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Abstract: Through photosynthesis, forests absorb annually large amounts of atmospheric CO2.
However, they also release CO2 back through respiration. These two, opposite in sign, large fluxes
determine how much of the carbon is stored or released back into the atmosphere. The mean seasonal
cycle (MSC) is an interesting metric that associates phenology and carbon (C) partitioning/allocation
analysis within forest stands. Here, we applied the 3D-CMCC-FEM model and analyzed its capability
to represent the main C-fluxes, by validating the model against observed data, questioning if the
sink/source mean seasonality is influenced under two scenarios of climate change, in five contrasting
European forest sites. We found the model has, under current climate conditions, robust predictive
abilities in estimating NEE. Model results also predict a consistent reduction in the forest’s capabilities
to act as a C-sink under climate change and stand-aging at all sites. Such a reduction is predicted
despite the number of annual days as a C-sink in evergreen forests increasing over the years, indicating
a consistent downward trend. Similarly, deciduous forests, despite maintaining a relatively stable
number of C-sink days throughout the year and over the century, show a reduction in their overall
annual C-sink capacity. Overall, both types of forests at all sites show a consistent reduction in their
future mitigating potential.

Keywords: carbon cycle; climate change; process-based model; mean seasonal cycle; forest ecosystems

1. Introduction

Forests play a pivotal role in the biosphere–atmosphere feedback by annually absorb-
ing large amounts of atmospheric CO2 through photosynthesis (GPP; ~150 PgC year−1)
and releasing it back because of, e.g., ecosystem respiration (Reco), a relatively close amount
yet not necessarily equal, which varies year by year [1–3]. The net ecosystem exchange
(NEE) of CO2 between ecosystems and the atmosphere is the net balance between these
two gross fluxes opposite in sign, and it governs much of the overall terrestrial annual net
carbon (C) budget. Imbalances between CO2 sources (even including carbon lost by fires
and other processes) and sinks directly increase or decrease atmospheric CO2 levels [4].
Terrestrial ecosystems—and forests in particular—are contributing substantially to climate
change mitigation, provided that they are C-sinks and not C-sources [5]. Forests that might
absorb more than they emit are commonly considered carbon sinks (with NEE-negative in
sign), while if they emit more than they absorb are considered as carbon sources (with NEE-
positive in sign). The magnitude of this exchange of CO2, however, is subject to substantial
variability and trends, in large part as a response to variations and trends in climate [6].
Indeed, forests have been shown to be extremely sensitive to changes in environmental
conditions (e.g., climate, seasonality, atmospheric CO2 concentration, nitrogen deposition),
to aging [7,8], and to disturbances [9], including management practices [10,11], which can
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control both photosynthesis and respiration. Therefore, estimating NEE, GPP, and Reco is
a key step for better understanding the underlying mechanisms constraining ecosystem
functioning [12].

Europe and the Mediterranean are expected to become in the near future a ‘Hot Spot’
of climate change [13–16]. The literature reports that under climate change scenarios forests
are expected to grow faster, to mature earlier but also to die younger, curtailing their life
span [17], because of, mainly, warming and increased atmospheric CO2 concentration (the
so-called ‘CO2-fertilization effect’) [18]. Conversely, there is a general lack of evidence
and knowledge on how, overall, forest ecosystems will, on the whole, react to climate
change. Forest carbon balance will be impacted by climate change because various main
processes are impacted, which, in turn, may react and respond differently to climate
change, also because they are vulnerable and sensitive to separate environmental drivers.
Indeed, while an extensive line of evidence shows that the increased availability of CO2
may amplify the photosynthetic rate and assimilation capacity [19], such an increase
is largely debated since there is no evidence that such positive changes will generally
continue indefinitely [20,21]. Similarly, the effects of warming are largely discussed because,
while it is documented that some species may take advantage of a longer vegetation
season (e.g., deciduous species), there are also negative effects linked to warming such as
heat waves and the often-associated drought events [22,23], including late frost [24] and
disturbances [25], which can be detrimental to growth till tree survival. In addition, there
is a general concern that the changing temperature response of respiration turns boreal
forests from carbon sinks into carbon sources [26]. Indeed, warming has also been found
to accelerate both autotrophic as well as heterotrophic respiration (the two components
of ecosystem respiration), meaning that increased temperature may lead forests to release
more carbon, potentially more than absorbed annually [27]. Conversely, drought has been
shown to reduce microbial respiration and then heterotrophic respiration [28]. How these
processes (i.e., photosynthesis and ecosystem respiration) will be impacted by climate
change annually will determine much of the future forest annual C-budget.

The Mean Seasonal Cycle (MSC) metric, which reflects the average distribution of flux
(i.e., NEE, GPP, and Reco) throughout the days of a year, is an insightful measure linking
phenology with carbon partitioning and allocation within seasonal climatic variability. By
capturing the typical fluctuations in a specific region due to changing seasons, the MSC
highlights the expected seasonal changes in climate data, averaged over many years, to
smooth out anomalies and emphasize the regular, cyclical nature of these changes. Many
studies [29–32] have indeed shown that climate change will impact both the phenology
by changing the date for the beginning and the end of the growing season, as well as by
changing the shape of the Leaf Area Index (LAI) distribution over the year, which, at the
same time, will influence the way, among the other things, when photosynthesis can start
and how recent and old photosynthates are partitioned and used to build new tissues and
to replenish the reserves used for the metabolism, as well as carbon allocation [33] and the
C-dynamic.

Process-based models are valuable tools to understand how and to what extent future
climate change will impact these two fluxes (GPP and Reco) in the MSC, both processes
being controlled by warming and changes in precipitation regime and atmospheric CO2
concentration [34,35]. Here, we at first applied and validated, under current observed cli-
mate conditions, the ‘Three Dimensional–Coupled Model Carbon Cycle–Forest Ecosystem
Module’ (3D-CMCC-FEM), a biogeochemical, biophysical process-based forest ecosystem
model designed to simulate carbon, nitrogen, and water cycle in forest ecosystems and,
secondly, under climate change conditions.

Specifically, we question and analyze: (1) the capability of the 3D-CMCC-FEM to
represent under the current climate the main C-fluxes governing the C-cycle in terms of net
ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration
(Reco), by validating the model against independent data from the Fluxnet network; and,
provided that the model is close to the observed data; (2) how, and if, the sink/source mean
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seasonality will be influenced under two locally bias-corrected scenarios of warming (RCP
2.6 and 6.0) and atmospheric CO2 enrichment from three CMIP5 Earth System Models,
within ISIMIP-PROFOUND initiative, in five well-studied and long-monitored contrasting
forest sites (three evergreens and two deciduous) on a longitudinal transect through Europe
up to the end of the century.

