspected. Scenario 2 is in the Caribbean Sea with a higher minimum
and maximum visibility and a lower probability of currents compared to the North Sea, as well as 30 meters of pipeline
that have to be inspected. Scenarios 3 and 4, are parametric versions of Scenarios 1 and 2, respectively. That is, they are
the North Sea and the Caribbean Sea scenarios, where the value of the variable current_prob is left unspecified. We use
Scenarios 3 and 4 for the parametric analyses in Sections 5.4 and 5.5 and Scenarios 1 and 2 for the other analyses.

The probability of currents of the scenario influences how the water visibility changes. The probabilities for an
increasing, decreasing or stagnant water visibility in Scenarios 1 and 2 with symmetric and asymmetric environments
are listed in Table 3. It can be seen that with the symmetric environment, staying at the same water visibility has by far
the highest probability in Scenario 2 while the difference between increasing/decreasing and staying at the same water
visibility is much smaller in Scenario 1. With the asymmetric environment, however, the situation is reversed. Here,
decreasing the water visibility has a much higher probability than increasing or stagnating in Scenario 1, while the
difference between the probabilities is very small in Scenario 2, with the probability of an increasing or stagnant water
visibility being a bit higher than the probability of decreasing.

Furthermore, the minimum and maximum visibilities of the scenarios influence the thresholds at which the managing
subsystem can choose specific altitudes, they are listed in Table 4 for both scenarios. The altitude difference between
the thresholds for Scenarios 1 and 3 is 1.8, while the difference is 3.4 for Scenarios 2 and 4. Therefore, an increasing
or decreasing water visibility can cause an increasing or decreasing number of possible altitudes of the AUV much
faster in Scenarios 1 and 3 than in Scenarios 2 and 4. Consider for example a situation in the five-altitudes case study
where the water visibility is 6.4 which allows all altitudes apart from high in Scenarios 1 and 3 and the altitudes low
and lowmed in Scenarios 2 and 4. Then it is possible that high can be activated in two time steps in Scenarios 1 and 3 if
the water visibility increases in both time steps, but it is only possible to activate med after at least four time steps in
Scenarios 2 and 4.

We first analysed for Scenarios 1 and 2 in both models whether it is always possible to finish the pipeline inspection,
i.e., to reach the state done. This could be confirmed since the minimum probability for all resolutions of non-determinism
of eventually reaching the state done is 1.0.

Note that the analysis results of the three-altitudes model with the asymmetric environment reported in the following
sections are different from those obtained in our previous paper [69] where we also used the asymmetric environment.
The difference between the model from our previous paper (hereafter called the “old model”) and the three-altitudes
model in this paper are the thresholds at which adaptation can be triggered. In this paper, we divided the space in
which the AUV can operate (between min_visib and max_visib) into five equally big parts to accommodate switches
between the five different altitudes in the five-altitudes model. To enable a comparison between the analysis results of
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Table 3. The probabilities of a water visibility change in Scenarios 1 and 2

Scenario 1 Scenario 2
Environment inc. dec. stag. inc. dec. stag.
symmetric 0.30 0.30 0.40 0.15 0.15 0.70
asymmetric 0.20 0.60 0.20 0.35 0.30 0.35

Table 4. The thresholds for possi-
ble altitudes for all four scenarios

Scenarios
Threshold 1&3 2&4
lowmed 2.8 6.4
med 4.6 9.8
medhigh 6.4 13.2
high 8.2 16.6

1 R { " e n e r g y _ 3 a l t " } min=? [ F $ { s =done } ] ;
2 R { " e n e r g y _ 3 a l t " } max=? [ F $ { s =done } ] ;

Listing 6. Analysis using the rewards

the three- and five-altitudes models, we used a subset of the thresholds defined for the five-altitudes model also for the
three-altitudes model instead of the thresholds defined in the old model. Thus, the thresholds at which the managing
subsystem can switch between altitudes are different, allowing different configurations for the two versions of the
model at certain water visibilities. For example, using Scenario 2, the threshold med_visib is defined as approximately
5.7 in the old model but as 9.8 in this paper’s models. Similarly, the threshold high_visib is defined as approximately
11.3 in the old model and as 16.6 in this paper’s models for Scenario 2. Therefore, using the old model with Scenario 2,
the managing subsystem can switch between the features low and med if the water visibility is above 5.7, increasing the
energy consumption. However, in the three-altitudes model of this paper, the managing subsystem has to choose the
feature low if the water visibility is below 9.8. Similarly, the managing subsystem of the old model can switch between
the three altitudes with lower water visibilities than the managing subsystem of the three-altitudes case study of this
paper. This enables the managing subsystem of the old model to choose a strategy that results in a higher maximum
energy consumption than is possible for the three-altitudes model in this paper because this strategy is not possible
for the managing subsystem of this paper. Therefore, the maximum energy consumption with the old model is much
higher than the energy consumption with the three-altitudes model of this paper.

