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Summary
The Intra-Voxel Incoherent Motion (IVIM) model is largely adopted to estimate slow and fast
diffusion coefficients of water molecules in biological tissues, which are used in cancer appli-
cations. The most reported fitting approach is a voxel-wise segmented non-linear least square,
whereas Bayesian approaches with a direct fit, also considering spatial regularization, were pro-
posed too. In this work a novel segmented Bayesian method was proposed, also in combination
with a spatial regularization through a Conditional Autoregressive (CAR) prior specification. The
two segmented Bayesian approaches, with and without CAR specification, were compared with
two standard least-square and a direct Bayesian fitting methods. All approaches were tested on
simulated imagesand real dataof patientswithhead-and-neckand rectal cancer. Estimationaccu-
racy andmapsnoisinesswerequantifiedon simulated images,whereas the coefficient of variation
and the goodness of fit were evaluated for real data. Both versions of the segmented Bayesian
approachoutperformed the standardmethodson simulated images for pseudo-diffusion (D∗) and
perfusion fraction (f), whilst the segmented least-square fitting remained the less biased for the
diffusion coefficient (D). On real data, Bayesian approaches provided the less noisy maps, and
the two Bayesian methods without CAR generally estimated lower values for f and D∗ coeffi-
cientswith respect to the other approaches. The proposed segmentedBayesian approacheswere
superior, in terms of estimation accuracy and maps quality, to the direct Bayesian model and the
least-square fittings. The CARmethod improved the estimation accuracy, especially forD∗.
Word count = 7200
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1 INTRODUCTION
Diffusion-WeightedMagnetic Resonance Imaging (DW-MRI) is a non-invasive technique that quantitatively characterizes the diffusion properties
of water molecules 1.

0Abbreviations: CAR, Conditional Autoregressive; CV, Coefficient of Variation; HN, head and neck; LSQ, Least Square; MAE, Mean of Absolute Error;
MCMC,Markov ChainMonte CarloMRF,Markov Random Field; RMSE, RootMean Square Error; SNR, Signal to Noise Ratio;
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Typically, the standard analysis ofDW-MRI signals provides the estimation of theApparentDiffusionCoefficient (ADC), which is estimated using
amono-exponential decaymodel of the signal intensity over b values.
The Intra-Voxel Incoherent Motion (IVIM) model describes the incoherent motion of the water molecules in function of diffusion and perfusion

properties of a tissue at the same time 2. In the IVIM model, the signal intensity in each voxel is modeled via a bi-exponential decay over b, char-
acterized by a first fast component, which is related to tissue perfusion (the blood flow in the capillaries), followed by a second slow component,
which is related to tissuemolecular diffusion. Specifically, the IVIMmodel allows to estimate the diffusion coefficient (D), the pseudo-diffusion coef-
ficient (D∗) and the perfusion volume fraction (f) within the tissue. The estimation of these coefficients can be made within a region of interest, by
averaging the signal intensities over the voxels, or voxel-by-voxel to obtain parametric maps.
The tissue characterization through diffusion and perfusion properties has shown promising results, especially in the tumor diagnosis, where

tumor identification and grading can be improved by this technique with respect to standard diagnosis 3,4,5. In patients affected by rectal cancer,
IVIMwas proposed for discriminating between good and poor responders to combined chemotherapy and radiation therapy 6. For the diagnosis of
head-and-neck (HN) cancer, it has been shown that the combined use of D and D∗ can increase the diagnostic accuracy in predicting malignancy
in HNmasses with respect to the ADC 7,8. In addition, IVIM can also be useful to assess the effect of radiotherapy in normal tissues, since they are
usually irradiated during the treatment 9,10,11.
The most reported approach for the estimation of D, D∗ and f in clinical research is a non-linear least square fitting of the IVIM signal on a

voxel-wise basis, where the optimization algorithms classically employed are Levenberg-Marquardt 12,13 and Trust Region 14,15 strategies. However,
the goodness of fit of such a standard approach is strongly influenced by Signal-to-Noise Ratio (SNR) of the data, especially for the estimation of
D∗, making it difficult to assess small localized regions. To overcome this limit, a segmented fitting was generally adopted 16,17,18, whereD is firstly
estimated by considering only the DW-MRI signal at high b values. However, despite the goodness of fit is improved with respect to the direct
estimation without segmentation, f andD∗ parametric maps remain strongly corrupted by noise 19.
Bayesian approaches were proposed to improve the quality of the parametric maps with a direct fit 20, because they allow to use prior informa-

tion to regularize the fitting. It has been shown that the Bayesian estimation is associated with lower variability and higher precision and accuracy
with respect to several least-square approaches 21. Bayesian approaches also allow to introduce a spatial dependency between voxels. For example,
a spatial homogeneity prior was proposed in the form of a continuous Markov random field (MRF), using a fusion bootstrap moves algorithm to get
the posterior density of the coefficients 22,23. Recently, someworks compared several estimation approaches of the IVIMparametricmaps 21,19,24,25,
including the standard least-square fittings, the Bayesian model with a Gaussian shrinkage prior 26 and the Bayesian model with a spatial homo-
geneity prior 22,23,19. They highlighted that Bayesian approaches consistently outperformed the classical non-linear least square fitting, and that the
use of a spatial homogeneity prior can reduce errors with respect to a Gaussian one.
The aim of this work is to propose an alternative Bayesian approach, based on a segmented version of the classical models, for the estimation

of smoothed and reliable IVIM maps. This approach should combine the advantages of the standard least-square segmented approach with the
improvements of the Bayesian modeling. Two versions of the segmented Bayesian approach are proposed, where the latter includes a spatial reg-
ularization in the prior density through a Conditional Autoregressive (CAR) specification that takes into account information from the neighbor
voxels. These methods are compared with standard approaches, i.e., the direct and segmented least-square fitting and a classical Bayesian method
with Gaussian prior, and tested on both synthetic images and real data of patients with HN and rectal cancer.