2. Materials and Methods
2.1. Model Description (3D-CMCC-FEM ‘v.5.6’)

The ‘Three Dimensional–Couple Model Carbon Cycle–Forest Ecosystem Module’
(hereafter ‘3D-CMCC-FEM’) is a biogeochemical, biophysical, process-based forest ecosys-
tem model (see [10,11,36–44] and reference therein). The model is designed to simulate
carbon, nitrogen, and water cycles in forest ecosystems at commonly 1-hectare spatial
resolution and the main eco-physiological processes (e.g., photosynthesis) at daily temporal
resolution. The most recent code versions since Collalti et al. [17] adopt the biogeochemical
photosynthesis model of Farquhar, von Caemmerer, and Berry [45] to compute gross pri-
mary productivity (GPP). The biogeochemical photosynthesis model is parameterized as in
Bernacchi et al. [46,47] and temperature acclimation for leaves as in Kattge and Knorr [48].
The 3D-CMCC-FEM considers, as in De Pury and Farquhar [49], light interception, reflec-
tion, transmission, and assimilation (and leaf respiration) for both sun and shaded leaves.
Autotrophic respiration (RA) is computed mechanistically following the ‘Growth and Main-
tenance Respiration Paradigm’ (GMRP; [50]), which is divided into the metabolic costs for
synthesizing new tissues (growth respiration, RG) and the metabolic costs for maintaining
the existing ones (maintenance respiration, RM). In 3-D-CMCC-FEM, the maintenance
respiration is based on Nitrogen amount (a fixed fraction of carbon mass varying between
the six tree compartments) and is temperature-controlled by a standard Arrhenius relation-
ship [36]. ‘Type I’ and ‘Type II’ acclimation of respiration to temperature (i.e., short- and
long-term acclimation; [10,39,51]) are also accounted for. Any imbalance between carbon
assimilation and carbon losses because of plants’ respiration is buffered by a seventh pool,
the Non-Structural Carbon pool (NSC; starch and sugars undistinguished), which has
priority in the carbon allocation all over the year. The net primary production (NPP) is the
GPP minus RA. Biomass production (BP) is the amount of NPP not used for replenishing
the NSC pool. Indeed, other forms of non-structural carbon losses (e.g., biogenic volatile
organic compounds, BVOCs, or root exudates to mycorrhizas) are not accounted for by the
model. The phenological scheme, as well as the carbon partitioning/allocation scheme,
distinguished for deciduous and evergreen tree species, is in-depth described in Collalti
et al. [10,36,39,52]. Heterotrophic respiration follows a BIOME-BGC-like approach (which
follows the CENTURY model; [53,54]) distinguishing decomposition for litter and soil pools
with each of the four different conceptual pools characterized by different decomposability
degrees (i.e., fast, medium, slow, and a recalcitrant carbon pool) [39,55]. Altogether, litter
and soil decomposition emissions form heterotrophic respiration (RH), which, summed up
to RA, constitutes ecosystem respiration (Reco). Net ecosystem exchange (NEE) is equal to
Reco minus GPP. Therefore, negative values indicate carbon uptake from the atmosphere
(i.e., the system acts as a C-sink, NEE < 0), and positive values indicate carbon release
(i.e., the system acts as a C-source, NEE > 0). The 3D-CMCC-FEM’s sensitivity to its 54
species-specific parameters and how it varies along the forest development and under
climate change is described in Collalti et al. [17].

In the present study, we used version 5.6 [41], which slightly differs from v.5.5, de-
scribed in Collalti et al. [8] and Dalmonech et al. [11], for a new scheme (and relative
parameterization) for sapwood and live wood turnover and dynamics and some additional
new forest management schemes (not used here) described in Testolin et al. [43].
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2.2. Case Study Areas

Five case studies were selected as representative of the main European forest species
(and climate) and at the same time because of long-monitored sites and part of the
Fluxnet network [56], the ISIMIP (Inter-Sectoral Impact Model Intercomparison Project, [57];
https://www.isimip.org/, accessed on 1 January 2020) initiative and the PROFOUND
database [42,58,59]: the temperate European beech (Fagus sylvatica L.) forest of Collelongo,
Italy (IT-Col), and of Sorø, Denmark (DK-Sor), the maritime pine (Pinus pinaster Ait.) forest
of Le Bray, France (FR-Lbr), the boreal Scots pine (Pinus sylvestris L.) forest of Hyytiälä,
Finland (FI-Hyy), and the temperate Norway spruce (Picea abies (L.) H. Karst) forest of Bílý
Křìž, Czech Republic (CZ-Bk1) (Figure 1). Stand characteristics are described in Table 1.
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Table 1. Site description and stand initialization data are used in simulations with data from the PROFOUND database [58]. Model initialization data (e.g., diameter
at breast height—DBH, tree height, stand age, and stand density) correspond to the stand conditions of the first year in the historical simulations.

Fluxnet
Code Nation Site

Name

Coordinate
Climate Species

Composition

Period of Simulation
and Climate Data Mean DBH Tree Height Mean

Stand Age
Stand

Density
Lat (◦) Lon (◦) Elevation (m) Historical

(Observed)
Historical + RCP

(Modeled) (cm) (m) (years) (n. trees ha−1)

IT-Col Italy Collelongo 41.8 13.6 1560 Temperate Fagus sylvatica 1997–2014 1997–2099 20.2 17.3 105 900
FR-LBr France Le Bray 44.7 –0.8 61 Temperate Pinus pinaster 1996–2008 1997–2099 26.7 17.8 26 614
FI-Hyy Finland Hyytiälä 61.9 24.3 181 Boreal Pinus sylvestris 1996–2014 1997–2099 13 11.3 35 870

CZ-Bk1 Czech
Republic Bílý Kříž 49.3 18.3 875 Temperate Picea abies 2000–2008 1997–2099 9.1 7.5 19 2388

DK-Sor Denmark Sorø 55.3 11.4 40 Boreal Pinus sylvestris 1996–2008 1997–2099 24.3 21 75 353
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2.3. Input, Meteorological Data, and Climate Change Scenarios

To run, 3D-CMCC-FEM needs a set of input data from state variables representing
the stand at the beginning of simulations and that account for structural characteristics
(e.g., tree height, average age, diameter at breast height; see Table 1) as well as carbon
and nitrogen pools (e.g., stem carbon and nitrogen); meteorological forcing data (e.g.,
daily maximum and minimum temperature, daily precipitation); annual atmospheric CO2
concentrations; and species-specific parameters (e.g., maximum stomatal conductance). All
the data used to initialize the model in the present study for the five stands come from
the ISIMIP initiative and the PROFOUND database [58]. More specifically, daily observed
meteorological data for model validation come from the Fluxnet2015 Dataset [56], while
daily modeled historical (1997–2005) and future climate scenarios (2006–2099) are those
from the ‘ISIMIP 2bLBC’ experiments (‘2b experiments Locally Bias Corrected’) coming
from three different Earth System Models (ESMs; GFDL-ESM2M, IPSL-CM5A-LR, and
MIROC5, respectively) based on the Climate Model Intercomparison Project 5 (CMIP5)
driven by two Representative Concentration Pathways (RCPs) of atmospheric greenhouse
gas concentration trajectories, namely, RCP 2.6 and RCP 6.0. [61,62]. The ISIMIP 2bLBC have
the same structure as those in the 2b experiments but have been corrected by improving
the method described in Hempel et al. [63] and subsequently by the methods described
in Frieler et al. [57] and Lange [64] using the observed meteorology at the local level [58].
Therefore, the 2bLBC climate data represent the more consistent and closer modeled
climate data with the observational data. The annual atmospheric CO2 concentrations
for the historical period are based on Meinshausen et al. [65] and have been extended for
the period from 2006 to 2015 with data from Dlugokencky and Tans [66]. Values specific
for each RCP for the period 2016 to 2099 are also based on Meinshausen et al. [65] and
were used within the Farquhar, von Caemmerer, and Berry [45] photosynthesis model with
values varying, at the end of this century, from 421.4 µmol mol−1 (RCP 2.6) to 666.4 µmol
mol−1 (RCP 6.0), respectively. NEE, GPP, and Reco data, for model validation, come from
the Fluxnet2015 Dataset [56]. Other variables have been validated at these forest stands
in the past (although using slightly different model versions) and described in Collalti
et al. [8,10,37], Marconi et al. [40], Mahnken et al. [42], and Dalmonech et al. [11].