5.2 Reward Properties

The rewards time, energy_3alt, and energy_5altwere used to analyse safety properties related to the execution of the
AUV in the model. Since the AUV has only a limited amount of battery, an estimation of the energy needed to complete
the mission is required. This ensures that the AUV is only deployed for the mission if it has sufficient battery to complete
it. The commands in Listing 6 were used to compute the minimum and maximum expected energy_3alt reward (for all
resolutions of non-determinism) to complete the mission. Since the model includes three reward structures, the name of
the reward has to be specified in {"..."} after the R operator. Similarly, theminimum andmaximum expected energy_5alt
and time rewards to complete the mission were analysed, the latter to give the system operators an estimate of how
much time the mission might take. The execution time of the analysis in PRISM for the three-altitudes case study took
at most 3.8 seconds while the analysis for the five-altitudes case study took at most 15.5 seconds. For both case studies,
the most time-consuming analysis was analysing the maximum time of Scenario 2 with the asymmetric environment.

The results for the two models in Scenarios 1 and 2 as well as with symmetric and asymmetric environments are
reported in Table 5. For analysing the three-altitudes model, the reward energy_5alt was not used and therefore marked
as N/A (Not Applicable) because it refers to states that are not present in the three-altitudes model. It can be seen that
Manuscript submitted to ACM
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Table 5. Expected min-/maximum rewards for completing the mission for the two models concerning both scenarios and environments

3-Altitudes 5-Altitudes
Scenario Environment Property Result Result

1

symmetric

min 24.7839 19.3133energy_3alt max 139.6440 263.5274
min N/A 24.5033energy_5alt max N/A 310.3349
min 23.7951 23.5909time max 66.2743 131.4976

asymmetric

min 24.7844 21.2382energy_3alt max 31.4667 32.3222
min N/A 24.7015energy_5alt max N/A 37.5475
min 23.8917 23.8389time max 27.1616 32.5339

2

symmetric

min 59.0823 49.8592energy_3alt max 382.1825 998.8417
min N/A 58.5831energy_5alt max N/A 1159.4918
min 56.4871 56.1615time max 173.2865 468.0138

asymmetric

min 59.0823 49.6258energy_3alt max 963.8585 2753.7185
min N/A 58.5826energy_5alt max N/A 3011.3884
min 56.3243 56.0297time max 341.9468 972.3262

the variation of the parameters in the two scenarios strongly influences the expected energy and time of the mission.
The difference between minimum and maximum expected energy and minimum and maximum expected time for
Scenario 2 are significantly bigger than for Scenario 1. In particular, the maximum expected energy and time are much
higher for Scenario 2 than for Scenario 1.

Furthermore, the behaviour of the environment has an interesting impact on the analysis results. In Scenario 1, the
minimum rewards are slightly higher in the asymmetric environment while the maximum rewards are at least 2.4
times higher with the symmetric environment for all reward structures. However, in Scenario 2, the minimum rewards
are slightly higher in the symmetric environment while the maximum rewards are at least 2 times higher with the
asymmetric environment. Several factors influence these results and have to be consulted to explain this phenomenon:

(1) The probability of currents is higher in Scenario 1 than in Scenario 2 which leads to different probabilities for
increasing or decreasing the water visibility, see Table 3;

(2) The inspection length is longer in Scenario 2 than in Scenario 1;
(3) The difference between the minimum and maximum visibility is higher in Scenario 2 than in Scenario 1, which

means that the water visibility has to increase or decrease more to allow for more or less possible altitudes,
respectively, see Table 4;
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(4) With the symmetric environment, increasing and decreasing the water visibility has the same probability, whereas
with the asymmetric environment, increasing and staying at the same altitude has the same probability.

In Scenario 1, a decrease of the water visibility leads to a decrease in the number of possible altitudes very fast because
the thresholds at which different altitudes can be activated are relatively close together compared to Scenario 2, see
Table 4. Therefore, the asymmetric environment, where the probability of decreasing the water visibility is very high
for Scenario 1, see Table 3, does possibly not allow as many altitude switches as the symmetric environment because
the water visibility might often be low. This might lead to a higher maximum energy consumption with the symmetric
environment since it allows more altitude switches. The higher maximum time for the symmetric environment can
be explained similarly. Time advances with every transition of the combined transition system of the managed and
managing subsystem and the environment. Switching between altitudes of the managed subsystem is one such time
step during which it is impossible to find the pipeline. Therefore, increasing the switches between altitudes increases
the maximum time the AUV takes to finish the pipeline inspection. As described before, altitude switches are more
likely in the symmetric environment which thus leads to a higher maximum time reward.

In Scenario 2, the water visibility has to increase much more than in Scenario 1 to allow a higher altitude of the
AUV, see Table 4. With the symmetric environment, the probability of the water visibility staying the same is much
higher than an increase or a decrease in the water visibility, see Table 3. Therefore, it is less likely to increase the water
visibility to a point where a higher altitude is allowed, which leads to a higher maximum energy and time with the
asymmetric environment (the argumentation is similar to the one for Scenario 1).

It can also be seen that in all experiments, the five-altitudes model enables a mission to happen in less time and with
less energy compared to the three-altitudes model, independent of the chosen energy reward. Thus, in these scenarios
and with these environment behaviours, it is beneficial to enable the AUV to operate at five instead of three altitudes.