2 METHODS
The signal intensity in voxel (i, j) at a given b value is denoted by SI (i, j, b), and the intensity decay over b is described in each voxel according to the
IVIMmodel of Le Bihan 2:

SI (i, j, b) = SI (i, j, 0)
{
f (i, j) e−b [D(i,j)+D∗(i,j)] + [1− f (i, j)] e−bD(i,j)

}
∀i ∈ I, j ∈ J, b ∈ B \ {0} (1)

The IVIM model with the sum of D and D∗ for the first exponential decay 2 is here preferred to the alternative one, where only D∗ appears in the
first exponential decay, to have amore direct comparison with other literature works 19,22,23.
The goal is to estimate the coefficients D (i, j), D∗ (i, j) and f (i, j) ∀ (i, j) based on a set of observations SIobsijb for SI (i, j, b) at different b values.

Three benchmark models from the literature, i.e., the direct Least Square approach (LSQ-FULL), the Segmented Least Square approach (LSQ-
SEG) and the Bayesian Gaussian approach (GAUSS-FULL), are first presented; then, the new approaches proposed in this work, i.e., the Bayesian
Segmented Gaussian approach (GAUSS-SEG) and the Bayesian Segmented Conditional Autoregressive approach (CAR), are detailed.
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2.1 Least Square approaches
In both the LSQ-FULL and LSQ-SEG approaches, model (1) is considered and the signal data are fitted voxel by voxel using a Trust Region
algorithm 27, with the boundary constraints and the function tolerance reported in 19 (0.0005 < f < 0.9995; 0.045 < D < 18 [×10−3mm2/s];
0.34 < D∗ < 1000 [×10−3mm2/s]; function tolerance= 10−7). With respect to the LSQ-FULL, a two-step fitting is considered in the LSQ-SEG;
D is first estimated using a mono-exponential diffusion model, only considering data for b ≥ b̂ = 200 s/mm2, in which the diffusion component
accounts for a large portion of themeasured signal 16. Then,D is kept fixed and the IVIMbi-exponential model is fitted for all b values. Both the LSQ
methods are implemented in a custom-madeMATLAB routine (MathWorks, Natick, MA, USA).

2.2 Bayesian approaches
In the non-segmented approachGAUSS-FULL, the followingmodified version of the IVIMmodel (1) is considered, inwhich the sumD (i, j)+D∗ (i, j)

is condensed in only one parameterDsum (i, j) that is directly estimated.
SI (i, j, b) = SI (i, j, 0)

{
f (i, j) e−bDsum(i,j) + [1− f (i, j)] e−bD(i,j)

}
∀i ∈ I, j ∈ J, b ∈ B \ {0} (2)

ParametersD∗ (i, j) are then obtained asD∗ (i, j) = Dsum (i, j) − D (i, j). This modified model, which gives the same identification problem and has
been already considered in the literature for non-segmented approaches 28, is used to reducemodel complexity and simplify the computation.
In the segmented approachesGAUSS-SEG andCAR, the estimation procedure is divided in two steps. In the first step, the parametersD (i, j) and

f̃ (i, j), where f̃ (i, j) denotes a first estimation of f (i, j), are estimated with the observations at b = 0 and b ∈ B : b ≥ b̂. A simplified version of the
IVIMmodel (1) is considered, in which the first exponential trend disappears:

SI (i, j, b) = SI (i, j, 0)
[
1− f̃ (i, j)

]
e−b D(i,j) ∀i ∈ I, j ∈ J, b ∈ B : b ≥ b̂ (3)

In the second step, as in the LSQ-SEG approach 27, the parametersD∗ (i, j) and f (i, j) are estimated using all observations and the complete IVIM
model (1), fixing the parametersD (i, j) at the values obtained from the first step (expected value of eachmarginal posterior density).
The sampling of the posterior density is performed through theHamiltonianMonte Carlo approach 29, by implementing all Bayesian approaches

in Rwith package STAN 30, which directly provides the posteriormarginal densities of each parameter. Chains are initializedwith themean value of
the prior density for each parameter, and samples are obtained considering 1000 iterations after a warm up of 1000 iterations, which allowed the
convergence of the chains in all tests. Codes are available as Supporting Information.

2.2.1 Bayesian Gaussian approach (GAUSS-FULL)
The modified IVIM model (2) is considered, as this is a non-segmented approach, and the parameters to estimate are included in the set Θ, i.e.,
Θ = D ∪ Dsum ∪ f withD = {D (i, j) , i ∈ I, j ∈ J},Dsum = {Dsum (i, j) , i ∈ I, j ∈ J} and f = {f (i, j) , i ∈ I, j ∈ J}.

Likelihood function
Each parameter in Θ is assumed to be a random variable. Thus, each decay equation (2) is a random process and the density of each SI (i, j, b) is
expressed as conditioned toD (i, j),Dsum (i, j) and f (i, j):

SI (i, j, b) ∼ Lsum (SI (i, j, b) |D (i, j) , Dsum (i, j) , f (i, j) , SI (i, j, 0)) ∀i ∈ I, j ∈ J, b ∈ B \ {0} (4)
whereLsum denotes the conditional probability law based on themodified IVIMmodel (2).
Moreover, all observations SIobsijb are assumed to be subject to an error, e.g., a measurement error, and thus modeled as stochastic variables. For

the observations with b > 0, a Gaussian distributionN withmean value SI (i, j, b) computed by (4) and standard deviation σlk is adopted:
SIobsijb ∼ N

(
SI (i, j, b) , σ2

lk

)
∀i ∈ I, j ∈ J, b ∈ B \ {0} (5)

Then, the values SI (i, j, 0) used in the IVIMmodel to compute the other SI (i, j, b) values are assumed to follow another Gaussian distribution with
mean value SIobsij0 and standard deviation σlk, similar to the approach adopted in 26:

SI (i, j, 0) ∼ N
(
SIobsij0 , σ

2
lk

)
∀i ∈ I, j ∈ J (6)

Finally,σlk is not fixed, as it is not possible to get a fair estimation directly from the acquiredmaps, but considered as another parameter to estimate,
given in terms of a prior distribution.
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Actually, a Rician distribution should be used in case of magnitude data for low SNR, while for high SNR the Rician distribution is well approxi-
mated by the Gaussian one 31. Nonetheless, the Gaussian and the Rician likelihood functions were found to give similar results for a large range of
SNR 32. Thus, a Gaussian noise is applied.
The combination of (4) and (5) gives the conditional law of each observation SIobsi,j,b, and their product over i ∈ I, j ∈ J and b ∈ B \ {0} gives the

likelihood function, which depends onΘ and σlk.