2.4. Model Runs, Validation, and Mean Seasonal Cycle Analyses under Climate Change

The model simulations for model validation under measured forcing climate ran for
CZ-Bk1 from 2000 to 2008, for IT-Col from 1997 to 2014, for FI-Hyy from 1996 to 2014, for
FR-Lbr from 1996 to 2008, and for DK-Sor from 1996 to 2008 (see Table 1). For all sites
model simulations under climate change scenarios began in 1997 and finished in December
2099. Model validation was performed by comparing modeled NEE, GPP, and Reco against
measured eddy covariance estimates (for GPP and Reco using the night-time method with
constant USTAR [67], as reported in the Fluxnet2015 Dataset [56].

To analyze 3D-CMCC-FEM’s capabilities to simulate NEE, GPP, and Reco for daily
and monthly time series, a set of commonly used statistical metrics have been applied
to compare measured vs. modeled data (under observed climate forcing). To avoid
considering bad quality data, a filtering procedure for quality-check has been applied; days
with less than 60% of valid data were not considered and excluded both in the model and
in the observed datasets. Therefore, daily NEE, GPP, and Reco eddy covariance data with
low-quality values (i.e., less than 0.6; [68]) were removed. Consequently, the corresponding
daily modeled data were removed too. The monthly NEE, GPP, and Reco values (both
from eddy covariance and the model) were aggregated from the daily ones. The common
statistic we applied includes Pearson’s correlation coefficient (r), Relative Mean Bias (RMB),
Normalized Root Mean Square Error (NRMSE), and Modeling Efficiency (ME)

In climate change projections, we considered the potential modifications in the ability
of forest stands to absorb or emit carbon throughout the season and across the years under
two different locally bias-corrected climate change scenarios, each coming from three
Earth System Models. This involves averaging the daily values of the MSC of the three
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fluxes considered. It is noteworthy that NEE represents the equilibrium between carbon
absorption by vegetation during photosynthesis and carbon release through vegetation
and microbial respiration. Not only the length of the growing season but also the balance
between the yearly amount of photosynthesis and Reco has been shown to control much of
the variability across the sites and the decades analyzed [47,49]. This calculation is derived
from the variance between GPP and Reco encompassing both autotrophic respiration (RA,
including ground components) and heterotrophic respiration (RH) [69].

Under climate change scenarios, we account for potential changes in the sink/source
capacity of the stands during the season by averaging NEE, GPP, and Reco values every
ten years up to 2100 [70] and accounting for changes in the sink/source and source/sink
length during the year, computed as the number of total days of the year (DoY) where a
forest stand behaves as a C-sink (GPP > Reco with NEE < 0) or a C-source (GPP < Reco with
NEE > 0), as described by the NEE. In addition, we also account for the changes in the
DoY where NEE changes its sign at least for ten consecutive days to avoid artifact effects
of pulsing, e.g., the ‘Birch effect’ on Reco [71], and to account for unstable conditions and
no clear source/sink and sink/source seasonal transition during the year. Therefore, we
discuss changes in the MSC under the RCP 2.6 and RCP 6.0 for NEE, being the net result
of opposite fluxes (i.e., GPP and Reco), through its changes in negative values, i.e., days in
the year where NEE < 0 and describing CO2 uptake from the atmosphere, and positive,
i.e., days in the year where NEE > 0 and describing CO2 release to the atmosphere. In
this way, we account for potential changes that may lead to anticipations or delays in the
switch from source/sink and sink/source capacity, which often happens during spring and
autumn during the year. The analyses under climate change scenarios (2006–2099) also
include the changes in the shape of the Mean Seasonal Cycle (MSC) for NEE, GPP, and Reco
values and for the changes (both in the absolute and the percentage values) in the annual
value. Changes in MSC were estimated on the ten-year average values using the 1998–2008
decade as a benchmarking reference. Furthermore, we account for changes in the annual
values of NEE, GPP, and Reco due to climate change.

3. Results
3.1. Model Validation vs. Fluxnet Data

The NEE, GPP, and Reco, as modeled by 3D-CMCC-FEM, exhibit strong correlations
with the observed daily and monthly eddy covariance data and for the overall MSC across
all five sites (Figures 2 and A1 and Tables A1–A3 in Appendix A). Some slight differences
are observed for the daily values for temperate European beech forests of IT-Col and DK-Sor
when representing the NEE and Reco between the 100 and 200 DoY (Figure 2(1.a–1.c) and
Figure 2(5.a–5.c)). Modeled overestimations for GPP of about 5 gC m−2 day−1 at the peak
of production (~180 DoY) for both the European beech forest at IT-Col (Figure 2(1.b)) and
the maritime pine forest at FR-Lbr (Figure 2(2.b)) was observed. The highest correlation
coefficients between modeled and observed data were observed for DK-Sor and IT-Col
(r = 0.97 and 0.96, respectively) for the daily NEE and GPP (Table A1, Appendix A), while
FI-Hyy shows the best correlation for daily Reco (r = 0.94) and monthly NEE (r = 0.99)
(Tables A2 and A3).

At the IT-Col and CZ-Bk1, the model shows the best performances in simulating NEE
(RMB = 0.07 and 0.14, respectively—Table A1), while the lowest values were reached by
DK-Sor and IT-Col for the GPP (RMB ranging between −0.06 and 0.55, Table A2). Overall,
RMB values for GPP are relatively low across all case studies and time scales. Regarding
Reco at FI-Hyy and DK-Sor, the model tended to underestimate both daily (RMB of −0.3 and
−0.42, respectively) and monthly (−0.29 and −0.42, respectively). Conversely, at IT-Col,
the model exhibited a slight overestimation (RMB daily 0.82 and monthly 0.77, Table A3).
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day−1) per DoY (Day of Year) for the five selected case studies, i.e., (1) Collelongo—IT-Col, (2) Le
Bray—FR-Lbr, (3) Hyytiälä—FI-Hyy, (4) Bílý Křìž—CZ-Bk1, and (5) Sorø—DK-Sor compared to
relative observed data (depicted as black dots) from the Fluxnet2015 Dataset [56]. The lower and
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observed and modeled datasets considered.

The model reports negative NRMSE values for NEE across all time scales, indicating
a slight overestimation (values ranging from −0.57 to −6.59) with the exception of the
CZ-Bk1 site for the daily NEE value (1.39), and at the IT-Col site for the monthly NEE value
(0.99). Regarding the GPP, (Table A2) DK-Sor showed the lowest NRMSE for daily and
monthly values (0.19 and 0.16, respectively). Conversely, at CZ-Bk1 and FR-Lbr forests, the
model displays the highest NRMSE for daily (1.21) and monthly (0.40) values, respectively.
Last, Table A3 shows the validation results for Reco. At FR-LBR, the highest accuracy and
precision were reported with the lowest NRMSE for daily and monthly values (0.24 and
0.20 respectively). For the other sites, we found almost the same model capability described
for the above fluxes (i.e., NEE and GPP) with a lower correlation and a slightly higher error
in terms of daily Reco at CZ-Bk1 (NRMSE = 1.16).

ME exhibits values close to one across all time scales and sites for NEE, with values
ranging from −0.10 (FR-LBr) to 0.92 (IT-Col) for daily NEE values and −0.15 (FR-LBr) to
0.95 (IT-Col) for monthly values. The modeled GPP has a similar trend of the observed
NEE with values ranging from 0.28 for FR-LBr to 0.97 for DK-Sor for daily values and
FR-LBr = 0.34 to DK-Sor = 0.92 for monthly values (Table A2). The Reco achieved lower
performances than GPP and NEE in terms of ME; Table A3 displays values from 1.17 for
IT-Col to 0.75 for FI-Hyy and IT-Col = −0.64 to FI-Hyy = 0.77, for daily and monthly time
scale, respectively.