It might seem counter-intuitive that the five-altitudes model with the reward energy_3alt does not give the same
results as the three-altitudes model with this reward; we give an explanation for this here. Considering the minimum
expected energy, searching at a lowmed or medhigh altitude or switching to and from these altitudes does not cost
energy with the energy_3alt reward because these altitudes are not part of the three-altitudes model. Therefore, the
five-altitudes model, which allows these altitudes, enables a lower minimum energy_3alt reward than the three-altitudes
model since the managing subsystem can choose a strategy with lowmed and medhigh altitudes which do not increase the
energy_3alt reward. Concerning the maximum expected energy_3alt reward, we investigated the strategy for obtaining
this maximum reward in both models. Interestingly, the strategy in the five-altitudes model includes going to lowmed

altitude if the water visibility is below med_visib. If the water visibility is below med_visib, the managing subsystem
can hinder the AUV from finding the pipeline by continually switching between low and lowmed. To understand this,
note that there is only a probability of finding the pipeline if the current search altitude matches the active navigation

subfeature as, e.g., in Lines 12-15 of Listing 4. If, on the other hand, the current search altitude is different from the
active navigation subfeature, then the AUV will change with probability 1 to the search state corresponding to the
active navigation subfeature, see, e.g., Line 16 of Listing 4, and there is no probability of finding the pipeline during this
transition. Therefore, unless the water visibility drops below lowmed_visib, the managing subsystem in the five-altitudes
model can choose a strategy that increases the energy_3alt reward without enabling it to find the pipeline. It can be
observed that here, again, the scenario and the behaviour of the environment influence how much impact this strategy
can have on the maximal energy_3alt reward. The highest impact can be achieved in Scenario 2 with the asymmetric
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1 l a b e l " unsa fe " = s= r e c o v e r _h i gh | s = recover_medhigh | s = recover_med | s = recover_ lowmed
2 | s = r e cove r _ l ow | s = r e c o v e r _ f o l l ow i n g ;
3 l a b e l " s a f e " = s= l o s t _ p i p e | s = s t a r t _ t a s k | s = s t a r t _ s e a r c h | s = s ea r ch_h igh
4 | s = search_medhigh | s = search_med | s = search_lowmed | s = sea rch_ low
5 | s = found | s = f o l l ow i n g | s =done ;
6

7 Pmin=? [G " s a f e " ] ;
8 f i l t e r ( avg , Pmax=? [ F<=k " unsa fe " ] , " s a f e " ) ;
9 f i l t e r ( min , Pmin=? [ F<=k " s a f e " ] , " unsa fe " ) ;

Listing 7. Analysis of unsafe states

environment where the maximum energy_3alt reward in the five-altitudes model is ≈2.86 times higher than in the
three-altitudes model.

Note that analysing the maximum rewards is a worst-case analysis. Any reasonable adaptation strategy would not
choose to, e.g., maximise the energy consumption by continually switch between altitudes if the goal of the system is to
do a pipeline inspection. Nonetheless, it can be interesting to do this worst-case analysis.

In conclusion, the analysis revealed that the scenario and the environment behaviour can have a big impact on
the expected rewards. It can therefore be beneficial to evaluate a model with different scenarios and environment
behaviours. Furthermore, increasing the granularity of the model by enabling more altitudes at which the AUV can
operate provided lower expected minimum rewards in our model, giving an indication that increasing the granularity
of the model can be beneficial.

5.3 Unsafe States

Thruster failures, although we assume that they can be repaired, pose a threat to the AUV since unforeseen events
like strong currents might cause the AUV to be damaged, e.g., by causing it to crash into a rock. Even though the
possibility of, e.g., a crash is not modelled in our model, we showcase how thruster failure states can be analysed. To
analyse this, the state space was partitioned into two parts, safe and unsafe states. This was achieved by using labels,
see Lines 1–5 of Listing 7 for the labels of the five-altitudes model. The labels of the three-altitudes model only contain
the states present in this model. These labels were then used to calculate the probability of several properties regarding
reachability of safe/unsafe states. Each of the analyses in PRISM took less than half a second.

Safe States. The minimum probability of only taking safe states (see Line 7) was shown to be ≈ 0.65 for Scenario 1
and ≈ 0.32 for Scenario 2 in the two models and with both symmetric and asymmetric environments. As expected,
the probability of only taking safe states is higher for a shorter pipeline inspection. It is interesting to see that the
probability of only taking safe states is influenced by neither the behaviour of the environment nor the number of
possible altitudes of the AUV even though the probability of going to an unsafe state depends on the altitude of the
AUV, i.e., it is higher the lower the altitude of the AUV, see Section 2. The altitude at which the AUV can operate then
depends on the environment. However, it seems that both of them do not influence the probability of only taking safe
states as the results are always exactly the same.