Prior density
A priori independence between each D (i, j), Dsum (i, j) and f (i, j) is assumed, and a truncated Gaussian prior distribution is considered for each
parameter λ, where λ generically denotesD (i, j),Dsum (i, j) or f (i, j). Thus:

λ ∼ N(λmin,λmax)

(
µλ, σ

2
0λ

) (7)
The values of the hyper-parameters are µf = σ0f = 0.1, µD = σ0D = 0.001mm2/s and µDsum = σ0Dsum = 0.011mm2/s. Values µλ are chosen to
center the priors on valueswith the sameorder ofmagnitude than those reported in the literature, as already considered in previousworks 21, while
σ0λ = µλ defines large densities. Moreover, the priors forD andDsum are truncated in the interval (0,+∞), to ensure positivity 26, while the prior
for f in the interval (0, 0.5), which largely covers its range of variability. The upper limit equal to 0.5 introduces an asymmetry in the model, which
allows to directly obtainD andDsum without assigning the lowest value toD in each voxel. These priors reflect two features commonly considered
in the literature, i.e., a distribution with a modal value and a positive support; in the absence of a widely recognized standard 32, the simplest choice
is in our opinion a truncated Gaussian density.
Finally, the standard deviation σlk follows an independent Gamma density to respect its positivity. Scale parameter equal to 1 is assumed to set a

large density (in the absence of precise information), andmean value is set to half of the average value of SIobsij0 over i ∈ I, j ∈ J:

σlk ∼ Gamma
(∑

i∈I,j∈J SI
obs
ij0

2 |I × J |
, 1

)
(8)

2.2.2 Bayesian Segmented Gaussian approach (GAUSS-SEG)
The estimation procedure is divided in two steps, as this is a segmented approach, and the IVIMmodels in (3) and (1) are considered for the first and
the second step, respectively.

First step
The parameters to estimate at the first step are included in the setΘI, i.e.,ΘI = D ∪ f̃ withD = {D (i, j) , i ∈ I, j ∈ J} and f̃ =

{
f̃ (i, j) , i ∈ I, j ∈ J

}.
As in the GAUSS-FULL approach, each parameter inΘI is assumed to be a random variable. Thus:

SI (i, j, b) ∼ Lsimp
(
SI (i, j, b) |D (i, j) , f̃ (i, j) , SI (i, j, 0)

)
∀i ∈ I, j ∈ J, b ∈ B : b ≥ b̂ (9)

whereLsimp denotes the conditional probability law based on the simplified IVIMmodel (3).
Again, all observations SIobsijb are assumed to be subject to an error and modeled as stochastic variables. As in (5), Gaussian distributions with

mean value SI (i, j, b) and standard deviation σlk are adopted for the observations with b ≥ b̂. Then, as in (6), the values SI (i, j, 0) used to compute
the other SI (i, j, b) values are assumed to follow another Gaussian distribution withmean value SIobsij0 and standard deviation σlk.
The combination of (9) and (5) gives the conditional law of each observation SIobsi,j,b, and their product over i ∈ I, j ∈ J and b ∈ B : b ≥ b̂ gives the

likelihood function, which depends onΘI and σlk.
As for the prior, a priori independence between each D (i, j) and f̃ (i, j) is again assumed, and a truncated Gaussian prior is considered for each

parameter, as in (7). The values of the hyper-parameters are µf̃ = σ0f̃ = 0.1 and µD = σ0D = 0.001mm2/s, in agreement with those adopted in the
GAUSS-FULL approach. The prior forD is truncated in the interval (0,+∞), while the prior for f in the interval (0, 0.5).
The standard deviation σlk follows the same prior Gamma density (8) of the GAUSS-FULL approach.

Second step
The parameters to estimate at the second step are included in set ΘII, i.e., ΘII = D∗ ∪ f , where D∗ = {D∗ (i, j) , i ∈ I, j ∈ J} and f =

{f (i, j) , i ∈ I, j ∈ J}.
All observations are considered, and the parametersD (i, j) assume the expected value of the respectivemarginal posterior density from thefirst

step. Again, each parameter inΘII is assumed to be a random variable:
SI (i, j, b) ∼ L (SI (i, j, b) |D∗ (i, j) , f (i, j) , SI (i, j, 0)) ∀i ∈ I, j ∈ J, b ∈ B \ {0} (10)



LANZARONE ET AL 5
whereLwith no subscript denotes the conditional probability law based on the original IVIMmodel (1).
The sameGaussian distributions for the errors of the observations SIobsijb are finally taken. A Gaussian distribution with mean value SI (i, j, b) and

standard deviation σlk is adopted for the observations with b > 0, as in (5), while the values SI (i, j, 0) used to compute the other SI (i, j, b) values
are assumed to follow another Gaussian distribution withmean value SIobsij0 and standard deviation σlk, as in(6).
The combination of (10) and (5) gives the conditional law of each observation SIobsi,j,b, and their product over i ∈ I, j ∈ J and b ∈ B \ {0} gives the

likelihood function, which depends onΘII and σlk.
As for theprior, a priori independencebetweeneachD∗ (i, j) and f (i, j) is again assumed, and aGaussian prior is considered for eachparameter, as

in (7). The values of the hyper-parameters areµf = σ0f = 0.1 andµD∗ = σ0D∗ = 0.01mm2/s, in agreementwith those adopted in theGAUSS-FULL
approach. The prior forD∗ is truncated in the interval (0,+∞), while the prior for f in the interval (0, 0.5). The first estimation f̃ is not considered
for defining the prior, as preliminary experiments showed that it is not a better estimation of f with respect to that obtained in the second step by
restarting from the Gaussian prior described above.
The standard deviation σlk follows the sameGamma density (8) of the GAUSS-FULL approach, as in the first step.