Finally, the lowest MAE was found at IT-Col, for NEE (0.67 gC m−2 day−1 and
11.42 gC m−2 month−1) and GPP (0.91 gC m−2 day−1 and 20.68 gC m−2 month−1), while
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the lowest MAE for Reco was for FR-LBr (0.71 gC m−2 day−1 and 18.01 gC m−2 month−1)
(Tables A1–A3 in Appendix A).

3.2. Mean Seasonal NEE Cycle under Climate Change Scenario

Figures 3 and 4 display the 10-year average NEE seasonal cycle under climate scenarios
(i.e., RCP 2.6 and RCP 6.0) for the five case studies. Overall, across all the sites and scenarios
considered, there is a consistent reduction in the absolute NEE over time (i.e., NEE is ‘less
negative’ showing a reduction in the sink capacity) with changes in the source/sink (NEE
becomes negative and the site turns into a C-sink) and sink/source (NEE becomes positive
and the site turns into a C-source) switch over the year(s). However, RCP 2.6 generally
exhibits lower reductions in annual and mean seasonal NEE when compared to RCP 6.0
across most study sites and time intervals. The loss in the modeled sink capacity is because
Reco increases more than GPP, and the differences between the scenarios are related to an
increase in Reco higher than that for GPP under RCP 6.0.
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Figure 4. Ten-year average NEE seasonal cycle under the RCP 6.0 climate scenario for 5 case studies
selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy, (4) Bílý Kříž—CZ-
Bk1, and (5) Sorø—DK-Sor. The histograms (a) represent the annual NEE variation (%) from the first
decade taken as a benchmark of simulation (1999–2009). The xy plots (b) show the Mean Seasonal
NEE Cycle of daily values (gC m−2 day−1).

The rate of decrease in the annual NEE varies among locations and forest species. For
example, the beech forests at IT-Col and DK-Sor show a reduction in the NEE (i.e., the site
is less C-sink) of about 68%, and 43% (Figures 3 and 4—panel 1 and panel 5) at the end of
the century, generally exhibiting a more moderate decrease compared to evergreen sites.
The Scots pine forest shows, at the end of the century, a reduction in the sink capacity of
95%, standing out as the most significant decrease in NEE (Figures 3 and 4—panel 3). Over
time, the rate of decline shows a tendency to speed up, hinting at a reduction in the capacity
of the carbon sink because of, despite an overall increase in the GPP (Figures A2 and A3),
the increased ecosystem respiration due to increased temperatures (Figures A4 and A5).
By the end of the century, substantial reductions in NEE, i.e., the sites become less C-sink,
across all locations and scenarios were simulated, with some locations experiencing over
70–90% reduction compared to the 1999–2009 decade (Table A4).

The GPP, similar to NEE, generally increases across forest types and scenarios over
time, albeit with varying degrees (Figures A2 and A3). Specifically, RCP 6.0 shows higher
growth rates, particularly in later years (2059–2099), with increases ranging from 28 to
51% across all studied forests, compared to 10–26% for RCP 2.6 (Table A5). Analysis
of long-term trends suggests saturation and subsequent slight decreases in GPP growth
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rates under RCP 2.6, with this phenomenon being most noticeable in the forests of FI-
Hyy. RCP 6.0 consistently shows a higher percentage of change in Reco compared to RCP
2.6. By the end of the century (2089–2099), Reco changes from 37 to 106% for RCP 2.6
and 60 to 121% for RCP 6.0 across all forests examined (Table A6). Boreal and maritime
pine forests experienced higher changes compared to deciduous forests. For example, by
2089–2099, under RCP 6.0, changes reach 142% and 121% at FI-Hyy and FR-Lbr forests,
while deciduous forests like European beech in IT-Col and DK-Sor experience lower changes
at 67% and 60% respectively.

3.3. Changes in NEE Dynamics under Different Climate Scenarios

We considered fluctuations in the length of sink/source and source/sink forest stand
behaviors throughout the year. This calculation involved determining the total number
of days in a year (‘N. days year−1’) where a forest stand exhibited either C-sink (NEE < 0)
or C-source behavior (NEE > 0). The 10-year average number of days as a C-sink and
as a C-source under the RCP 2.6 and 6.0 for the five case studies selected is presented
in Figure 5a. The number of days identified as a C-sink in the evergreen forests for the
scenario RCP 2.6 (i.e., FR-LBr, CZ-Bk1, and FI-Hyy) starts relatively low in the first decade
(1999–2009) but increases significantly over time, showing a consistent upward trend
(Figure 5(2.a,3.a,4.a). At the CZ-Bk1 site, the number of days considered as a C-sink starts
at 47 N. days year−1 in the 1999–2009 decade and increases steadily over the decades,
peaking at 199 N. days year−1 in 2059–2069 and remaining relatively high thereafter. For
FI-Hyy forests, the number of days as a C-sink starts at 107 N. days year−1 in 1999–2009
and rises to 217 days in 2089–2099, with a peak of 225 in 2079–2089. Lastly, at the forests of
FR-LBr, there were no days as a C-sink in 1999–2009, but they increased steadily over time,
reaching 114 days by 2079–2089. The number of days as a C-source varies inversely to those
as a C-sink across decades, demonstrating a general reduction over time for evergreen
forests. The number of days functioning as a C-source decreased, from ~300 in 1999–2009
to ~200 N. days year−1 in 2089–2099 (Table A1), for evergreen forests. Deciduous forests on
the contrary almost maintain a relatively stable number of days as a C-sink through the
century (Figure 5(1.a,5.a). The number of days as a C-sink at IT-Col forests ranges from
212 to 224 N. days year−1, while at DK-Sor from 214 to 222 N. days year−1, with slight
fluctuations observed across decades and no clear overall trend. The same trend for the
capacity of the stand to act as a C-source, but with slightly different days in the range
from 137 to 159 N. days year−1 recorded in the forest of Sorø, and from 140 to 149 N. days
year−1 for the IT-Col site. The discrepancies between the already described RCP 2.6 and
RCP 6.0 scenarios are minimal as they exhibit a similar trend for evergreen and deciduous,
respectively, with only a slight change in the number of days, mainly in the last decade,
with a magnitude of ~10 N. days year−1.

To assess the changes in MSC due to climate change scenarios, we focused on the
shifting patterns of the DoY over decades, particularly examining when forest stands
transitioned from a C-source to a C-sink and vice versa (see Figure 5b). Regardless of the
scenario considered, the European beech forests revealed constant transition periods across
decades. In IT-Col, the shift from being a C-source to a C-sink occurred between DoY 136
and 150, with the opposite transition from sink to source around DoY 285. Meanwhile, in
DK-Sor, the same transitions happened between DoY 115 and 127, and reversed between
DoY 272 and 280 (Figure 5(1.b,5.b)). Even for evergreen forests, there are no noticeable
differences in the shift corresponding to RCP 2.6 and RCP 6.0 scenarios. At CK-BZ1, the
shift to a C-sink occurs relatively early in the year, spanning from DoY 2 to 31 across the
decades. At FI-Hyy, the transition timings vary widely, ranging from DoY 30 to 50 over
the decades. Similarly, at FR-LBr, the C-sink transitions occur from DoY 1 to 16 across
the decades, with some decades exhibiting earlier shifts. On the other hand, transitions
to C-sources at CZ-BK1 occur from late November to early December (DoY 201–329),
displaying a decreasing trend over the years. In contrast, at FI-Hyy, transitions take place
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from mid-September to late September (DoY 197–285), while at FR-LBr, they occur from
late September to early October (DoY 255–285) (Figure 5(2.a,3.a,4.a)).
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Figure 5. Ten-year average number of days (N. days year−1) as C-sink and as C-source (a) and DoY
(Day of Year) in which C-source switch to C-sink and C-source to C-sink (b) under the RCP 2.6 and 6.0
for the 5 case studies selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy,
(4) Bílý Kříž—CZ-Bk1, and (5) Sorø—DK-Sor. Data missing for some intervals are because of filtering
and data removals to avoid pulsing artifacts, e.g., the ‘Birch effect’ and unstable conditions (see
Section 2).