Safe to Unsafe. We analysed this phenomenon further by analysing the probability of going from a safe state to an
unsafe state in the two models with both scenarios and environments. In this way, we hope to find a relation between
probabilities concerning safe and unsafe states and the two models and environments. This is analysed with the property
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Fig. 6. Results for reaching an unsafe state from a safe state in k time steps for Scenarios 1 and 2 with the three-altitudes and
five-altitudes model; more concretely, for a fixed k, the maximum probability of reaching an unsafe state from a safe state is calculated
over all possible resolutions of non-determinism, after which the average value is taken

in Line 8 of Listing 7. First, the maximum probability (over all possible resolutions of non-determinism) for reaching
an unsafe state from a safe state is calculated, and then the average is taken. PRISM experiments allow analysing this
property automatically for a specified range of k, in our experiments, the time steps. The plotted graphs for Scenarios 1
and 2 with the three- and five-altitudes models are displayed in Figure 6. The values for the symmetric and asymmetric
environments were the same so they are not annotated separately.

The graphs show that the probability of reaching an unsafe state from a safe state increases with the number of consid-
ered time steps. Furthermore, in Scenario 2, the probability stabilises much later and at a higher value than in Scenario 1.
While the average probability of reaching an unsafe state from a safe state stabilises after about 42 time steps at ≈0.21 in
Scenario 1, it stabilises after about 70 time steps at ≈0.42 in Scenario 2. As can be seen from the graphs, the differences
between the three- and five-altitudes models are marginal. For example, for Scenario 2, after 50 time steps the prob-
abilities differ by only 0.0022. In conclusion, for these experiments concerning safe and unsafe states, the environment
did not influence the calculated probabilities, and the number of possible altitudes only had a minor effect on them.

Unsafe to Safe. It is also important to ensure that a safe state will be reached from an unsafe state after a short time,
as, e.g., in Line 9, where k is an integer. For every unsafe state, the minimum probability (for all possible resolutions of
non-determinism) of reaching a safe state within k time steps is calculated. Then the minimum over all these probabilities
is taken. Thus, it gives the minimum probability of reaching a safe state from an unsafe state in k time steps. PRISM
experiments showed that for the two models in both scenarios and environments, the probability of reaching a safe state
from an unsafe state is above 0.95 after 5 time steps and above 0.99 after 7 time steps. Thus, for this analysis about safe
and unsafe states, the behaviour of the environment and the number of altitudes again does not influence the result.

5.4 Different Environments

To analyse how distinct implementations of the environment, as described in Section 4.4, influence the difference between
the minimum and maximum rewards for the three- and five-altitudes models, we conducted PRISM experiments with
the models for Scenarios 3 and 4. That is, the probability of currents, which is a parameter in Scenarios 3 and 4, was left
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(a) Symmetric environment (b) Asymmetric environment

Fig. 7. The graphs for minimum expected energy in Scenario 3 where the probability of currents current_prob is left as a parameter;
they show the dependency of the minimum expected energy on the parameter current_prob

(a) Symmetric environment (b) Asymmetric environment

Fig. 8. The graphs for maximum expected energy in Scenario 3 where the probability of currents current_prob is left as a parameter;
they show the dependency of the maximum expected energy on the parameter current_prob

unspecified, and we asked PRISM to plot the graphs for minimum andmaximum energy as in Listing 6. Each of the experi-
ments in PRISM took less than 35 seconds when concerning a step size of 0.01 for the probability of currents. Considering
the same model and scenario, the experiments for minimal energy took less time than the experiments for maximal time,
and the experiments with the symmetric environment took less time than the ones with the asymmetric environment.

Figures 7 and 8 show the plotted graphs for minimum and maximum energy in Scenario 3, respectively, with the
symmetric and asymmetric environments. The dotted lines show the values for the five-altitudes model with energy_5alt

which assigns rewards to all states, including the intermediate ones. The solid lines show the values for the three- and
five-altitudes models with energy_3alt which only assigns rewards to states present in both models. The graphs for
Scenario 4 look similar and are therefore not displayed here.

It can be seen that the five-altitudes model can achieve a lower expected minimal energy reward with both environ-
ments, especially with the energy_5alt reward. Therefore, considering the scenarios and environments described in this
paper, it seems that enabling the AUV to operate at more altitudes provides an advantage. However, the influence of
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Listing 8. Analysis of rewards with parametric probability of currents using Storm

the number of altitudes varies with the chosen environment model. With the asymmetric environment, the difference
between the three- and five-altitudes model decreases much more with an increasing probability of currents compared
to the symmetric environment.

For the maximum expected energy reward, the results for the five-altitudes model are again higher than the ones for
the three-altitudes models. However, with increasing probability of currents, the difference between the results of the
three- and five-altitudes models decreases, with the asymmetric environment they are almost the same with probabilities
of currents above 0.4. Furthermore, for probabilities of currents less than 0.1 with the symmetric environment and less
than 0.3 with the asymmetric environment, the maximum expected energy consumption is very high, independent of
the chosen model. Therefore, one should consider using a different model of the AUV when employing it in scenarios
with low probabilities of currents. If, however, the probability of currents is above 0.3, the experiments suggest that a
higher number of possible altitudes for the AUV could provide an overall better performance: The minimum expected
energy is lower and the maximum expected energy consumption is not so much higher. In future work, it would be
interesting to investigate if these results can be replicated for even more possible altitudes.

