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Abstract. A temporal semantics for Basic LOTOS, i.e. LOTOS without value passing, is
presented. The semantics is provided using a compositional approach by which it is possible to
associate temporal logic formulae to each language construct. The relationships between this
semantics and the operational semantics of the language have been studied in detail, showing its
simple abstractness with respect to the operational semantics modulo string equivalence. The
capability of the given semantics to be used to verify interesting properties of programs is also

investigated.

1. Introduction

The specification language LOTOS [DIS 8807] describes a system by defining the temporal relation between
the events that constitute its externally observable behaviour. The language has several operators (sequential
composition, non-deterministic choice, synchronized and non-synchronized parallelism, etc.) to shape the
temporal ordering of the events. The communication mechanism between a process and its external environment
is based upon the general idea of "interaction”; in an interaction, a LOTOS process and the external environment
establish together the t-uple of values they want to exchange.

A LOTOS description of a system appears to be quite detailed and close to an implementation. Sometimes
however a more abstract description of a system - describing its 'abstract' properties instead of the event it can
perform - is desired. This can happen when a complete analysis of a specification isto be performed, for
example in order to see whether a LOTOS specification of a protocol conforms to its informal standard
definition, or whether it satisfies a property. In this paper we discuss an approach that can be used to provide the
semantics of a LOTOS program by expressing in a logic formalism the properties that the program satisfies.

Temporal logic [Lam 83, Man 81], a particular modal logic which can be used to describe the occurrence of
events in time, is considered a suitable tool for specifying and reasoning about concurrent programs at a higher
abstraction level. This type of logic is needed in order to express properties that relate events occurring in
different moments (termination, accessibility, etc.) and which cannot be expressed by usual logics (propositional
calculus, first order logic). We need therefore a way to derive temporal logic specifications of properties by the
behavioural LOTOS specification.

To achieve this goal we propose giving LOTOS programs a temporal semantics [Pnu 81], i.c. the temporal
logic formula expressing the properties of their execution sequences.

The advantages of this type of approach when providing the semantics for concurrent programs can be
summed up in the following observations:

i) verifying that a program satisfies a given property (expressed by a temporal logic formula) is reduced to
verifying that the formula expressing the temporal meaning of the program logically implies the given
property formula.

ii) verifying the equivalence of programs is reduced to verifying logic equivalence.

This makes it possible to unify these two verification problems, as they amount to checking the validity of a

logic formula. This can be carried out using mechanic tools such as model checkers and decision procedures.

Our research in this area aims to produce a complete account on the use of temporal logics for reasoning about
LOTOS program properties, also realizing automatic tools to generate the temporal semantics of a program and
verify its properties.

The purpose of this paper is to evaluate the application of a known method to give the temporal semantics of
Basic LOTQOS, a simplified version of LOTOS without value passing, both in terms of its capability to define
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an"abstract" semantics and of its ability to express interesting program properties, to form the basis for a
subsequent extension to full LOTOS. In [Fan 88a] a preliminary proposal in this direction is presented, which
gives the temporal semantics to a subset of LOTOS operators, but with value passing.

The temporal semantics to this language is defined using a linear version of temporal logic; this decision
permits to directly exploit the compositional approach presented in {Bar84, Bar85], which defines the temporal
semantics in a denotational style.

We demonstrate that the temporal semantics proposed is not in contrast with the operational semantics of
chosen language. More precisely, we prove that it is simply abstract with respect to the operational semantics
modulo the string equivalence.

We show also that in order to be able to verify interesting properties, such as fairness and justice, we need
that the language definition is enriched to express them, and we show that the given temporal semantics can be
modified accordingly.

2. Basic LOTOS

The considered language is Basic LOTOS as defined in [Bol 87] which only describes process synchronization,
while full LOTOS also describes interprocess value communication. This allows to define the temporal semantics
to all LOTOS operators without introducing cumbersome formulae due to the handling of values.

In Table 1 we present the actions and operators of Basic LOTOS and their related operational semantics. From
the operational semantics we can observe that the transitions of programs are labelled by the observable actions
(marked as o) and by the unobservable (i) actions, which only move the control point along the behaviour
expression, without any other state change.

Table 1 gives the syntax of behaviour expressions; the syntax of programs in our language is the following:

Program := process declaration list ; behaviour expression
process declaration list := process declaration ; process declaration list | nil

process declaration = process process identifier{gate*]
":="behaviour expression endproc

where gate* is a possibly empty list of gates.

This introduces the possibility to write recursive processes.

We note that the form of Basic LOTOS we use is slightly different from the original one for the following

features:

1. The static structure of Basic LOTOS programs is simplified.

2. We only allow one form of parallelism (that syntactically expressed by the operator lset of gatesl). This
is in any case the most general parallelism and includes the other two (syntactically expressed through |l
and IIl) as degenerate cases (I=lall gates! and lli=lgl).