4. Discussion
4.1. Model Validation

To sum up statistical metrics, the 3D-CMCC-FEM performs best in replicating the
mean seasonal patterns of the three fluxes in European beech forests DK-Sor and IT-Col.
Reco also reaches a satisfactory performance for the boreal Scots pine forest of FI-Hyy,
and the Scots pine forest of CZ-Bk1. The robust predictive ability of 3D-CMCC-FEM in
estimating NEE across different timeframes, forest species, and climates, as proved by
its alignment with the eddy covariance Fluxnet2015 Dataset [56], underscores its effec-
tiveness in capturing the complex dynamics of carbon fluxes within forest ecosystems, as
documented by previous works (see, e.g., [10,11,36,40,42]). Nevertheless, there are slight
inconsistencies, particularly during peak photosynthesis periods (around the 200th day of
the year) in both deciduous and evergreen forests, which have been acknowledged in the
existing literature. Studies indicate that estimates of ecosystem respiration derived from
eddy covariance often underestimate actual values for forest ecosystems [72–75].
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4.2. Mean Seasonal NEE Cycle under Climate Change Scenario

The sensitivity of forest ecosystems to changes in environmental factors such as climate
change, seasonal variations, and atmospheric CO2 levels has been thoroughly evidenced in
the literature. Indeed, the interaction among these variables plays a crucial role in shaping
the carbon exchange dynamics [6,12,17,31,76].

The analysis of the mean NEE seasonal cycle under different climate change scenarios
presents several fascinating findings. The first key observation is the consistent reduction
in forest stand capabilities to act as carbon sinks from the atmosphere in the coming
years, across all study sites and climate change scenarios. Despite the overall lack of
understanding regarding how forest ecosystems will respond to climate change, several
new studies concur regarding the diminishing forest carbon uptake capabilities, thus
confirming our statement [26,31,77–79].

In broader terms, climate change affects forest carbon balance by influencing key
processes, which can respond differently due to their sensitivity to various environmental
drivers [80]. Indeed, the reduction in NEE, within the forests observed in this study, has a
disparity in the intensity of climate impacts across these scenarios: RCP 2.6 exhibits less
intense NEE reduction compared to RCP 6.0 scenarios. The warming accelerates both
autotrophic and heterotrophic respiration meaning that increased temperature may lead
forests to an increase in Reco [27,58,81,82]. On the other hand, the increasing atmospheric
CO2 concentration intensifies the GPP through the ‘carbon fertilization effect’ (i.e., reported
to be the cause of 44% of the GPP increase since the 2000s) [18,19]. Under the RCP 2.6
scenario, Reco exhibits a steady linear increase until the century’s end, while GPP follows
a bell-shaped curve, reaching saturation around the mid-century. Consequently, as GPP
saturates, its compensatory capacity reduces, while Reco continues to rise due to further
temperature increases in the latter half of the century resulting in a further decline in
NEE. Conversely, for the RCP 6.0 scenario, GPP saturation occurs only towards the end
of the century, and while one might anticipate a reversal in NEE trends considering this
factor, it does not materialize. This is because, under the RCP 6.0 scenario, a higher
temperature increase is predicted compared to RCP 2.6 (i.e., [58]), leading to a more
pronounced rise in ecosystem respiration relative to photosynthesis. As a consequence,
there is a greater decrease in the stand forest’s carbon sink capacity. The result refers to
all forests studied in this work, but in the forest of FI-Hyy, the phenomena look more
pronounced (Figures A2 and A3 in Appendix A).

The fate of ecosystem carbon flux depends not only on atmospheric and climate
conditions but also on the type of forests analyzed. The reduction in C-sink capabilities is
particularly notable in evergreen forests, which exhibit a higher decrease in NEE compared
to evergreen sites. The boreal Scots pine forest of FI-Hyy stands out with the most significant
reduction in NEE, indicating a heightened vulnerability to climate change effects. This
finding is supported by the study of Hadden and Grelle [26] who found that, over a 17-year
period, the forest ecosystem in a boreal forest stand in northern Sweden transitioned from
being a carbon sink to a carbon source. This could mean that past efforts to validate the
neutrality hypothesis [83] with climate change impact show limitations, and we need new
research directions and new perspectives to better capture changes in the carbon fluxes
between the ecosystem and atmosphere [84]. Indeed, a long-standing debate around the
C-neutrality of old-growth forests (and some of the sites become old-growth at the end
of simulations) raises concerns, and debates will increase about the reduction of the sink
capacity of aging forests, as assumed by Odum’s theory. As found in [7] (but see [85]), we
also found that even a >200-year-old stand (as IT-Col in 2099) still has sink capacity. The
annual NEE decrease (and much less the changes in the MSC), as shown by the model
results, is certainly a function not only of climate but also of the inherent effects related
to, e.g., biomass, both live and dead, accumulation (which led to increases in respiratory
costs), and changes in, e.g., the forest structure (which led to decreases in the carbon
assimilation), as stands age. Nevertheless, such effects on annual NEE are expected to be
greatly exacerbated by climate change.
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4.3. Changes in NEE Dynamics under Different Climate Scenarios

Climate change impacts plant phenology by altering the start and end dates of the
growing season, which influences when photosynthesis can begin and consequently affects
C-fluxes [20,29,30,32,86].

A primary finding is that, regardless of the scenario analyzed, the number of days
identified as a C-sink in evergreen forests increases significantly over time, indicating a
consistent upward trend. Similarly, the number of days classified as a C-source decreases
over the decades, showing a general reduction. The second finding is that for evergreen
forests, the DoY to C-sink tends to increase (indicating a forward shift in the year when the
system becomes a sink), and the DoY to C-source decreases (indicating a backward shift
in the year when the system becomes a source), aligning with the overall trend of fewer
C-sink days and more C-source days over time. In contrast, deciduous forests maintain a
relatively stable number of C-sink (and C-source) days throughout the century, reflecting
a steady DoY when the system becomes a C-sink (or a C-source), despite an anticipated
beginning of the growing season but compensated by higher respiration rates. Indeed,
for the deciduous, the 3D-CMCC-FEM simulates the bud-brake through a thermic sum
function and leaf and fine root development (and the relative growth respiration peak) in a
well-defined and short time during spring [36]. Conversely, for the evergreens, leaf and
fine root growth development is spread all over the spring. At the same time, leaf fall in
the deciduous starts under certain hours of solar radiation, and thus, this is not under the
control of climate, while in the evergreen, it happens all over the year, and under the control
of climate, balanced by incoming photosynthates for new leaves and fine roots. Ultimately,
deciduous spring C-sink capacity is counterbalanced by high C-emissions mainly because
of growth respiration in spring. Such behavior is different for evergreens, which lengthen
their C-sink capacity during spring. However, the lengthening of the growing season
does not automatically mirror an increase in the net sink capacity because Reco shows an
increase much more than GPP. It is generally acknowledged that the changing temperature
response of respiration transforms forests from C-sinks to C-sources [26,76,87–89], while
the stability of the carbon sink/source dynamics over the decades for deciduous ecosystems
is a relatively recent finding. The DoY for deciduous forests remains unchanged because
the earlier start of the growing season, triggered by rising temperatures, is balanced by
an earlier increase in respiration. This compensates for the earlier rise in GPP at the level
of NEE. Overall, the lack of change in the number of C-sink (and C-source) days across
decades and the reduction in the NEE suggest that, over the long term, deciduous forests
are more efficient in using photosynthates compared to evergreen forests [90,91].