2.2.3 Bayesian Segmented Conditional Autoregressive approach (CAR)
This approach embeds the same decomposition in two steps presented for the GAUSS-SEG, with the same parameter structure (ΘI andΘII) and
likelihood for each step. The difference with respect to the GAUSS-SEG approach lies in the prior density.
A priori independence between each D (i, j) and f̃ (i, j) (first step) is again assumed, and between each D∗ (i, j) and f (i, j) (second step). Then,

separately for each parameter λ (where λ generically denotes each parameter inΘI orΘII), a CAR specification is included in the prior. An intrinsic
CARmodel is considered, in the formproposedbyLerouxet al. 33, assuming the followingdistributionof eachparameter given the rest of the values:

λ (i, j) |λc
i,j ∼ N

(∑
α∈I,β∈J w(α, β, i, j)λ (α, β)∑

α∈I,β∈J w(α, β, i, j)
,

σ2
λ∑

α∈I,β∈J w(α, β, i, j)

)
(11)

whereλc
i,j = λ \ {λ (i, j)} andw(α, β, i, j) denotes the spatial neighborhoodmatrix.With respect to Leroux et al. 33, the highest value for the spatial

association parameter is imposed (equal to 1 and thus not reported in the formula) to get the intrinsic model. As forw, we assumew(α, β, i, j) = 1

for the voxels (α, β) bordering on (i, j), and 0 elsewhere:

w(α, β, i, j) =

1 (α, β) = {(i− 1, j− 1), (i− 1, j), (i− 1, j+ 1), (i, j− 1), (i, j+ 1), (i+ 1, j− 1), (i+ 1, j), (i+ 1, j+ 1)}

0 otherwise
(12)

Then, to smooth the autoregressive component, amixturemodelwith two components is considered: the above conditional autoregressive spec-
ification (11) and the truncatedGaussian density (7) of the GAUSS-FULL andGAUSS-SEG approaches. Thus, the overall prior for each parameter λ,
which generically denotes each D (i, j, b) or f̃ (i, j, b) at the first step, and each D∗ (i, j, b) or f (i, j, b) at the second step, is a mixture between (11)
and (7), with weight 0.75 for the CAR specification (11) andweight 0.25 for the Gaussian component (7).
As for the CAR specification, the priors on the standard deviations are set as follows: σf̃ ∼ Gamma (0.25, 1) and σD ∼ Gamma

(
0.001mm2/s, 1

)
for the first step; σf ∼ Gamma (0.25, 1) and σD∗ ∼ Gamma

(
0.01mm2/s, 1

) for the second step. Differently from σ0λ, which are fixed equal to
the corresponding mean value, σλ are in terms of large prior densities, since we do not have any information about the variability associated with
the CAR specification. As for the Gaussian component, the same truncated densities with the same hyper-parameters than in the GAUSS-SEG are
chosen. Finally, the standard deviation σlk follows the sameGamma density of the other approaches.

2.3 Methods evaluation
All approaches were tested on both simulated images and real clinical data (five patients with HN tumor and four with rectal tumor, as examples of
IVIM acquisitions for tumor diagnosis; see SupportingMaterials and Supporting Information Tables S1 and S2).
Simulated images were created from bi-dimensional squared parametric maps (128× 128 pixels) with three concentric layers that reflect the

typical IVIM parameters of three structures: muscles and tumor for both regions; parotid gland in HN images; prostate in pelvic images. The
three structures were represented as follows: the muscle in the external layer, the parotid/prostate in the middle layer, and the tumor in the
inner layer (see Supporting Information Figure S1). The true parameters of each layers were (D [mm2/s], f , D∗ [mm2/s]): HN muscular tissue
(0.0015, 0.066, 0.046); parotid (0.0007, 0.133, 0.036); HN tumor (0.0008, 0.121, 0.017); pelvic muscular tissue (0.0012, 0.178, 0.025); prostate
(0.0012, 0.167, 0.007); rectal tumor (0.0011, 0.205, 0.257). These values were chosen according to the literature 10,34,35 or, in case the informa-
tion was not available in the literature, such as for the case of obturator muscle, a preliminary estimation was performed from a set of clinical
images. The simulated images were generated with the IVIM model, considering B = {0, 25, 50, 75, 100, 150, 300, 500, 800} s/mm2 for HN and
B = {0, 25, 50, 75, 100, 300, 600, 1000} s/mm2 for pelvis.
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Finally, the simulated images were corruptedwith a Rician Noise, given by the addition of twoGaussian Noises:
SIobsijb =

√[
SIsimijb +GNijb

]2
+GN2

ijb ∀i ∈ I, j ∈ J, b ∈ B (13)
where SIsimijb denotes the true simulated value and each Gaussian NoiseGNijb is independently sampled from a Gaussian distribution with null mean
value and variance equal to 1/SNR2. The adopted SNR values were 20, 40, 60 and 80.
For the clinical dataset,MR imageswere acquired using a 1.5-T system (OptimaMR450w,GEHealthcare,Milwaukee,WI, USA). DW-MRI images

were obtained by single-shot spin-echo echo-planar imagingwith: acquisitionmatrix equal to 128×128; in-plane resolution equal to 1.094× 1.094

mm2; TR/TE equal to 4500ms/72ms for HN and 3500ms/77ms for pelvis; slice thickness equal to 4mm for HN and 5mm for pelvis; same b values
as in the simulated images. An average of 4-5 slices that contain the three structures of interest were selected for each patient, excluding basal
and apical slices to avoid partial volume effects. In two cases, one structure (the prostate) was not considered since the patients were female. More
details are provided in the SupportingMaterials and Supporting Information Figure S2.
IVIM coefficients were estimated voxel-by-voxel, and themean value was calculated within each Region of Interest (ROI).