3. The successful termination operator (exit) is not considered. The sequential composition is performed of
behaviours which terminate with the inaction (stop). This choice allows to ignore the "d" action, making
the definition of the temporal semantics more readable, without loosing significance: the presence of the
distinguished "d" action requires separate treatment in most semantic clauses, while not presenting any
further difficulty.




operator syntax operational semantics informal meaning
Inaction stop denotes a process which cannot perform
any action.
Unobservable action i,B ;B -i>B models an event internal to the
process.
Observable action
B g:B-g->B models a process which can perform
the transition g.
Choice B1lB2 Bl-oi-> B1' implies the actions of the process are the
B10B2 -0i-> B1' set of possible actions of B1 and B2.
B2-0i-> B2' implies
B10B2 -0i-> B2'
Parallel composition ~ B1ISIB2 Bl-oi-> B1' and gates(oi)¢ S the parallel composition forces the
implies B1|SIB2-0i-> B1'ISIB2 subprocesses to interact at every gate in
B2-0i-> B2' and gates(oi)e S the set S.
implies B1ISIB2-0i-> B1ISIB2'
Bl-o->B1' and B2-0->B2'
and gates(o)e S implies
B1ISIB2-0-> B1'ISIB2’
Sequential composition B1>>B2 B1 -0i-> stop implies this operator allows sequential process
(enabling) B1>>B2 -0i-> B2 composition.
B1 -0i->B1', B1'+ stop implies
B1>>B2 -0i->B1'>>B2
Disabling B1[>B2 Bl-0i->B1' implies this operator allows process Bl to
B1[>B2 -0i-> B1'[>B2 be disabled by process B2.
B2-0i-> B2' implies
B1[>B2 -0i-> B2’
Hiding hide Sin B B-0i-> B' and gates(oi)¢ S this operator allows transitions
implies at gates in S to be internalized.
hide S in B-oi-> hide S in B’
B-o0->B' and gate(o) €S implies
hide S in B-i-> hide S in B’
Process instantiation  p[g1,...gn] Bplgi/hi,...gn/My] -0i-> B’ the transitions of a process instantiation

implies
plg1,--gnl -0i-> B’

are those of the body of the process
declaration (Bp) which substitute
formal parameters (h;) with actual ones.

Table 1

3. A Discrete Bounded Linear Temporal Logic

Since we are interested in giving the temporal semantics to Basic LOTOS and the behaviour expressions in the
above language can be modelled by finite or infinite, discrete in time, sequences of transitions, we will define a
bounded linear time temporal logic [Fis 87], that is having as models finite or infinite sequences. In this logic
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predicates specify events, i.e. transitions, and formulae contain usual first order logic and basic temporal
operators. The atomic formulae are borrowed from the action set (we will call them "action predicates™). The
operators that we will use are the usual first order logic connectives:

true, false, —, v, A, =;
together with the teraporal operators:

O (next), [] (always), ¢ (eventually), W (unless), U (until),

[ /] (relabelling), C (enabling), [> (disabling);
and a maximal fixed point constructor:  VE. % (€) .

Propositional Calculus operators

ik true =t ci k false = f.
cika iff o) =a
ci kE —o iff not (o,i E 0)
cikovy iff (ci E®)or(oi k v
cikony iff (0i k ¢)and (o,i £ )
ciko=vy iff cik —0ovy

Temporal operators

ci EO¢ iff lenght(c)<i or o,i+l k£ ¢
ci k19 iff forall j2i: (o, k ¢)
ci E %0 iff exists 2 : (06,j E 0)
cikouy iff exists ki : (ok k) and

forall j : isj<kand (o, E 0)

ik owy iff cik[lo or cikoUy
ci EVvE x ®) iff forallk>0 o,i Exk (true)
c,i k ¢[a/b] iff existso'i E ¢ and forall k>i:

o'k E b implies 6k kE a
and for all g#b:
o'k k g implies ok kg

cik ¢Cy iff (exist ¢",6", lenght(c')<e> and G'i k ¢and ¢"i k v and
G'oG"=0)or (o, k ¢ and lenght(G)=e)

oi k oDy iff (exist 6',6", lenght(c')<ee and 6'o 6"=G and ¢",i k v and
and exist 6", oo™, ik ¢)
or (0, k ¢ and lenght(c)=co)

Table 2




In order to define the semantics of temporal formulae, we need to introduce the concept of a model. A model
C is a sequence, finite or infinite, of actions (corresponding to a particular process execution). In the following
with ¢(i) we denote the i-th action in the sequence, with the infix operator "o" the concatenation of sequences,
and with lenght(c) , finite or infinite, the number of actions in the sequence 6. An interpretation is a pair <G,i>,
where ¢ is a model, and i is a discrete instant of time, that is, a positive integer.

In Table 2 we define inductively what we mean by an interpretation <o,i> to satisfy a formula ¢ and this is
expressed by the notation:  G,i = 0.

Note that by K (true) we denote the temporal formula x( %(... x(true)...)) k-times. The maximal fixed point
constructor vE. i (&) denotes the maximal solution to E=y(E) , which exists if the function % (§) is monotonic
and continuous. The monotonicity requirement can be ensured by the appearance of the temporal formula € in
under an even number of negations [Ban 86].

The relabelling operator ¢[a/b], where a and b are action predicates, denotes the logical operator which has
the effect of substituting every occurrence of b in the model sequences of a formula ¢ with a. This operator,

which is different from a syntactic substitution of every occurrence of b with a in the formula ¢, has been named
"relabelling”[Den 88] since it is analogous to the CCS operator with the same name.

The formula oLy, using the "chop" operator [Bar 84], holds for a sequence ¢ which can be decomposed in a
finite prefix ¢' and a suffix ¢" respectively satisfying ¢ and y, or for an infinite sequence ¢ satisfying ¢. More
precisely we use the "weak" chop (or "combine") operator as defined in [Bar 84, Ros 86].

The formula ¢[>y, using the "disabling” operator, holds for a sequence ¢ which can be decomposed in a
finite prefix ¢' partially satisfying ¢ and a suffix ¢" satisfying y. Partially means that exists a sequence ¢"
having as prefix ¢' and satisfying ¢.