5.5 Reward Properties with Varying Probability of Currents

The probability of currents as specified in our scenarios is only an estimate and can also vary depending on the
season. However, the AUV should be able to operate in all different environments with all possible probabilities of
currents. Further, it would be useful to have information on the extreme probabilities of currents for the AUV, i.e., obtain
worst- and best-case probabilities of currents, to schedule pipeline inspection missions depending on the environmental
settings. In this case, it can be useful to leave the probability of currents underspecified, i.e., as a parameter, and analyse
the range of minimum and maximum expected rewards depending on the instantiation of the probability of currents.
Parametric model checking [50] provides dedicated methods to analyse Markovian models where transition probabilities
may involve parameters. While PRISM supports parametric model checking through a reimplementation of the seminal
parametric model checker PARAM [50], recent advancements in the field are mainly achieved within the Storm model
checker [58]. In fact, already predecessors of the parametric engine of Storm clearly outperformed both, PRISM and
PARAM in both functionality and speed [35]. This could also be witnessed in the following experimental studies on
parametrised AUV models, where PRISM was not able to provide results within a reasonable time. With Storm, however,
the analysis of all reported properties took less than 11 seconds where the analysis for the three-altitudes model took
less than 4 seconds.

In the models for parametric model checking, we left the probability of currents as a single parameter. To analyse the
minimum expected energy_3alt reward depending on the instantiation of current_prob, the command in Listing 8 was
used. The binary storm-pars invokes the parametric model-checking engine of Storm that can be used with PRISM files
by specifying the PRISM files to be analysed after --prism. The property to be analysed can be specified after --prop.
Here, the same property as specified in Line 1 of Listing 6 is used. Since the property does not contain a bound for
the reward, we have to specify with --direction min that the reward should be minimised. That is, for all possible
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Table 6. Parametric model checking in Scenario 3 with asymmetric environment for parametric probability of currents with
0.3≤current_prob≤0.8

3-Altitudes 5-Altitudes
Property Direction Result current_prob Result current_prob

energy_3alt
min min 24.7844 0.55 19.1614 0.300015259

max 24.7844 0.55 22.0147 0.799992371

max min 27.9799 0.799999762 28.0336 0.799999523
max 239.8359 0.300003815 545.114 0.300007629

energy_5alt
min min N/A N/A 24.4879 0.30012207

max N/A N/A 24.7843 0.76875

max min N/A N/A 30.8068 0.799998093
max N/A N/A 621.3432 0.300007629

time
min min 23.7638 0.30012207 23.5507 0.300061035

max 23.8936 0.7375 23.8937 0.76875

max min 25.4847 0.799996185 28.3323 0.799996185
max 97.5207 0.300003815 226.3386 0.300007629

instantiations of current_prob, Storm computes the minimal expected reward for energy_3alt, providing an interval of
values whose lower bound is given. The upper bound can be found by using --direction max.

Storm supports several different engines for storm-pars which are called modes and have to be specified after --mode.
In the experiments, we use the feasibility mode to find parameter values such that the specified property holds. In the
feasibility mode, either parameter lifting (pla) [72] or gradient decent (gd) can be used and specified after --feasibility:
method. The --region option can be used to specify the region of the parameter, and --guarantee to specify how close
the result should be to the optimal value.

We used Scenario 3 with the asymmetric environment and parametric probability of currents for parametric analysis
where we restricted the probability of currents to be between 0.3 and 0.8. The used interval for the probability of
currents is an estimate and can be made more realistic by consulting domain experts. Similarly to the command in
Listing 8, we analysed the minimum and maximum rewards for energy_3alt, energy_5alt and time both in minimum
and maximum direction, providing an interval of possible values for each of them.

The results of the analysis are reported in Table 6 and are two-fold: they provide an interval of possible values for
each property and optimal values for the probability of currents to minimise or maximise the property. Consider for
example minimising the energy_3 reward for finishing the pipeline inspection as in Line 1 of Listing 6. The results of the
analysis can be found in the first two lines of Table 6 where the “min direction” provides the lower bound of possible
values, and the “max direction” an upper bound. Therefore, in the three-altitudes model, the energy_3alt reward is
always 24.7844, whereas it is in the interval [19.1614, 22.0147] in the five-altitudes model with the lower bound achieved
with current_prob≈0.3 and the upper bound achieved with current_prob≈0.8. Thus, the lower and upper bounds in the
five-altitudes model are achieved with the minimal and maximal possible value of current_prob.

Note that the results of Table 6 are also reflected in the graphs of Figures 7b and 8b. As an example, consider the
maximum energy_3alt reward in the three-altitudes model. Table 6 shows that the minimum of all maximal rewards
(with probability of currents between 0.3 and 0.8) is achieved with a probability of currents of almost 0.8 at a value
of approximately 24, and the maximum of all maximal rewards is achieved with a probability of currents of ≈ 0.3 at
a value of ≈ 239. The red line in Figure 8b also shows these values. However, while PRISM experiments provide a
way to see how one or several parameters influence the model over the whole parameter space, parametric model
checking with Storm focuses on computing only the extreme values. With both techniques, it is possible to specify how
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Listing 9. Multi-objective queries

close one wants to be to the optimal solution. In the case of parametric model checking with Storm, this can be done
explicitly by defining a guarantee, while it can only be done implicitly with PRISM experiments by setting the step size
for the parameter. When using PRISM experiments, the (close to) optimal result has to be determined by inspecting
the calculated values which can be tedious. Parametric model checking with Storm, on the other hand, provides this
information by default. Therefore, depending on the required results, one or the other technique should be chosen.