5. Limitations

The modeling framework presented has certain limitations that must be acknowledged.
First, we deliberately decided to not simulate the effects of anthropogenic disturbances,
e.g., forest management, nor the ones from natural disturbances caused by climate change,
such as windstorms, forest fires, and insect outbreaks, so as to concentrate on the effects
of climate change alone and avoid these potentially confounding effects. Climate extreme
events are presumed to be incorporated into the climate scenarios used to drive the model
and are, therefore, somewhat already accounted for. Moreover, indirect changes due to
climate change in key factors like nitrogen deposition, phosphorus, or ozone—which could
potentially amplify or mitigate our findings—were not evaluated. Nonetheless, some
research (e.g., [92]) indicates that this issue might not be universally relevant. These studies
highlight the strong response of various tree species to CO2 fertilization across different
levels of nutrient availability. Lastly, the potential for species migration to and from the
study areas was not considered. However, such dynamics might require longer timescales
than those covered in this study and it is unlikely (although still possible in theory) that
species composition may completely change throughout the simulations.
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6. Conclusions

The MSC metric is an interesting and descriptive metric that associates phenology
and carbon partitioning allocation within forest stands. Climate change impacts both the
phenology, by changing the date for the beginning and the end of the growing season, and
the ecosystem carbon allocation.

We applied the process-based forest model 3D-CMCC-FEM to evaluate the potential
modifications on the ability of different forest stands to absorb or emit carbon throughout
the season and across the years up to 2100. Before that, we validated the model under
current climate conditions and found a robust predictive ability of 3D-CMCC-FEM in
estimating NEE, GPP, and Reco across different timeframes, forest species, and climates.

The analysis of the mean NEE seasonal cycle under different climate change scenarios
presents a consistent reduction in the forest stand capabilities to act as a carbon sink in
the coming years, across all study sites, and climate change scenarios. The reduction in
NEE ability has different intensities of climate impacts across these scenarios. The RCP
2.6 scenario demonstrates a less pronounced reduction in NEE compared to the RCP 6.0
scenario. This disparity primarily stems from variations in key variables, such as the
differing rates of temperature increase between the two scenarios, as well as the CO2
fertilization effect, while, in all sites, age effects depend on the age at the beginning of the
simulations. The reduction in C-sink capabilities is mainly notable in evergreen forests,
which exhibit a higher decrease in NEE compared to deciduous forest sites.

Finally, we found that the number of days as a C-sink in evergreen forests increases
over the years, indicating a consistent upward trend. Conversely, the number of days as a
C-source decreases over the decades, showing a general reduction. This statement aligns
with the forward shift of DoY to C-sink, and the backward shift of DoY to C-source. In
contrast, deciduous forests maintain a relatively stable number of C-sink (and C-source)
days throughout the century, reflecting a fixed DoY when the system becomes a C-sink
(or a C-source). The DoY for deciduous forests remains constant as the earlier onset of
the growing season, driven by warming temperatures, is offset by an earlier uptick in
respiration. Decades pass with little change in the number of days as a C-sink (and a
C-source), alongside a decrease in NEE. This indicates that deciduous forests, over the
long haul, demonstrate greater efficiency in utilizing photosynthates when compared to
evergreen forests.

Author Contributions: M.M.: Data curation, Formal analysis, Investigation, Writing—original draft,
Writing—review and editing; E.V.: Data curation, Writing—original draft, Writing—review and
editing; A.C.: Conceptualization, Formal analysis, Investigation, Writing—original draft, Writing—
review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: OptForEU Horizon Europe research and innovation programme under grant agreement No.
101060554; National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4—
Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian
Ministry of University and Research funded by the European Union—NextGenerationEU under
award number: Project code CN_00000033, Concession Decree No. 1034 of 17 June 2022 adopted
by the Italian Ministry of University and Research, CUP B83C22002930006; Project title “National
Biodiversity Future Centre—NBFC”; A.C. also acknowledges funding from the MIUR Project (PRIN
2020)—Research Projects of National Relevance funded by the Italian Ministry of University and
Research entitled: “Unraveling interactions between WATER and carbon cycles during drought and
their impact on water resources and forest and grassland ecosySTEMs in the Mediterranean climate”
(WATERSTEM, project number: 20202WF53Z), and “WAFER” at CNR (Consiglio Nazionale delle
Ricerche); A.C. and E.V. also acknowledge funding from the MIUR Project (PRIN 2020)—Research
Projects of National Relevance funded by the Italian Ministry of University and Research entitled:
“Multi-scale observations to predict Forest response to pollution and climate change” (MULTIFOR,
project number: 2020E52THS).



Forests 2024, 15, 1124 16 of 28

Data Availability Statement: The 3D-CMCC-FEM model code is publicly available and can be
found on the GitHub platform at: https://github.com/Forest-Modelling-Lab/3D-CMCC-FEM
(accessed on 24 June 2024). The 3D-CMCC-FEM output data used in this work can be downloaded at:
https://zenodo.org/records/11124413 (accessed on 7 May 2024). Correspondence and requests for
additional materials should be addressed to the corresponding author.

Acknowledgments: We are thankful to D. Dalmonech for supporting data preparation and analysis.
We also thank the ISIMIP project and the COST Action FP1304 PROFOUND (Towards Robust
Projections of European Forests under Climate Change), supported by COST (European Cooperation
in Science and Technology) for providing us the climate historical and future scenarios and site data
used in this work. This work used eddy covariance data acquired and shared by the FLUXNET
community, including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEurope-IP,
CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-
TERN, TCOS-Siberia, and USCCC. The ERA-Interim reanalysis data are provided by ECMWF and
processed by LSCE. The FLUXNET eddy covariance data processing and harmonization was carried
out by the European Fluxes Database Cluster, AmeriFlux Management Project, and Fluxdata Project
of FLUXNET, with the support of CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux,
ChinaFlux, and AsiaFlux offices. We acknowledge the World Climate Research Programme’s Working
Group on Coupled Modelling, which is responsible for CMIP, and we thank the respective climate
modeling groups for producing and making available their model output. The U.S. Department
of Energy’s Program for Climate Model Diagnosis and Intercomparison at Lawrence Livermore
National Laboratory provides coordinating support for CMIP and led the development of software
infrastructure in partnership with the Global Organization for Earth System Science Portals.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Forests 2024, 15, x FOR PEER REVIEW 17 of 29 
 

 

Appendix A 

 
Figure A1. The green lines represent the modeled (a) NEE, (b) GPP, and (c) Reco amounts (gC m−2 
month−1) per month for the five selected case studies (i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-
Lbr, (3) Hyytiälä—FI-Hyy, (4) Bílý Křìž—CZ-Bk1, and (5) Sorø—DK-Sor) compared to relative ob-
served data (depicted as black dots) from the Fluxnet2015 Dataset (Pastorello et al., 2020 [56]). The 
lower and upper lines of the shaded area represent, respectively, the minimum and maximum val-
ues of the observed and modeled datasets considered. 

Table A1. Summary of the statistics between simulated and measured NEE from the Fluxnet2015 
Dataset (Pastorello et al., 2020 [56]), calculated on the 5 cases studies selected (i.e., Collelongo—IT-
Col, Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Křìž—CZ-Bk1, and Sorø—DK-Sor). The table shows 
the daily and monthly values for Person’s Coefficient (r—dimensionless), Relative Mean Bias 
(RMB—dimensionless), Normalized Root Mean Square Error (NRMSE—dimensionless), Modeling 
Efficiency (ME—dimensionless), and Mean Absolute Error (MAE, gC m−2 time−1). 