The formulae of our logic are very close to behavioural specifications; in fact, these formulae are given on the
sequence of actions performed by the system, using propositions which are considered true if the system is able
to perform the corresponding action, and composing them with temporal operators to obtain formulae that can
have an obvious interpretation in models which are sequences of actions. The idea is to characterize all
behaviours of a program through one temporal logic formula. Consequently a behaviour will be a program
execution if and only if it satisfies the formula. For example, the simple formula consisting of the proposition ‘a’
will be true for the processes which can perform immediately an 'a’ action, while the formula (a v b) A O[Jc
will be true for the processes which can perform an action 'a’ followed by an infinite sequence of 'c’ actions or
an action 'b' followed by an infinite sequence of 'c' actions.

We will use the temporal logic presented to provide the semantics for a language which admits only
interleaved executions, that is, in which actions are performed one at a time. Therefore, we will deal only with
model sequences in which only one action predicate is true at any time.

This means that the formula a A b, where a and b are action predicates, can have no model and hence is equal
to false. At the level of logic formulae, we can express this constraint on the models as the implicit assumption
that every formula is put into conjunction with the predicate:

[ A—(xAY)

x,y€ Act
XY

4. A compositional temporal semantics for the example language

In order to achieve modularity in the specification and verification of concurrent programs, the semantics
provided should be compositional, i.e. the meaning of a program is given by a composition of the meanings of
its components.

An approach towards compositional temporal semantics has been developed by Barringer, Kuiper and Pnueli
[Bar 84, Bar 85, Bar 86]. In this approach, to obtain compositionality the semantics of a process must be open,
i.e. the process is described immersed in all possible (parallel) environments. The semantics is given by closing




the process in question with all possible environments. The meaning of a process in closed systems of this type
is a sequence of its own actions possibly interleaved with environment actions. When one process is composed
in parallel with another, its semantics is partially closed because part of the external environment of the first
process becomes known, i.e. some of the environment actions of the first process will be actions performed by
the other. To denote an unknown environment action, a special proposition 'e', is added to the set of meaningful
language actions (in [Bar 86] the same proposition is named 'i'; we choose ‘¢’ to avoid confusion with the T’
(internal) action). Therefore the set of action predicates we will use is defined as :
Act=Gates U {e,i}.

Due to the compositionality of the approach, a temporal semantics can be given by defining a function L
which associates a temporal formula to each construct of the language by means of a set of syntax-directed
clauses, as is usual when giving denotational semantics.

The language constructs are in the example language behaviour expressions, and their meaning is taken to be
a predicate on possible execution sequences spawning from that behaviour expression. The meaning is however
dependent on the context in which the construct is inserted, i.e. an environment which associates a process
denotation to every declared identifier is considered as a parameter of the function L. We adopt the notation L g to
indicate the environment parameter.

The type of the semantic function is hence:

L:S —-E —->TL

where S is the space of behaviour expressions of our language, TL is the space of temporal formulae and E
is the space of environments, i.e. of mappings from process identifiers to temporal logic formulae:

E:P >TL.

Note that in the following the word "environment" is overloaded with two meanings: the first denotes an
element of E, the second distinguishes the "e¢" action as an environment action, in the typical sense of the
compositional approach. The meaning is, however, obvious from the context each time.

The clauses defining the function L by structural induction are listed here; each is followed by a comment.
Ly (stop)=eW —O true

The meaning of an inaction behaviour is true for any (possibly infinite) sequence of environment actions. he
formulae '—O true' is valid for the empty sequence. The W operator is used in this clause because the process
'stop’ will execute transitions only if the environment is able to perform them: the process will terminate when
the environment terminates.

Lo(isB)=eW [iA0OLg(B)]

The meaning of an unobservable action followed by a behaviour B is true for every sequence of environment
events followed by the unobservable action and by sequences for which the meaning of B is true.

Lo(gB)=eW [gAOLg(B)]
The meaning of an observable action followed by a behaviour B is true for every sequence of environment
events followed by the observable action and by sequences for which the meaning of B is true. In this case it is

possible that an interaction never occurs, since its occurrence is dependent on the readiness of the environment
to perform the same action.

Lg(B1lBy)=Lg(B1) v Lg(By)




The meaning of the choice operator is true if the meaning of one of the component behaviours is true.

In the following formula we should have used two functions: 1 and 2 defined on the set of gates I” which give
values, respectively, in the sets I'x{1} and I'x{2}, such that 1(x) =<x,1>, and 2(x) = <x,2>. However,
for simplicity as notation, we will use the subscripts to the names of the gates (i.e. is, X3, X) to refer to the
application of these functions.

Lo (BylgBy) =

(LeB leviav V £ )/ e, i1/i, Viegfe a(By): f1/f] A
feg,fea(By)

ALg(BYleviyv V fi )/ e /i, ViegfeaBo): f,/1])

fegfea(By)

[Vie g {/f;, Vig g {/fy, i/i1,i/i2]

The logic relabelling operator is here liberally extended to express a set of substitutions. The last relabelling
applies to the result of the conjunction. Function a, defined on behaviour expressions, gives the set of
transitions that a behaviour expression may perform during its execution (this set of transitions can be produced
by a static analysis of the behaviour expression - actually, the static analysis produces a larger set than that
strictly needed but, due to the use of subscripts, all the unnecessary f, i. e. those which are not present in the
matching sequence, will be dropped by the conjunction operation).