We only display the results for Scenario 3 with the asymmetric environment here to give a taste of the possible
analysis. Analysing the same properties with Scenario 3 and the symmetric environment or with Scenario 4 is possible
but takes much more time. For example, the analysis in Listing 8 for Scenario 3 with the asymmetric environment took
less than two seconds, while it took approximately 25 minutes for Scenario 4 with the same environment. Since Scenario 4
represents a longer pipeline inspection than Scenario 3, the model is much bigger which could explain this difference.
However, further investigation is needed to explain why the analysis with the symmetric environment is so much slower.

It would also be interesting to use parametric model checking with a completely parametric scenario. However,
the values of min_visib and max_visib are used to calculate the thresholds for changing between the search altitudes.
Therefore, they cannot be left unspecified, making parametric model checking with a completely parametric scenario
unfeasible for our case study.

5.6 Multi-ObjectiveQueries

The queries considered until now only considered one property at a time. For example, in Section 5.2, we asked for the
minimum and maximum time and minimum and maximum energy rewards for finishing a pipeline inspection. However,
intuitively, there is a trade-off between finishing the pipeline inspection in a short time (minimising the reward time)
and consuming less energy (minimising the rewards energy_3alt and energy_5alt). To minimise time, one wants to go
to a higher altitude if possible because the probability of finding the pipeline is higher. On the other hand, switching
between altitudes takes a lot of energy and should be avoided when minimising the energy rewards. Therefore, it is
interesting to analyse the time and energy rewards in combination, which can be done using multi-objective queries.

PRISM and Storm allow three different types of multi-objective queries7 8: (1) achievability queries, asking whether it
is possible to achieve two properties at the same time, (2) numerical queries, leaving the threshold of one property open
and asking for the optimal value of the threshold, and (3) Pareto queries, where both thresholds are open. To analyse
the trade-off between time and energy rewards we employed the probabilistic model checker Storm, as it provided
superior functionality and performance for multi-objective analysis compared to PRISM. For all analyses in this section,
we used the three-altitudes model with Scenario 1 and asymmetric environment to exemplify the possible analyses. The
multi-objective analysis in Storm took at most a bit more than a millisecond.

7https://www.prismmodelchecker.org/manual/PropertySpecification/Multi-objectiveProperties
8https://www.stormchecker.org/documentation/background/properties.html#multi-objective-model-checking
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Achievability Queries. First, we wanted to know if there really is a trade-off between minimising time and energy. To
analyse this, we used the property in Line 1 of Listing 9 for the achievability query. This represents the question: “Does
there exist a strategy for finishing the inspection such that the expected time reward is less than or equal to 23.8918
and the expected energy_3alt reward is less than or equal to 24.7845?”. The values used in this query are close to the
optimal values as reported in Table 5. The result of this query is false, so it is not possible to finish the inspection with
both minimal time and minimal energy. However, if we change the values to 23.9 for the reward time and to 24.8 for
the reward energy_3alt, then the result is true. Thus, even though it is not possible to achieve minimal time and energy,
it is almost possible.

Numerical Queries. Using numerical queries, we can determine how close to optimal the strategy can be. More
specifically, we ask the following question: “What is the minimal expected time reward for finishing the inspection over
all strategies for which the expected energy_3alt reward for finishing the inspection is less than or equal to 24.7845?”, see
Line 2 of Listing 9. The result is ≈ 23.8937 which differs from the optimal result by less than 0.002. It is also interesting to
know themaximum time reward given an almost optimal energy_3alt reward. This is achieved by replacing R{"time"}min
with R{"time"}max in Line 2. Interestingly, the result only differs from the minimal time reward by ≈ 0.00007.

Similarly, we analysed the minimal and maximal expected energy_3alt reward over all strategies for which the
expected time reward is less than or equal to 23.8918, which both returned ≈ 24.7893 as a result. Thus, also in this case,
the difference between the optimal and the expected value is minimal and the minimal and maximal expected rewards
are the same.

Pareto Queries. The previous paragraphs described how to determine whether two properties can be achieved at the
same time, and how well one property can be achieved given a threshold for the second property. Another interesting
problem is to leave the thresholds for both properties open and ask for the achievable and Pareto-optimal points, we
only consider them informally here and refer the interested reader to [43, 73] for additional explanations.