 IT-Col FR-LBr FI-Hyy CZ-Bk1 DK-Sor 
Daily NEE 

r 0.96 0.93 0.93 0.85 0.97 
RMB 0.07 −0.86 −0.48 0.14 −0.46 

NRMSE −0.57 −1.56 −1.54 1.39 −6.59 
ME 0.92 −0.10 0.58 0.69 0.46 

MAE 0.67 1.20 0.67 1.15 1.42 
Monthly NEE 

r 0.98 0.95 0.93 0.92 0.99 
RMB 0.07 −0.88 −0.49 0.21 −0.46 

NRMSE 0.99 −1.55 −1.52 −0.50 −6.14 
ME 0.95 −0.15 0.55 0.79 0.55 

MAE 11.42 33.39 19.63 19.12 37.78 
  

Figure A1. The green lines represent the modeled (a) NEE, (b) GPP, and (c) Reco amounts
(gC m−2 month−1) per month for the five selected case studies (i.e., (1) Collelongo—IT-Col, (2) Le
Bray—FR-Lbr, (3) Hyytiälä—FI-Hyy, (4) Bílý Křìž—CZ-Bk1, and (5) Sorø—DK-Sor) compared to rela-
tive observed data (depicted as black dots) from the Fluxnet2015 Dataset (Pastorello et al., 2020 [56]).
The lower and upper lines of the shaded area represent, respectively, the minimum and maximum
values of the observed and modeled datasets considered.

https://github.com/Forest-Modelling-Lab/3D-CMCC-FEM
https://zenodo.org/records/11124413
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Table A1. Summary of the statistics between simulated and measured NEE from the Fluxnet2015
Dataset (Pastorello et al., 2020 [56]), calculated on the 5 cases studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Křìž—CZ-Bk1, and Sorø—DK-Sor). The table shows the
daily and monthly values for Person’s Coefficient (r—dimensionless), Relative Mean Bias (RMB—
dimensionless), Normalized Root Mean Square Error (NRMSE—dimensionless), Modeling Efficiency
(ME—dimensionless), and Mean Absolute Error (MAE, gC m−2 time−1).

IT-Col FR-LBr FI-Hyy CZ-Bk1 DK-Sor

Daily NEE

r 0.96 0.93 0.93 0.85 0.97
RMB 0.07 −0.86 −0.48 0.14 −0.46

NRMSE −0.57 −1.56 −1.54 1.39 −6.59
ME 0.92 −0.10 0.58 0.69 0.46

MAE 0.67 1.20 0.67 1.15 1.42

Monthly NEE

r 0.98 0.95 0.93 0.92 0.99
RMB 0.07 −0.88 −0.49 0.21 −0.46

NRMSE 0.99 −1.55 −1.52 −0.50 −6.14
ME 0.95 −0.15 0.55 0.79 0.55

MAE 11.42 33.39 19.63 19.12 37.78

Table A2. Summary of the statistics between simulated and measured GPP from the Fluxnet2015
Dataset (Pastorello et al., 2020 [56]), calculated on the 5 cases studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-Lbr, Hyytiälä—FI-Hyy, Bílý Křìž—CZ-Bk1, and Sorø—DK-Sor). The table shows the
daily and monthly values for Person’s Coefficient (r—dimensionless), Relative Mean Bias (RMB—
dimensionless), Normalized Root Mean Square Error (NRMSE—dimensionless), Modeling Efficiency
(ME—dimensionless), and Mean Absolute Error (MAE, gC m−2 time−1).

IT-Col FR-LBr FI-Hyy CZ-Bk1 DK-Sor

Daily GPP

r 0.99 0.95 0.93 0.95 0.99
RMB 0.15 0.55 0.01 −0.14 0.00

NRMSE 0.34 0.42 0.39 1.21 0.19
ME 0.91 0.28 0.86 0.85 0.97

MAE 0.91 1.51 0.91 0.97 0.75

Monthly GPP

r 0.99 0.96 0.93 0.99 1.00
RMB 0.15 0.52 0.01 −0.06 0.00

NRMSE 0.31 0.40 0.38 0.15 0.16
ME 0.92 0.34 0.86 0.97 0.97

MAE 20.68 41.69 26.05 14.25 20.26

Table A3. Summary of the statistics between simulated and measured Reco from the Fluxnet2015
Dataset (Pastorello et al., 2020 [56]), calculated on the 5 cases studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Křìž—CZ-Bk1, and Sorø—DK-Sor). The table shows the
daily and monthly values for Person’s Coefficient (r—dimensionless), Relative Mean Bias (RMB—
dimensionless), Normalized Root Mean Square Error (NRMSE—dimensionless), Modeling Efficiency
(ME—dimensionless), and Mean Absolute Error (MAE, gC m−2 time−1).

IT-Col FR-LBr FI-Hyy CZ-Bk1 DK-Sor

Daily Reco

r 0.90 0.89 0.94 0.86 0.89
RMB 0.82 0.16 −0.30 0.30 −0.42

NRMSE 0.72 0.24 0.41 1.16 0.35
ME −1.17 0.50 0.75 0.63 0.62

MAE 1.14 0.71 0.74 0.88 1.29
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Table A3. Cont.

IT-Col FR-LBr FI-Hyy CZ-Bk1 DK-Sor

Monthly Reco

r 0.99 0.94 0.95 0.99 0.95
RMB 0.77 0.14 −0.29 0.19 −0.42

NRMSE 0.83 0.20 0.39 0.24 0.29
ME −0.64 0.68 0.77 0.93 0.71

MAE 25.42 18.01 21.02 11.61 31.82

Table A4. Summary of the NEE variation (%) from the first decade of simulation (1999–2009), consider-
ing both climate change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where
changes were the highest between the decades while underlined the lowest ones. Note that negative
values indicate that NEE becomes less negative, e.g., −100% indicates a reduction in the negative
values of NEE.

NEE
RCP 2.6

year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 −37% −19% −4% −24% −9%
2019–2029 −64% −35% −16% −44% −14%
2029–2039 −70% −31% −27% −53% −22%
2039–2049 −76% −39% −39% −59% −29%
2049–2059 −71% −48% −47% −58% −33%
2059–2069 −79% −59% −58% −65% −32%
2069–2079 −75% −61% −66% −70% −37%
2079–2089 −76% −69% −76% −75% −44%
2089–2099 −74% −68% −95% −72% −43%

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 −35% −11% 0% −25% −11%
2019–2029 −60% −27% −11% −43% −14%
2029–2039 −74% −36% −23% −52% −26%
2039–2049 −76% −43% −36% −57% −34%
2049–2059 −75% −44% −46% −61% −31%
2059–2069 −75% −43% −57% −64% −23%
2069–2079 −72% −54% −69% −69% −30%
2079–2089 −76% −59% −79% −75% −34%
2089–2099 −71% −60% −87% −68% −36%

Table A5. Summary of the GPP variation (%) from the first decade of simulation (1999–2009), consider-
ing both climate change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where
changes were the highest between the decades while underlined the lowest ones.

GPP

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 7% 6% 22% 12% 8%
2019–2029 10% 5% 34% 15% 15%
2029–2039 16% 11% 39% 18% 18%
2039–2049 17% 13% 42% 19% 19%
2049–2059 18% 12% 43% 20% 20%
2059–2069 18% 11% 41% 18% 23%
2069–2079 17% 12% 36% 18% 18%
2079–2089 16% 9% 32% 18% 15%
2089–2099 17% 10% 26% 16% 15%
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Table A5. Cont.