2.3.1 Simulated data
The quality of the parametric maps was assessed considering the percent bias (bias) and the percent mean absolute error (MAE) over a region of
interest, defined as:

bias =
Mean

(
λE,v

)
− λT

λT
× 100 (14)

MAE = Mean

(∣∣λE,v − λT∣∣
λT

)
× 100 (15)

where λE,v is the value of the estimated parameter in voxel v,Mean (·) denotes the mean value over the voxels of the considered region, and λT is
the corresponding true value of the parameter (uniform over the region). As for the Bayesian approaches, each λE,v is taken as the expected value
of themarginal posterior density in the voxel.
The noisiness of the map was evaluated considering the coefficient of variation (CV), calculated in each structure as the ratio between the

standard deviation and themean value of the parameters estimated in the considered region:
CV =

StD
(
λE,v

)
Mean

(
λE,v

) (16)
Being the truemap uniform over the same structure, the idealCV is 0; whilst highCV values indicate noisy maps.
An additional evaluation was performed on the simulated images at SNR = 60, considering a case with perfect knowledge to set the prior den-

sities. Specifically, the Bayesian approaches were evaluated under a condition in which the mean values of the prior densities are equal to the true
valueof theparameters.Biaswas thus calculated for this newcondition, for each tissue and for eachBayesianmethod, togetherwith thepercentage
variation (Var) between the true value, here adopted asmean value of the prior, and themean value of the prior used in all other experiments.

2.3.2 Real cases
Theestimatedparametricmapswere qualitatively compared among thefivemethods, as a quantitative evaluation of the error cannot beperformed
in the absence of the true value of the IVIM parameters. For a quantitative evaluation, the measurements consistency across voxels was assessed
in terms of the CV, calculated as in (16), and the goodness of fit was evaluated in each voxel (i, j) based on the RootMean Square ErrorRMSEij:

RMSEij =

√∑
b∈B

(
SIobsijb − SI

rec
ijb

)2
|B|

(17)
where |B| denotes the cardinality of set B and SIrecijb the reconstructed value of SI(i, j, b), computed with the IVIM model (1) and the estimated
parameters. Then, theRMSE of a ROI was obtained by averaging theRMSEij values over the considered voxels.

3 RESULTS
3.1 Simulated images
The parametricmaps in theHN region, estimated using thefivemethods, are presented in Figure 1,while the correspondingfigure for the pelvis can
be found in the Supporting Information Figure S3. Themaps of fD∗ (i.e., the product f×D∗) are also represented in these figures, as such parameter
shows a linear correlation with blood flow 36,37.
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The estimatedDmaps were qualitatively acceptable for each method, except for the LSQ approaches at low SNR, which showed noisy images.

The three Bayesian methods presented more homogeneous f maps with respect to the LSQ, even at low SNR. In the HN region, the map estimated
by CAR at high SNR seemed to be themost similar to the true one, whereas, for the pelvis, the contrasts between tissues estimated by CAR, though
similar to the real ones, weremore blurred thanwith the other twoBayesianmethods. The results ofD∗maps inHNhighlighted the difficulty of the
two GAUSS methods in correctly estimating muscle and parotid parameters, as can be observed by the inverted contrasts in these two layers. The
two LSQ approaches presented a very high noise and, thus, the contrast between these two tissues was lost. On the contrary, the CARmethodwas
able to bothmaintain the correct intensities and identify the two layers, though showing a blotchy appearance. Even in the pelvis, theCARapproach
was the only one able of correctly recovering the contrast between tissues, as visible in the tumor, and at the same time estimating homogeneous
maps.
Detailed results in terms of mean and standard deviation of each IVIM parameter calculated over the ROIs are reported in Table 1 for the HN

region and in Supporting Information Table S3 for the pelvic region. Moreover, Figure 2 shows bias and CV in the HN region; the same Figure for
the pelvic region, as well as results aboutMAE are extensively reported in Supporting Information Figures S4 and S5. LSQ-SEG achieved the best
result forD in terms of bias (≤ 1%, except in the prostate); on the contrary, CARwas the best in terms ofMAE andCV (always less than 6% and 0.09,
respectively), whilst LSQ-FULL resulted the worst estimator (bias up to -25% and CV up to 0.6 at low SNR). The other two Bayesian approaches
reached acceptable errors, with bias < 5% for GAUSS-FULL and bias < 2.5% for GAUSS-SEG at high SNR. The worst estimation, for any method,
was given in the prostate, where bias was higher (−25%, 4%, 9%, 4.5% and 3.5% for LSQ-FULL, LSQ-SEG, GAUSS-FULL, GAUSS-SEG and CAR,
respectively) though theMAE values were in line with the other structures.
The estimation of f in the HN images highlighted the superiority of the Bayesian methods with respect to the LSQ at SNR = 20 and, more in

general, the lower bias of the GAUSS-SEG and CAR. This behavior was less evident in the pelvis, where GAUSS-SEG presented higher errors at low
SNR. CAR presented a bias < 10% and aMAE < 12% (excepted for the HNmuscle and prostate at low SNR); at SNR > 60 also the other methods
reached comparable bias, but the error andCVwere always higher, or equal, than CAR, with very noisy maps for the LSQ approaches.