Parallel composition partially closes the open semantics of the component processes. In order to explain the
formula we must consider carefully the exact meaning of the LOTOS parallel composition: actions of the
composed processes are interleaved, except for those actions occurring at gates belonging to the set 'g': these
actions are performed simultaneously by both processes. Hence, given the various actions that the component
processes can perform, we can distinguish the following cases:

1. If By performs an i action will be considered as an environment action for B2, thus an i in B

must be paired with an e in B2 (and viceversa).

2. If B1 performs a f action, with fg g, this will again be considered as an environment action

for B2; thus it must be paired with an e in B2 (and viceversa).
3. If B1 performs a f action, with fe g, B2 must also perform this action, and thus the same
actions must be paired for B and B).

4. Since the parallel composition should continue to have an open semantics, it must be open to
environment actions which are considered as such for both B1 and B?7; thus an ¢ in B should
be paired with an e in B).

This pairing is performed by the conjunction of the component meanings. Suppose the next action performed
by B1 is X' and by B2 is 'y'; this means that:

LB1=x and LB2)=y
hence

LBDAL(B2)=xAy @

Now, if x and y are different, formula (2) will have no model due to the interleaving constraints. Hence we
should restrict models to the cases when x and y are the same. This is satisfactory for e actions (case 4) and for
actions on gates in 'g’ (case 3). In the other cases, we should substitute one of the ¢'s in L.(B1) with an i (case
1) or with a f(fe g) in case 2. This substitution amounts to partially closing the open semantics of B] with
actions performed by B2.

In conclusion we would produce the following simpler formula which expresses the temporal meaning of
BilgiBy:




LoBDeviv V f)/el algB) (evivV f)/e]
fe g.f ea(By) fegf ea(B))

However this formula could confuse actions performed by B1 with the same actions performed by B2 (in
LOTOS we have no "ownership" on actions: any process can perform any action at any gate). To overcome this

problem we must identify (by a substitution) the owner of the (i and f, fe g) actions. The identity of the owner is
then dropped from the formula describing the behaviour of the composed process.

Lo(By>>By)=LgB))C LgBy)

The meaning of enabling is true for every sequence that is the concatenation of a model of B with a model of

B. The concatenation of models is achieved by the use of the chop operator.

Lo(By[>By)=LeB)) [> Lo(By
The meaning of disabling is achieved by directly using the logic disabling operator.
Lg(hideginB )= LgB)[ Vieg: i/f]

The meaning of hiding is true for every sequence which satisfies the meaning of its operand, in which every
occurrence of the actions is substituted by unobservable actions.

Lo (p((a]) ) = 8(p) [a/gates(p)]

The meaning of a process call is retrieved by the environment, with the obvious parameter substitutions.

It is now time to define how an environment 8 is built for a program. This is achieved by a semantic function
D which is defined on a list of process declarations. The type of D is:

D : Decl* - E

and is defined in the following way (using an auxiliary function D1 : Decl* XE — E):.

D (decls) = vE. D1 (decls) (§)
D1 (process p[g] := B endproc; decls) (€) = {<plg], Lg(B)>}o D1 (decls) )
D1(mid©)=2

The definition of D1 augments the mapping with a new pair for every declaration. The pairs consist of a
process heading and the meaning of the corresponding behaviour expression. Since process calls can be
recursive, the meaning of behaviours should also be evaluated in the overall environment. The existence of the
maximal fixed point is guaranteed by the consideration that the temporal logic formulae present in & can only
appear under an even number of negations. The choice of the maximal vs. minimal fixed point to express
recursion is due to the fact that the maximal fixed point semantics of a guarded recursion has as models with
infinite sequences of (non-¢) actions, which are not models of the minimal one, as shown in [Fan 88b].

Finally, the program semantics is given by a semantic function P whose type is:




P Prog -»7TL
with the following definition:

P (decls ; B) = Lp(gecs)(B)

5. Relationship between temporal and operational semantics

The temporal semantics of a process is a temporal logic formula; the possible executions of the process are all
the ordered sequences of actions which satisfy this formula.

The use of such a semantics implies an equivalence relation: two processes have the same meaning if the
associated formulae are logically equivalent. From the meaning of temporal logic formulae follows that two
equivalent processes will have the same set of sequence models. This fact recalls of the "string equivalence”
[Hoa 81] which considers two processes to be equivalent if they are able to perform the same sequences of
actions (traces).

We should, however, remember that the "official" LOTOS operational semantics [DIS 8807] is given by
observational equivalence. The fundamental difference between observational and string equivalence is that the
equivalence classes are, respectively, classes of action labelled trees (the synchronization trees of [Mil 80]) and
classes of sets of sequences of actions. This is due to the difference between the basic model for the process used
by the operational semantics, i. e. the labelled transition system, and the sequence model used for linear time
temporal logic. This causes the different discriminating power: the observational equivalence has a finer
discriminating power with respect to the string one.

What is of interest in our case is to show that there is, however, a correlation between the temporal and the
operational semantics. This correlation is found in the formal correspondence between the logical and the string
equivalence. For this purpose, we give the definition of simple abstractness:

A semantics D of a language L is simply abstract with respect to the operational semantics O of the same
language if and only if:

VP,Qe L DP)=D(Q <0@)=00Q)

We prove the simple abstractness of our temporal semantics with respect to the operational semantics modulo
string equivalence by comparing the set of sequences which are models for the formula expressing the temporal
semantics of a process in our language, and the set of traces originated by the same process following the string
equivalence.

The main difference between the set of traces and the set of sequences is that the latter may contain sequences
with any number of e actions between any pair of meaningful actions.

If the two equivalences are to be considered as the same, this presence of e actions must be the only
difference.