GPP

RCP 6.0
year CZ-BK1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 7% 7% 23% 11% 7%
2019–2029 10% 9% 36% 14% 13%
2029–2039 13% 10% 43% 18% 14%
2039–2049 15% 12% 44% 20% 15%
2049–2059 20% 17% 49% 20% 20%
2059–2069 23% 23% 50% 23% 28%
2069–2079 27% 26% 51% 26% 31%
2079–2089 28% 29% 50% 26% 31%
2089–2099 31% 30% 51% 28% 34%
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Figure A2. Ten-year average GPP seasonal cycle under the RCP 2.6 climate scenario for 5 case
studies selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy, (4) Bílý
Kříž—CZ-Bk1, and (5) Sorø—DK-Sor. The histograms (a) represent the annual GPP variation (%)
from the first decade taken as a benchmark of simulation (1999–2009). The xy plots (b) show the
Mean Seasonal GPP Cycle of monthly values (gC m−2 day−1).
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Figure A3. Ten-year average GPP seasonal cycle under the RCP 6.0 climate scenario for 5 case
studies selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy, (4) Bílý
Kříž—CZ-Bk1, and (5) Sorø—DK-Sor. The histograms (a) represent the annual GPP variation (%)
from the first decade taken as a benchmark of simulation (1999–2009). The xy plots (b) show the
Mean Seasonal GPP Cycle of monthly values (gC m−2 day−1).
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Figure A4. Ten-year average Reco seasonal cycle under the RCP 2.6 climate scenario for 5 case studies
selected, i.e., (1) Collelongo—IT-Col, (2) Le Bray—FR-LBr, (3) Hyytiälä—FI-Hyy, (4) Bílý Kříž—CZ-
Bk1, and (5) Sorø—DK-Sor. The histograms (a) represent the annual Reco variation (%) from the first
decade taken as a benchmark of simulation (1999–2009). The xy plots (b) show the Mean Seasonal
Reco Cycle of monthly values (gC m−2 day−1).
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Table A6. Summary of the Reco changes (%) from the first decade of simulation (1999–2009), consider-
ing both climate change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col,
Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where
changes were the highest between the decades while underlined the lowest ones.

Reco

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 29% 16% 39% 47% 15%
2019–2029 47% 22% 66% 71% 26%
2029–2039 59% 29% 83% 87% 33%
2039–2049 64% 35% 96% 94% 36%
2049–2059 63% 38% 102% 95% 40%
2059–2069 67% 40% 107% 99% 43%
2069–2079 63% 44% 104% 103% 39%
2079–2089 62% 43% 104% 106% 37%
2089–2099 63% 44% 106% 101% 37%

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

2009–2019 27% 14% 39% 45% 14%
2019–2029 45% 24% 66% 69% 23%
2029–2039 56% 29% 87% 85% 28%
2039–2049 60% 36% 97% 93% 33%
2049–2059 67% 43% 112% 99% 39%
2059–2069 71% 51% 121% 108% 47%
2069–2079 76% 60% 130% 117% 54%
2079–2089 80% 66% 136% 123% 55%
2089–2099 82% 67% 142% 121% 60%
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Table A7. Summary of the number of the days in a year (N. days year−1) as C-sink, considering
both climate change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-
Col, Le Bray—FR-LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values
where changes were the highest between the decades while underlined the lowest ones within each
forest stand.

Days as C-Sink

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-Lbr DK-Sor

1999–2009 44 221 107 0 212
2009–2019 126 223 135 25 208
2019–2029 176 223 156 82 206
2029–2039 182 217 170 85 216
2039–2049 195 216 171 103 217
2049–2059 189 220 182 102 218
2059–2069 199 220 199 108 216
2069–2079 189 217 201 109 219
2079–2089 194 225 208 129 222
2089–2099 193 219 218 117 228

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-Lbr DK-Sor

1999–2009 47 221 107 0 215
2009–2019 108 223 134 26 216
2019–2029 172 222 155 71 218
2029–2039 195 223 164 87 216
2039–2049 194 224 180 96 220
2049–2059 190 220 181 95 222
2059–2069 199 212 201 101 216
2069–2079 199 211 197 111 214
2079–2089 193 213 206 114 214
2089–2099 188 206 217 112 222

Table A8. Summary of number of the days in a year (n. days year−1) source, considering both climate
change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col, Le Bray—FR-
LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where changes were
the highest between the decades while underlined the lowest ones within each forest stand.

Days as C-Source

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 321 144 258 365 153
2009–2019 239 142 230 340 157
2019–2029 189 142 209 283 159
2029–2039 183 148 195 280 149
2039–2049 170 149 194 262 148
2049–2059 176 145 183 263 147
2059–2069 166 145 166 257 149
2069–2079 176 148 164 256 146
2079–2089 171 140 157 236 143
2089–2099 172 146 147 248 137
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Table A8. Cont.

Days as C-Source

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 318 144 258 365 150
2009–2019 257 142 231 339 149
2019–2029 193 143 210 294 147
2029–2039 170 142 201 278 149
2039–2049 171 141 185 269 145
2049–2059 175 145 184 270 143
2059–2069 166 153 164 264 149
2069–2079 166 154 168 254 151
2079–2089 172 152 159 251 151
2089–2099 177 159 148 253 143

Table A9. Summary of the changes in the source/sink DoY (Day of Year), considering both climate
change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col, Le Bray—FR-
LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where changes were
the highest between the decades while underlined the lowest ones within each forest stand. Data are
missing for some intervals because of filtering and data removal to avoid pulsing artifacts, e.g., the
‘Birch effect’ (see Section 2).

DoY to C-Sink

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 2 141 30 - 125
2009–2019 13 150 35 1 118
2019–2029 31 142 50 2 116
2029–2039 18 137 - - 119
2039–2049 24 136 45 11 117
2049–2059 22 139 47 8 120
2059–2069 26 139 50 7 115
2069–2079 25 136 44 9 118
2079–2089 21 144 48 16 123
2089–2099 21 138 50 8 127

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 - 142 30 - 129
2009–2019 11 146 38 1 124
2019–2029 13 141 40 - 123
2029–2039 25 144 40 1 120
2039–2049 14 144 53 - 120
2049–2059 21 140 46 1 120
2059–2069 32 132 53 8 111
2069–2079 28 133 52 8 107
2079–2089 27 130 51 4 111
2089–2099 31 127 59 1 112
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Table A10. Summary of the changes in the sink/source DoY (Day of Year), considering both climate
change scenarios (RCP 2.6 and 6.0) for 5 case studies selected (i.e., Collelongo—IT-Col, Le Bray—FR-
LBr, Hyytiälä—FI-Hyy, Bílý Kříž—CZ-Bk1, and Sorø—DK-Sor). In bold values where changes were
the highest between the decades while underlined the lowest ones within each forest stand. Data are
missing for some intervals because of filtering and data removal to avoid pulsing artifacts, e.g., the
‘Birch effect’ (see Section 2).

DoY to C-Source

RCP 2.6
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 329 285 285 - 280
2009–2019 280 286 273 - 277
2019–2029 203 284 265 277 275
2029–2039 198 285 243 273 271
2039–2049 200 285 258 274 267
2049–2059 194 284 244 268 268
2059–2069 189 284 221 265 269
2069–2079 201 284 214 267 267
2079–2089 196 284 207 245 272
2089–2099 200 284 197 255 268

RCP 6.0
year CZ-Bk1 IT-Col FI-Hyy FR-LBr DK-Sor

1999–2009 312 285 288 - 277
2009–2019 264 285 275 - 273
2019–2029 205 284 252 280 270
2029–2039 197 284 245 283 269
2039–2049 183 283 245 273 269
2049–2059 202 283 235 273 268
2059–2069 195 285 226 271 269
2069–2079 203 287 227 259 262
2079–2089 193 282 208 258 263
2089–2099 204 286 212 260 266
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