bias,MAE and CV in the estimation ofD∗ in HN simulations were unacceptable for both LSQ methods, especially for muscle (bias > 200% for
any SNR). CAR outperformed the other methods, showing the highest accuracy (maximumMAE and bias of 42% and -42% at SNR = 20 in muscle,
otherwise theywere always< 30 and 15%). GAUSS-SEGperformed similar to or slightly better thanGAUSS-FULL.CV values of the three Bayesian
approaches were between 0.11 and 0.3, indicating less noisy maps, although the CAR, contrary to the others, showed some blotches instead of a
high frequency noise. As for the pelvis, the general trend was confirmed in muscle and prostate; a specific comment should be dedicated to the
tumor, which presented the worst bias for any method. Only the CAR was able to estimate the mean value with bias < 26% for SNR > 40, whilst
the others presented bias always greater than 80%, with the LSQ approaches that consistently overestimated the parameter and, on the contrary,
the twoGAUSS that underestimated it.
It is worth noting that theD and f values in HNmuscle were always underestimated and overestimated, respectively, by eachmethod, whilstD∗

was overestimated by LSQ approaches and underestimated by the Bayesian ones, independently from the SNR.
Var and bias in the two conditions (mean values of the priors set as described in Section 2.2 and as true tissue coefficients as described at the end

of Section 2.3.1) are reported in Table 2. As expected, they showed lower bias values when the true coefficients were used, though they were still
non-null. In particular, the two GAUSS methods seemed to be more influenced by the choice of the priors than the CAR approach, with a tendency
of the GAUSS-SEG to reach lower differences between the errors computed in the two conditions and, in general, to be slightly less biased than
the GAUSS-FULL. This rough evaluation highlighted that the CAR method is able to maintain low errors, similar to those obtained in the optimal
condition, even with priors centered on values that are distant from the actual ones. In particular, large differences between the mean value of the
prior densities and the actual tissue coefficients (difference between−33% and 40% forD, between−51% and 51% for f , and between−96% and
35% forD∗) were experimented. In front of such large variations, the errors computed by the CAR were limited to a stricter range (between−1%
and 4% forD, between−16% and 6% for f , and between−8% and 12% forD∗).

3.2 Real images
The parametric maps estimated from a real HN patient are shown in Figure 3 and in Supporting Information Figures S6-S8, while those from a
real pelvic patient in Figure 4 and in Supporting Information Figures S9 and S10. In both regions, the three Bayesian methods provided the most
smoothed and less noisy maps within the ROIs. A noisy and uncertain region outside the structures of interest can be observed for any fitting
approach, although less evident for the two GAUSSmethods. In fact, while the tissues within the ROIs were quite similar and homogeneous across
the different methods, the outside regions were differently estimated. GAUSSmethods generally estimated lower values for f andD∗ with respect
to the LSQ andCAR approaches, while LSQ andCARwere qualitatively similar in terms of intensity levels, with a lower level of noise for CARmaps.
Looking at the estimated values of the three parameters (Table 3), D values were generally similar across the methods, while they were lower

when estimated by LSQ-FULL. f presented a variation, on average, of 20% among LSQ-SEG, GAUSS-FULL, GAUSS-SEG and CAR, and it was always
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at least 50% higherwhen estimated by LSQ-FULL.D∗ was highly variable, with the highestmean values and standard deviations estimated by LSQ-
FULL and LSQ-SEG. GAUSS-FULL and GAUSS-SEG always estimated the lowest D∗ values, in agreement with the results found in the simulated
images.
The CV values calculated in each structure are reported in Table 4; similar trends, with higher values, were in general found between the CV

estimated in real images and thoseestimated fromsimulations. TheCV forDwas similar across themethods, except for LSQ-FULLwhichwasalways
the highest. As for f andD∗, the LSQ-FULL and LSQ-SEGmethod always obtained theworst results, while GAUSS-FULL andGAUSS-SEGpresented
the lowest values. Contrary to the simulations, the CV values of f estimated by the CAR were higher than those by the two GAUSS approaches.
These results were confirmed in both regions (HN and pelvis) for all the analyzed structures and in each subject.

RMSE in Table 4 and Figure 5 showed similar results across themethods, with a tendency of GAUSS approaches to reach the highest errors.

3.3 Computational times
The average computational time was very different between LSQ and the Bayesian methods; with the actual programming languages used for the
implementation it was 0.015 s/voxel for LSQ-FULL and 1.06 s/voxel for GAUSS-FULL. Moreover, segmentation increased the time of 13% (0.017
s/voxel) for LSQ-SEG and of 84% (1.96 s/voxel) for GAUSS-SEG with respect to the corresponding direct approach. Finally, the introduction of the
CAR specification increased the time of about 8 times (9.86 s/voxel) with respect to theGAUSS-SEG. These timeswere obtained on aUnixmachine
equippedwith CPU Intel Xeon Gold 5120 at 2.20GHz and 94GB installed RAM.

4 DISCUSSION
In this work a novel Bayesian approach was presented for the estimation of IVIM parametric maps, in two different versions: i) a segmented ver-
sion of the classical Bayesian model with a Gaussian prior, and ii) an improvement of this one, where a spatial regularization term through a CAR
specification was included in the prior density. These new approaches were comparedwith standard direct and segmented non-linear least-square
methods and a classical direct Bayesian model with a Gaussian prior, considering both simulated and real images. To the best of our knowledge, a
comparison between segmented and non-segmented Bayesian approaches is not available in the literature.
Looking at the simulated cases, it was found that, in general, the segmented approach in the Bayesian framework has brought some advantages