For this reason, we define a relation R between a set of traces and a set of sequences. This relation
corresponds to eliminating the e's from the elements of the latter and therefore obtaining the same traces as the
former.

The heart of the proof shows, by structural induction, that in any program its trace set is in relation R. with its
model sequence set. This fact, together with other features of the model sequences originated by the given
temporal semantics is sufficient to prove the simple abstractness. The formal proof is given in the appendix. The
proof does not hold for cases where unguarded recursion is present - this topic is discussed in [Fan 88b].
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6. Justice and fairness properties

We have given previously some relationships between the temporal semantics of the language and its
operational semantics. However, the main interest in giving temporal semantics is to be able to express properties
which cannot be expressed by the operational semantics. Interesting cases are the fairness and justice
properties. Both properties refer to infinite computations: a process is fair if in performing infinitely often a
choice among more alternatives, each alternative will eventually be executed; justice is instead the requirement
that if a process is constantly able to choose in a set of actions (that is, the actions of the set are constantly
enabled) then eventually one action of the set will be performed [Pnu 88].

The reason for which these properties are not expressible with the operational semantics is in the model which
underlies it. Labelled transition systems cannot distinguish fair or unfair behaviours, or behaviours with or
without justice since such systems are not sensitive to computations which may be different at infinity. For this
reason Fair Transition Systems [Pnu 88] have been introduced by Pnueli, as a model for fair concurrent systems.

It is instead well known that temporal logic can express fairness and justice requirements; in Table 3 two
temporal formulae expressing the faimess and justice constraints as defined above are presented.

Fairness
W(Va) = (A 0a)
ae S ae S
Justice

0(Va) = (Vv [I02)

ae S ae S

where S ¢ Act

Table 3.

LOTOS has no syntax nor semantics to express that a behaviour is, for example, fair and another is not; it is
hence impossible to verify any similar property on LOTOS specifications. For this purpose it is necessary to
augment the language by syntactic extensions or by semantic enhancements.

The first approach - the syntactic extension - is proposed for CCS in [Par 85], where the behaviour syntax is
augmented with temporal logic formulae which allow to express such propertics. This would be possible also for
LOTOS.

Another approach is to enhance the semantics of the actions of the language. In the following we show how
the temporal semantics can be modified to express different justice requirements for Basic LOTOS.

The first case is that of imposing the following reasonable justice requirements, coherent with the basic
principles of action synchronization in LOTOS:

- if a process is able to perform an external action, since its occurrence will in general depend on the external
environment, it may be the case that the action is never performed (suppose for example that the process is
synchronized with a non-terminating process which does not perform the same action);

- if a process is able to perform an internal action, eventually it must perform it.

The second requirement is expressible by modifying the formula expressing the semantics of internal action,
by changing the unless operator with an until operator; we recall that the until operator means that its second
operand must eventually be true:
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L'g(iB)=eU[in0OL'y(B)]
The semantics of observable actions may remain unchanged due to the first requirement:
L'g(gB)=eW [gAOL'3(B)]

Anyway, the unobservable actions are generated also by the hiding operator. Whenever an action is hidden,
its occurrence is no more dependent from the environment and must eventually happen, for the second
requirement above. In order to express this, the formula expressing the semantics of hiding should be modified
so that its sequence models do not include sequences which have an infinite sequence of e starting at a point
where an hidden action is possible. This is not expressible with the temporal operators till now defined: we need
to introduce a new operator, which we call "constrain”, which in its general form has the following definition:

6i E 0lipeoren  iff i E ¢ and not (existsk>i:, ok k[]aand
exists 6": (¢',i EelU band ol oc'i E )

where a, b are action predicates, ol the sequence ¢ cut at the k-th action.
This operator has the effect to drop the model sequences of ¢ which at a certain point become infinite sequences

of a's, while other model sequences of ¢ exist which at the same point have a b action.
Using this operator, the new meaning of hiding is the following:

L'o(hideginB)= Lo (hide ginB)/, pefore

Consider the process:
a; stop [ i; stop

its temporal meaning, using the modified definition for the unobservable action prefix would be:

eW(@nO (el -Otrue))) vie U (iAO (e =0 true))) =
=eW ((avi)AO (e W -0 true))

which means that either action a or i may occur, but they also may never occur. To enforce the second justice
requirement in this case it is necessary that the meaning of nondeterministic choice is modified in order to
"spread" justice to the possible observable actions. The desired meaning would therefore be:

eU({(avi)A O (e W -0 true))

This can be obtained by applying the following definition:
L'g(ByIBy)=Lg(B1IBy ) /e vefore i

The same reasoning holds for the disabling operator, whose modified semantics is:
L'g(By[>Bp)=Lg(B1[>By) /e beforei

For what concerns the enabling operator, it is also necessary to consider the possibility that the first action of
the second process is an unobservable action which has to be eventually performed; however, the preceding
behaviour terminates with a stop, which has as a model the infinite sequence of e's. This possibility is dropped
by using the following definition:
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L'g(By1>>By)=Lq(B1>>B2)/ veforei

The definition of L' on the other operators remains the same of L, since they do not introduce any possibility
of infinite e sequence before an unobservable action.

A different way to define a justice semantics for LOTOS can be to assume that the external environment
"properly"” favours the execution of a process. By "properly” we can intend that the environment is always ready
to offer/accept an action that the process is able to do; this guarantees justice. We can consider this assumption,
by modifying the semantics of the language so that non-environment actions must eventually occurr. The
modified semantics of the action prefix operators is:

L"'g(B)=eU [irnOL"4(B)]
L"g(gB)=eU[gAa0OL"4(B)]

In the definition of the semantics of the other operators it is necessary to make use of the constrain operator
defined above, not only on unobservable actions, but also on observable ones.