Consider the case where we want to minimise two objectives as before in this section. Informally, a point 𝑃 = (𝑥,𝑦)
is achievable, if there exists a strategy such that the expected value for the first objective is less or equal to 𝑥 and the
expected value for the second objective is less or equal to 𝑦. The point 𝑃 is Pareto-optimal if it is achievable and every
point 𝑃 ′ = (𝑥 ′, 𝑦′) ≠ 𝑃 with 𝑥 ′ ≤ 𝑥 and 𝑦′ ≤ 𝑦 is not achievable. To analyse achievable and Pareto-optimal points, we
used the property in Line 3 of Listing 9 which also gives the files for plotting the achievable and Pareto-optimal points
as shown in Figure 9.

The five Pareto-optimal (time, energy_3alt) points computed by Storm are:

(23.89184492, 24.78901283), (23.89174364, 24.7958376), (23.89373384, 24.78443418),
(23.89280945, 24.78621552), (23.89338681, 24.78505311)

Comparing these pairs with the (non-achievable) optimal pair (23.89170189, 24.78439125), we see that the time reward
diverges by at most 0.00203195 and the energy_3alt reward by at most 0.01144635, and the sum of the pair has at most
a difference of 0.0114881 to the optimal pair. Therefore, contrary to our initial intuition, it is almost possible to achieve
the optimal result for both minimal time and minimal energy.

6 RELATEDWORK

The analysis of behavioural requirements is often crucial when developing an SAS that operates in the uncertainty of a
physical environment. These requirements often use quantitative metrics that change during runtime. Both rule-based
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Fig. 9. Achievable points for minimising the rewards time and energy_3altwith the three-altitudesmodel, Scenario 1 and asymmetric
environment

and goal-based adaptation logics can be used to enable the SAS to meet its behavioural requirements. Many practitioners
rely on formal methods to provide evidence for the system’s compliance with such requirements [65, 87], also outside
the context of SASs [7], but a plethora of different methods are used [2, 56]. Recently, AUV behaviour was modelled
and analysed with timed automata and UPPAAL [75].

6.1 SPLs for Self-Adaptive and Robotic Systems

SPLs have previously been proposed to model variability for robotic systems, focusing on static variability modelled
during design time [46]. In [18], it is argued that most of the costs for robotic systems come from non-reusable software.
A robotic system mostly contains software tailored to the specific application and embodiment of the robot, and often
even software libraries for common robotic functionalities are not reusable, so they must be re-developed all the time.
Thus, they proposed a new approach for the development of robotic software using SPLs. For robotics, the authors
in [46] propose the toolchain HyperFlex to model robotic systems as SPLs; it supports the design and reuse of reference
architectures for robotic systems and was extended with the Robot Perception Specification Language for robotic
perception systems in [20]. It allows to represent variability at different abstraction levels, and feature models from
different parts of the system can be composed in several different ways. However, contrary to the approach used in this
paper, HyperFlex only considers design time variability. Furthermore, it is only used for modelling robotic systems, not
for analysing them.

Dynamic SPLs (DSPLs) have been proposed to manage variability during runtime [33, 49, 51, 57]. Several approaches
model SASs as DSPLs to account for runtime variability such as, e.g., [15, 30, 36, 47, 52, 63, 78]. These approaches focus
on modelling SASs using DSPLs and not on formal analysis. DSPLs have also been proposed to manage variability
during runtime in the context of self-adaptive robots [19].
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6.2 Family-Based Model Checking

The benefits of family-based model checking using an annotative approach are outlined in the aforementioned seminal
work on FTSs by Classen et al. [25, 26, 28]. Properties of FTSs can be verified by dedicated family-based model-checking
tools such as SNIP [24], ProVeLines [31], fNuSMV [25], and FTS4VMC [8]. Based on this work on FTSs, several other
approaches with various modelling languages and formalisms have been proposed [10, 16, 44, 85]. Furthermore, well-
knownmodel checkers have beenmade amenable to family-based model checking by suitable abstractions and encodings
applied to the input languages of, e.g., PRISM [23, 42], Maude [64], SPIN [38, 39], mCRL2 [9, 13], and NuSMV [37]. A
clear advantage of relying on such well-established and highly optimised model checkers is to avoid having to maintain
dedicated SPL model checkers.

Also parametric model checking [34, 50] has been used for the family-based analysis of SPLs [48, 77]. While we
use the techniques to synthesise optimal parameters for a SAS environment, the existing techniques use probability
parameters to encode variability.

In this paper, we used ProFeat [23], a software tool built on top of the de-facto standard input language of PRISM for
the analysis of feature-aware probabilistic models. ProFeat hence enables all functionalities provided by the probabilistic
model checkers PRISM [62] and Storm [54] also for feature-oriented systems, including analyses by statistical, parametric,
and probabilistic model checking. Besides ProFeat, also QFLan [11, 84] offers a powerful modelling language and tool
to analyse quantitative SPLs, focusing on probabilistic simulations to yield statistical approximations, trading 100%
precision for scalability.