with respect to the direct fitting, as the accuracywas slightly improved. Themore significant improvementwas given by the introduction of theCAR
specification, which presented the lowest errors, in terms of both bias andMAE, and high homogeneity within the same tissue and that it was able
to correctly recover the right contrasts between tissues in any condition. The performance of all approaches has proven to be dependent on SNR,
though in some cases the bias was the same at any SNR, e.g., the estimation ofDwith each method or the estimation of f andD∗ in parotid, pelvic
muscle and prostate with the CARmethod, for which the bias was very low for any SNR. In addition, a behavior opposite to what one should expect
has been observed for the estimation of f in the prostate with the LSQ-SEGmethod, where the bias increased with SNR. It is worth noting that the
maps estimated by CAR, although smooth and least biased, sometimes presented low-frequency noise, particularly in the D∗ maps of HN simula-
tions. These “blobs” are due to the smoothness of image noise, provided by the average on the neighbor pixels in the CAR specification, combined
with the boundary-effect, where large difference in the exponential decay between different and neighbor structuresmay alter the estimate in vox-
els close to the edges. More details about this effect can be found in the SupportingMaterials, where a comparison between the “step” simulations
described in the previous sections and a “flat” simulation, without boundaries, is provided. The CARmethod was also the only one able to estimate
the D∗ mean value in rectal tumor with small bias (bias lower than 10% for SNR60 and lower than then 40% for SNR40), whereas the two LSQ
approaches consistently overestimated it and the two GAUSS underestimated it. This difficulty was probably due to the high difference between
the mean value of theD∗ prior density (0.01mm2/s) and its true value (0.257mm2/s). With such a large difference (−96% of variation with respect
to the true value), only the CARmethod seems robust enough to the choice of the prior hyper-parameters, as also highlighted in Table 2.
Regarding the real cases, the tissues within the regions of interest were quite similar and homogeneous across the different methods, whilst the

outside regions were differently estimated. In fact, the estimation of diffusion parameters in certain tissues could be affected by the high level of
noise, the very low signal or the presence of artifacts in these regions;moreover,D∗may be not properly definedwhere the perfusion compartment
is vanishing, such as in teeth or fat 38. TheDmaps were consistent through the different methods within the ROIs, where LSQ-FULLwas confirmed
to estimate the noisiest maps, as shown in the simulations. Differences between LSQ-FULL and LSQ-SEG were more evident in pelvis than in HN,
having the first higherCV that reflects noisymaps. Likewise, f mapswithin the three structureswere similar, but the surrounding regions presented
lower values when estimated by GAUSS-FULL and GAUSS-SEG, whilst CAR resulted less noisy than the two LSQ approaches.D∗ maps were in line
with the results on simulated images: LSQ-FULL, LSQ-SEG were the noisiest maps (in fact, they always presented the highest CV); again, the two
GAUSSmethods presented lowerD∗ values with respect to the other.
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According to the results found in simulations,D∗ estimated byCAR should be the least biased value. In fact, looking at the case of theHNmuscle,

the estimatedD∗ coefficients were in line with those reported in the simulations, considering similar SNR level. This is well visible also in Figure 3,
where the muscle is hyper-intense in the CARmap and hypo-intense in the GAUSS maps. Since in the simulations the CAR was the most accurate,
with a bias of−16% and aMAE of 27% at SNR = 40, which is close to the real SNR estimated in the muscle, it may be supposed that this accuracy
was confirmed in the real images. In this sense, methods able to estimate more accurate maps can contribute to a better exploitation of the IVIM
technique 39, as they may help in clarifying the biological interpretation of the IVIM coefficients. In fact, the potential clinical utility of the IVIM
imaging in the tumor identification and characterization and in the prediction of treatment response has been already reported in several studies 38,
and can be attributed to the added value provided from the IVIM parameters quantification. However, the biophysical interpretation of f andD∗ is
still not clear and thus the perfusion-related parameters are not considered by clinicians for tumor segmentation.
The twoGAUSSmethods seems to lose fine details within the considered ROIs, with respect to the LSQ approaches, as can be seen, for example,

within theHN tumor in Figure 3. In fact, as reported byWhile 19, Bayesian approaches canmaskfine structures by generating smooth but erroneous
portionsof parametricmaps. The same regions generally appear verynoisy in LSQmaps,whereahigh level of uncertaintyof theestimates is present.
The lowest CV provided by the GAUSS methods may be interpreted in this sense: since lower CV in real images does not necessarily mean better
maps, it couldmask real heterogeneity present in the tissues. In addition, contrary to the results fromsimulated images, theCV values of f estimated
by CAR were higher than those by the GAUSS approaches, thus highlighting that CAR might be able to preserve the real heterogeneity of tissues.
However, looking at the results from the CAR method, the blotchy appearance of the maps, due to the smoothness of noise and to the boundary-
effect between different and neighbor structures, may contribute to the disappearance of small subregions.
The RMSE analysis shows that CAR was not penalized by high errors, but it reached values similar to LSQ approaches, which presented the

lowestRMSE, as expected 19.
In all Bayesian approaches, prior densities were defined larger than in the literature. The rationale behind this choice was to define large prior

distributions, in order not to force the posterior densities to be centered around predefined values. The Gaussian prior densities were centered on
mean values with the same order of magnitude than the physiological values reported in the literature, as already performed in previous works 21.
This allows to define tissue-independent priors, which is particularly desirable when no other information about the true coefficients is available;
in addition, to assume large densities, the standard deviations equal to the respective mean value have been taken. The results from the simu-
lated images have highlighted that these large priors guarantee that the posterior densities are not very sensitive to the prior hyper-parameters.
However, when the true value of the coefficients is far from the mean value of the initialization, the choice of the prior parameters may have a rel-
evant impact, especially on GAUSS-FULL; in this case, it could be possible to easily change these hyper-parameters, either exploiting some a priori
information, when available, or using a preliminary LSQ estimation on the signal averaged over the ROI.
Focusing on the benchmark models taken from the literature, the results of the LSQ methods are in line with the performance reported in the

literature 21,19,24,25. In particular, in the simulated images, we have found that LSQ-FULL was generally less accurate in the parameters estimation
than the LSQ-SEG approach, especially at low SNR. In the real cases, theCV of the LSQ-FULL approachwas theworst for f andD∗ estimation. From
these results, and in agreement with a previous work 40, we may conclude that, if a least square approach is chosen, the segmented fitting should
be preferred. Regarding the choice of constraints boundaries, here they were selected as adopted by While 19, in order to have a more reliable
comparison between the results presented here and those reported in the literature. Moreover, the choice of having large boundaries allows the
methods to span across a large range of values, since four different structures were considered (parotid, tumor, prostate and muscle), and the
tumors were very different between HN and rectal patients. An additional analysis (results not reported) on simulated HN images with tightened
boundaries (0 < f < 0.5; 0 < D < 3×10−3mm2/s; 0 < D∗ < 500×10−3mm2/s) has not shown any relevant improvement with respect to the
larger constraints here adopted.
Looking at the errors reported by While 19 for the Bayesian approach in liver (Error range: D 3-13%, f 3-10%, D∗ 10-30%) and breast (Error