As a simple example, we show that using the L" semantics it is possible to verify that the simple process:
process Pla,b,c] == a; b; P endproc

performs a infinitely often.
This amounts to proof the following implication:

VE.(eU (an0(U(DAOE)) = [0a
which is straightforward.

This verification is not possible with the L or L' semantics, where due to the use of unless operatorsit is
possible to enter infinite sequences of ¢'s, which corresponds to say that the external environment is always able
to perform non-a actions.

The discussion above shows that the method chosen to give the temporal semantics to our language is flexible
enough to express particular assumptions on the semantics of the language, which allow to verify certain classes
of properties. It is part of our future research to review completely the range of possible semantics for LOTOS,
studying their relationships and their application to the expression and verification of justice and fairness
propertics.

7. Conclusive remarks

In the previous sections, we have used the compositional method proposed in [Bar 84, Bar 85, Bar 86] to
give a temporal semantics for Basic LOTOS, proving that the given semantics is simply abstract with respect to
the operational semantics modulo string equivalence. However, the official LOTOS operational semantics is
given by observational equivalence, which is finer than string equivalence. For this reason, the comparison of
our temporal semantics with string equivalence cannot be considered as conclusive, due to the low
discriminating power of the latter.

In order to be closer to the official semantics and to re-acquire the discriminating power of the observational
equivalence we would use another version of temporal logic (branching time), in which models are trees of
actions. This increases the complexity of the semantics of the language and of the abstractness proofs and is
considered a valid direction for future research in the specific case of LOTOS.

Our main objective is however to define a logic semantics which can express properties referring to infinite
computations, such as justice and faimess.

We have started with a simple form of temporal semantics, which is at the same time close to the operational
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semantics of the language and the simplest one in terms of temporal logic operators needed to express LOTOS
behaviours - only the disabling LOTOS operator has been modeled by an unusual disabling temporal operator.

Next we have shown that in order to give a different semantics in terms of program properties we need to
introduce new logic operators: we have discussed how to enrich our semantics to treat justice requirements.

In our work, starting form a simple temporal logic, we have encountered the need to increase the
expressiveness of the logic semantics, by introducing new specific logic operators. A different approach is to
start by defining an expressive logic for the language. The latter approach has been followed in [Hen 85], where
an expressive logic (with respect to the observational equivalence, but not to properties of infinite computations)
is defined to give logic semantics to CCS programs.
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APPENDIX

We need some preliminary definitions and notations:

Act= {gigeGates} L (i} -- the set of Basic LOTOS actions;
S=(Actu {e)* U(Actu {e})e -- the set of possible model sequences;
T = Act* U Acto -- the set of possible traces.

We use o for ranging over 8 and t for ranging over 7T.

We use e* to denote any finite sequence of consecutive e's, and e® to represent the infinite sequence of
consecutive e's. A denotes the empty string. A dot (.) denotes the concatenation of two strings.

The notation ¢ = ¢ is an abbreviation for 6,1 £ ¢ .

Definition 1
Therelation R « 8 x T is so defined:

oRt iff ((c=e*a.c'and t=at'andoRt') or (o=e*andt=A)or (c=e@andt=A1)).
This relation correspond to an elimination of the ¢'s present in the model sequences.

Definition 2

We extend the relation R to the sets of sequences and traces:
RcPE)xPD

SRT if VoeS FteT: oRt and VieT FoeS: oRt

Proposition 1
VoeS IteT: oRt

Proof (By contradiction)

Suppose that, given o€ 8, we have t1,t2 €T, t1#ty, oRt] and oRty . Four cases are possible:

1) t1=A; hence, by definition of R, ¢ should be en for some non negative n, or e®.

Since ty#tp, for some a€ Act, it should be ty=a.ty'. By definition of R it should be

c=a.0', with ¢'Rt'g, contradicting what said above;

2) tp=A; is symmetrical of the above case;

3) 11= aty’, 2 =b.tp’, azb;

by definition of R. it should be both 6 =a .c"'and 6 =b .¢". Contradiction.

4) 1= a.ty’, i =aly, t1'#4ty

the contradiction will be reached by applying recursively this process on t1' and tp'. We are assured of the
termination by the fact that if tj'#ty’, there will be a k>0 such that either t] has only k-1 elements, and t) has at

least k elements, so the first clause is applicable, or the k-th element of t] is different from the k-th element of tp,
hence the second clause is applicable.

Note. The contrary (VteT 3! ce8: oRt) is obviously not true, by definition of T and §. ¢

Proposition 2
VSc8 INTcT: SRT

Proof (By contradiction)

Suppose that, foragiven Sc §,wehave T, T'c T, T#T" SRT and SRT' .

Since T#T" (suppose T'cT), there exists at least an element te T, t¢ T'. Since SR.T, there exists 2 o€ S such that
oRt. But since SRT", there exists a t'e T" such that 6Rt'. For Prop.1, t=t', and hence the contradiction.

Definition 3
Let us define the notion of e-maximal set of sequences on Act U {e}:
A set S ¢ 8 issaid e-maximal if:




c1ekope S = Vn20,c1ehope S and 61.eP€ S
with 61,67 € & and o9 possibly empty.

Theorem 1

Let us denote with Sp the set of model sequences of the temporal semantics of a Basic LOTOS program P (that is:

Sp={clo ELgP)} ) and with Tp the set of traces of the same program.
Then SpR.Tp , for every Basic LOTOS program P.