6.3 Feature-Oriented Analysis of SASs

Dubslaff et al. [42] modelled and analysed a self-adaptive energy-aware server system using feature-oriented formalisms.
There, the feature controller for dynamically switching features only sets constraints on self-adaptation and does not
actively perform the adaptation actions as the managing subsystem does in our paper. Chrszon et al. [21] have modelled
and analysed SASs using feature-oriented approaches by means of multi-product lines. Specific for their approach is
the concept of roles that correspond to features but besides activating (“admitting a role”) also distinguish actively
performing role actions (“role playing”). While not explicitly separating managed and managing subsystem, their role
manager takes on the purpose of managing subsystem and allows for multiple managed subsystems (e.g., multiple
robots in a production pipeline). This approach has also been extended to the quantitative setting and family-based
model checking was used to analyse the reliability of a self-adaptive robotic cell [22].

7 DISCUSSION AND FUTUREWORK

In this paper, we have demonstrated how a self-adaptive AUV system can be modelled and analysed using feature-
oriented approaches. To this aim, we considered a two-layered SAS architecture of a self-adaptive AUV used for pipeline
inspection. The variability of the managed subsystem was modelled as a feature model and the behaviour of the resulting
(feature) configurations was modelled as a probabilistic (featured) transition system that also encodes the transitions
between configurations. The managing subsystem was modelled as a feature controller switching between features and
thereby enabling different behaviour (i.e., operation modes) of the managed subsystem.

We modelled the case study in the tool ProFeat and used it for family-based probabilistic model checking of both
reward and safety properties via both PRISM and Storm. In particular, we analysed safety guarantees concerning an
AUV’s mission duration and energy usage as well as concerning the reachability of (un)safe states, the impact that
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different environments have on these safety guarantees, to what extent environmental conditions affect the AUV,
and trade-offs between mission duration and energy usage. For a more realistic analysis of a AUV, both the models
of the AUV and of the environment, and in particular the probabilities, will have to be adapted to the robot and the
environment with the help of real data and domain experts. The models will have to be extracted from the real system
at the correct level of abstraction for verifying the desired properties. We plan to further investigate this together with
an industrial partner of the MSCA network REMARO (Reliable AI for Marine Robotics).

7.1 Using SPL Techniques for Modelling and Analysing SASs

In this paper, we have used a feature-oriented approach for modelling and analysing the two-layered self-adaptive AUV.
This allowed us to model the managed subsystem of the AUV as a family of systems (or products), where each family
member corresponds to a valid configuration of the AUV. The managing subsystem could then be considered as a control
layer capable of dynamically switching between these feature configurations depending on both environmental and inter-
nal conditions. ProFeat was used for probabilistic family-based model checking, analysing reward and safety properties.

The ProFeat tool allowed us to directly model the two different layers of the SAS, the managed and managing
subsystem, which also makes it easier to understand the model as well as the adaptation logic. Furthermore, it made
analysing all configurations of the managed subsystem more efficient by enabling family-based (SPL) model checking.
However, it remains to be seen how this scales with larger models than the ones considered in this paper. Alternatively,
it would also be possible to model the case study without a feature-oriented approach by encoding the features as
variables. Besides others, the transitions of the managed and managing subsystem, which would then use these variables,
would need to explicitly take care of staying within valid feature configurations. ProFeat conducts this approach in an
automated manner, internally transforming the feature-oriented model into a PRISM model agnostic to features. The
theoretical underpinning of this transformation requires several technicalities, which are difficult to ensure when done
manually [41]. Even in our small case study, the number of transitions in the managed subsystem increased from 44 to 351
when transforming the ProFeat model into a PRISM model. This increase is mainly due to the required synchronisation
between the managed and managing subsystems, where a correct modelling is ensured by the transformations.

A particular aspect of our work is the use of a two-layeredmodel to analyse self-adaptation in the managing subsystem
of the AUV. This allows us to not only model and analyse a family of configurations of the managed subsystem by
means of family-based model checking, but also model and analyse the self-adaptation strategy by means of a feature
controller which switches between these configurations depending on the so-called uncertainties of the uncontrolled
environment in which the AUV operates. This feature controller, which dynamically changes between products in the
configuration space of the managed subsystem, has similarities to variability management in dynamic SPLs; in our
work, we explore this approach to not only model but also analyse self-adaptive behaviour in AUVs. Our case study
suggests that family-based modelling and analysis of SASs using ProFeat and (probabilistic) model checking is both a
very natural and feasible approach.

The case study in this paper is of course an abstract model of an AUV and its mission. However, we showed through
an extensive set of analyses that it is feasible to model and analyse a two-layered self-adaptive cyber-physical system as
a family of configurations with a controller switching between them.

7.2 Future Work

In the future, we plan to investigate which kinds of SASs can be modelled and analysed following the overall approach
applied to this case study, aiming to propose a general methodology for modelling and analysing SASs as family-based
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systems. Furthermore, we plan to find optimal strategies for the managing subsystem, i.e., the controller switching
between features to, e.g., minimise energy consumption. We would also like to find patterns between choosing a certain
feature configuration and the effect of this choice on quality criteria for the system. Finding such control patterns could
help to improve the adaptation logic of the managing subsystem to be more resilient towards faults. Another interesting
research direction would be to include the model into a real system and update, e.g., the probabilities using real-time
information. Then the model could be run regularly to re-verify system properties upon model updates. Finally, we
would like to investigate how our approach scales with larger system models than the ones considered in this paper.
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