Proof (By structural induction on the syntax of Basic LOTOS)
P = stop

Sp={clc k& ¢ —o true} = {e*} U {em
Tp={}M}
By definition of R., we have SpRTp. This is the basis of the induction.

P=1iB

Sp={clokeW [ir0Lg®B)]}={e*ic'lceSg}u (e}
Tp={itlteTg}u (A}

By definition of R, we have SpRTp if SRRTg.

P=gB
Sp={clokeW [gaoL gB)]}
= {e*.g.c'lg'e Sg} L {ev}
Tp={gtlteTg} U {A}
By definition of R, we have SpRTp if SgRTR.

P =B;[B,
Sp={cloc FLg(BYVLgBY}={cloc LB oo kLGB ]}=
= Sg1 USR2 -- due to the interleaving constraint

Tp= Tp1 VW TRz
Hence, we have: SgiRTg; and Sgo,R TR, implies SpPRTp .

P =B]/g/B2
Sp={cloc E(L g (By) [substl] AL g (By) [subst2] ) [subst3]}
where:

substl = (evip v \V; f2 )/e i1/i, Viegfea®Br):f1/f
fe g.fe a(By)
subst2 = (ev iy v \V fi )/eip/i, Viggfea(B)): f5/f

fe g feo(By)
subst3 = Vig g f/f], Vf@g f/fz, i/ il, i iz

The definition of Tp is given by introducing a set which is defined recursively to contain the traces obtained by

properly interleaving and synchronizing the traces of the component processes.
Tp = {t11eISTg(t1,12), 11€ TRy, 2 € TB2 }

The following definition of ISTg(ty,t2) is easily derived from the operational semantics:

ISTy(t1.t2) = {(tlt=actt, acteg, te ISTg(t1' 1), t1 = actty’ )



U {tit=actt, acig g, t'e ISTg(tl,tz'), ty = act.ty' }
U {tlt=actt, acte g, t'e ISTg(t1',12), t1 = act.yy’, 12 = acL.y' }
w {A)

Let us now define an analogous set 1SSg(c1,02) €8 .

I1884(c1,02) =
{clo=elact.g’, actg g, o'e ISSg(Gl',O'Z'), o1= ellact.oq', op = e+l oy, n>0}
U {clo=ellacto', acte g, o'c I188¢(c1',02), o1= en+l.oy', op = eNact .oy, n20}
U {olo =ehact.g', acte g, o' I1884(01',02), 01= eM.act.o1', 62 = el act .67', n20}
U {e*} U {ew}

In order to prove this part of the theorem, we need the following lemma:

Lemma 1.1

o€ ISSg(01,02) if o=0'[subst3] and o' € oyfsubst;] and o' €op [substy]

where o[subst3] denotes the (only) sequence obtained from ¢ by the relabelling substz, and o[substy], 6[substy]
denote the set of sequences obtained from, respectively, 61,09 by the relabelling subst, subst).

Proof (By induction on the length of 51,09)

We have several possible structures for 61 and 679 (cases 1,2,3 are the inductive steps; cases 4,5,6 are the basis of
the induction):

1) op=ehactoy’, 69 =eltlop’, n>0,act e g

The only o~ such that: c—e o1[subst}], 6—e o) [substy] is 6— = eN.1(act).c—" , where 6—'e€cq'[subst;], o
€0p’ [substy], since subst] substitutes act with 1(act) and subst) substitutes the n+1-th e with 1(act).

If we take o = c—[subst3], we have: o =el.act.c', where 6" = o—'[subst3] .

This means that, since the inductive hypothesis is true for the shorter string o', we have o'e ISS g(cl’,cg').
Hence, by definition of ISS, ¢ € 1SSg(01,02) .

2) oi=e+loy, op=ehactoy,n>0, acte g
This case is simply the symmetrical of the previous one; the proof is obviously the same.

3) op=elact.cy, op=elact.cy’, n20, acte g

The only ©—such that: 6— € oy[substy], 6~ €09 [substy] is o—=elact.c—,where c—'€oq'[substy],
G~ €07’ [subsip]; that is, subst] and substp behave as the identity on the n+1-long prefixes of ojand ¢7.

If we take o = 6—[subst3], we have: ¢ = efl.act.c’, where ¢’ = c—'[subst3]. (Again, subst3 behaves as the
identity on the n+1-long prefix of o—).

This means that, since the inductive hypothesis is true for the shorter string o', we have '€ ISS g(c1',02).
Hence, by definition of ISS, ¢ € I1SS4(c1,02).

4) o1=eh, gp=eh, n20.

The only o—such that: o—€ oy[substy], - €0y [substp] is o—=en, since subst] and substy can be
reduced to the identical substitution. In this case also subst3 is the identity, hence

G =c[substz] =ell ISSg(Gl,Gz).

5) o1=e®, gp=¢0,
By the same reasoning of the above case we obtain 6 = e® € ISS4(51,02).




6) In all the remaining cases:

Gi=ehl, ¢y = eM, nzm;

01= elacl.oy’, 67 = el act.07', n#m, act € g;

¢1=ellact).o1’, 07 = eM.act).oy’, acty#acty, acty, acty € g;

o1=en, gg = eM.act.c)’, n<m, and its symmetrical;

o1=e®, gp =eM, and its symmetrical;

o1= €@, g2 = eM.act.0y’, and its symmetrical;

we can find no o~ such that: o—e oy[subst]], 6— €09 [substy] ; hence this cases satisfy the hypothesis
trivially. ¢

(Proof of Theorem I, case P =B]/g/B2 continued)

By lemma 1.1, we have:
Sp ¢ {o10€1SS4(01,07), 61€ SB1, 02 €SB2 }
Suppose now that there exists a ¢’ €IS Sg(01,02),0'€ Sp ;

¢’ could not be one of the elements for which the first three clauses of the definition of ISS hold, otherwise by
reverse reasoning of clauses 1),2),3) of lemma 1.1 it would belong to Sp.

Hence it should be: 6'= e, n>0, or ¢'= ev. Since S and Sp, are e-maximal (by proposition 3 below), there
exist 61'e Sgy, 67'e S, such that 61’ = el = 05’ (respectively, 61 = e® = ¢7'), from which ¢' can be obtained
by identical substitutions. Hence &' should belong to Sp.

Note that this part of the proof, similarly to lemma 1.1, is again by induction on the length of the sequences.
Moreover, it is intertwined with the proof of e-maximality of all Basic LOTOS programs (by proposition 3
below).

In conclusion, we have:

Sp= {0 10e1854(c1,07), 61€SB1, 62 €SB, }
and, by comparing the definition of the sets IST and ISS,
Sp;R TR and SRR TR, implies SpRTp

P=B>>B,

Sp=1{c16 L gBPCL4BY) =
= {01.02 101 = Lg(B1), o1 finite, 53 FLg(B2)} U {06 ELg(B1), o infinite} =
= {01.07 | 61€ SR}, 01 finite, 57 € Sp; } U {01 0€ Sg;, o infinite}

Tp= {tj.tp 1 t;€ TRy, t finite, tp € TRy } L {t1te TRy, t infinite}

Hence, we have: Sg1RTg; and Sg,RTR, implies SpRTp .

P =BI[>B2

Sp={clc EL¢B [>LeB2) =
= {01.02 | o1 finite, 63 ELg(B)), 363:01.03 ELgB1)} U {c1okELg(B1), o infinite} =
= {0]1.07 [ o] finite, 63 €SB, , 3 63: 61.03 € SB1) v {0 | 6€ SRy, © infinite}

Tp = {t1.tp I t finite, tp e TRy, I t3:t1.13 €Ty} U {t1te Ty, tinfinite} =

Hence, we have: Sg1RTR; and Sg,RTR, implies SpRTp.

P = hide gin B

Sp={clo ELyB)[Vieg i/f] } = (ol o= o[ Vfeg: i/f], o'e S}
Tp= {tlt=t[ Vfeg: i/f], te Ty}

By definition of R, we have SpRTp if SRTR.
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P = p([a]), where process p[g] := B endproc

Sp={cl o= c'[a/g], o'e Sp }
Tp={tlt=t[a/gl, c'e Ty}
By definition of R, we have SpRTp if SgRTR. 3

Theorem 2

V P, Q Basic LOTOS programs: Sp= SQ=Tp=TqQ.

This theorem gives one side of the abstractness proof, saying that if two programs have the same temporal
meaning then they have also the same operational meaning.

Proof
By theorem 1 we have SpRTp and SQRTQ. But Sp= SQ »and by prop. 2 we have: Tp = T(.

Proposition 3
V P Basic LOTOS program: Sp is e-maximal.

Proof (by structural induction on the syntax of Basic LOTOS)

1) The meanings of: stop, i;B, g;B(x), due to the use of "e unless..." operations, have as model sequences all
those with subsequences of ¢'s of any length, also infinite. Hence Sstop is e-maximal, and Sy;; g is e-maximal if
Sp is e-maximal (oi is any Basic LOTOS action).

2) The meaning of the nondeterministic choice does not introduce any more e in their model sequences than those
present in the model sequences of their component processes. Hence S[b] _,B is e-maximal if Sg is e-maximal
and Sg1[gp is e-maximal if Sg1 and Sg» are e-maximal.

The same holds for enabling and for disabling.

3) The meanings of hiding and of process instantiation relabel only non-e actions in the model sequences of their
component processes. Hence Spide g in B is e-maximal if Sg is e-maximal and Sp(la][v]) (Where process
plgllv] := B endproc) is e-maximal if Sg is e-maximal.

4) For what concerns the parallel composition operator it is easy to see that by definition the ISSg set is e-
maximal. Hence Sg|g|g7 is e-maximal. (Note that in the proof that Sp1igig2 depends on the ISSg set we have
used the e-maximality of its components - this is not a trick, rather it fits in the structural inductive nature of the
present proof). ¢

Proposition 4
VTcT 3ScS,Semaximal: SRT.

Proof (by contradiction)

Suppose that, foragiven TC T, we have S, S' ¢ 8, $#§', S,S' e-maximal: SRT and S'RT.

Since S#S' (suppose S'cS), there exists at least an element o€ S, ¢ S'. Since SR.T, there exists a te T such that
oRt. But since S'RT, there exist a ¢'e S' such that ¢'Rt.

By definition of R, if cRt and o'Rt, 6 and ¢' may differ only for the length of some of their subsequences of e.
Since S'is e-maximal and ¢'e §', we have also o€ S', which contradicts the hypothesis. ¢

Theorem 3

V' P,Q Basic LOTOS programs: Tp =TQ = Sp =S(.

This theorem, saying that two programs with the same operational meaning have the same temporal meaning,
gives the other side of the abstractness proof.

Proof
By theorem 1 we have SpRTp and SQRTQ. But Tp= TQ ,and by prop. 3 Spand SQ are e-maximal. Hence

by prop. 4 we have: Sp = SQ. 3