range:D 3-13%, f 15-40%,D∗ 25-50%), the results here reportedwere similar or even better. Even if a fair comparison between the twoworkswas
difficult, due to the different IVIM properties of the considered structures and the different acquisition protocols, we reported bias values lower
than 10% inD and f maps (and often lower than 5% inDmaps) for the most part of situations, for both GAUSS-SEG and CAR. Moreover, for CAR,
a strong improvement in D∗ was found in every structure and quite for every SNR if compared to the other three approaches (bias lower than
20% at high SNR, bias highly dependent on the considered structure at low SNR). The other two approaches already reported in literature, which
considered a spatial homogeneity prior 22,23, presented some similarities to the CAR method, as they were all based on MRF with a neighborhood
structure. However, the CAR approach here proposedwas novel, as different from the previously citedmethods for other aspects, especially in the
implementation. The Bayesian approach here presented is not a pure CAR model (which can be traced to the MRF), but it is based on a mixture
prior that includes both the CAR component and an independent truncated Gaussian prior in each voxel. The approach in 22,23 includes the MRF
together with a spatial homogeneity prior, which results in an energy minimization problem that is not treated with a Markov Chain Monte Carlo
(MCMC) algorithm. To dealwith the very high dimensionality of the parameters vector in their problem, the authors adopt a fusion bootstrapmoves
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algorithm,which is also thepeculiarity and strengthof their approach.On the contrary, the resultingmodel of ourwork canbe treatedwith standard
MCMC approaches (the HamiltonianMonte Carlo in our case), with no need of ad hoc algorithms.
A direct comparison of the results here reported with those from similar approaches in the literature was difficult to perform, not only for the

different implementation settings and the considered body districts, but also for themethods used to compute the errors. In fact, themedian value
over the ROI could be calculated instead of the mean value, as in 19, in order to consider outliers or skewed distributions. bias and MAE of the
LSQ approaches were particularly sensitive to the selected median or mean value metric, especially regarding theD∗ maps, whereas the Bayesian
approaches (and in particular the CAR) were less influenced, due to the Gaussian distribution of the IVIM coefficients over the ROI (results not
shown in the manuscript). On the contrary, the distributions from the LSQ methods were not Gaussian at all, especially at low SNR values, with
two high peaks both at very low and at very high (non-physiological) values, reflecting the noisy appearance of the maps with many spots. For
such distributions, the median value over the ROI, though closer to the true value than the mean value, may mask this odd distribution. Thus, the
computation of themean valuewas preferred in this work, in combinationwith theCV, to give a synthetic description of accuracy and homogeneity
in the estimatedmaps.
TheadoptedCAR is intrinsic (spatial associationparameterρequal to1 in the formulationof Lerouxet al. 33). Theuseof the sameprior knowledge

of the GAUSS-FULL and GAUSS-SEGmethods was preferred, in order to smooth the autoregressive component and to fix vague target values that
the parameters have to follow. Alternatively, by simply reducing the correlation with ρ < 1, such target values would not appear in themodel.
The CAR specification was preliminary tested in a non-segmented method, with different weights in the mixture prior: the 25 %, the 50 %, the

75% considered also in this paper and the 100% (i.e., a pure CARmethod). Results (partly published in Lanzarone et al. 41) showed saturation prob-
lems for the pure CAR alternative, especially forD∗, while acceptable results with the 75%weight, whichwere howeverworse than those obtained
with segmentation in this paper.Moreover, those preliminary tests identified the adopted 75%weight as the best value, while the pureCARmethod
(with weight equal to 100%) did not work already at the first step.
The main limitation of the CAR method is in the choice of the neighbor voxels, which always considers all the eight surrounding voxels and

gives the same weight to their contributions, without considering the continuity of the structure. For example, this affected the estimation of the
coefficient close to the borders in the simulated images. In fact, different regions with different signal intensities at b = 0 could be characterized
by similar decay dynamics, and vice versa. In the future, the CARmethodwill be coupled with a clusterization approach, to distinguish the different
structures and give different weights to the contributions of the different neighbor voxels. Such a clustering will necessarily be based on distance
functions that consider the differences between voxels over all b values, as single images cannot capture differences in the decay.
Another limitation is the long computational time of the Bayesian approaches, in particular the CAR. An optimization of these times, which

would make the proposed methods more easily applicable to clinical protocols, could be achieved by decomposing the images in subparts or by
implementing themethods with ad hoc codes rather thanwith package Rstan.
The focus of this work was on the comparison of the different approaches without considering the effects of the b values choice. In fact, the

image acquisition protocols here adopted were already optimized for clinical purposes, especially for the HN acquisition. Since it was found that
results were also dependent on the considered anatomical region, it is possible that the choice of b values plays a relevant role in the estimation
performance of the fivemethods.
Anothermain limitationwas the limited number of the analyzed clinical cases. However, this studywas intended as amethodological proposal of

the segmented Bayesian model combined with the CAR regularization; thus, a preliminary evaluation on simulated images was performed.We are
confident that our findings, in terms of methods comparison, can be considered valid for the two analyzed regions. Obviously, an evaluation on an
extended real dataset will be necessary for clinical purposes.

5 CONCLUSIONS
It has been shown that the proposed segmented Bayesian approach was superior to the direct Bayesian method and to the standard least-square
fitting, in terms of estimation accuracy and maps quality for f and D∗ coefficients, in HN and pelvic regions. However, for Dmaps estimation only,
LSQ-SEG may be preferred as the less biased method. Moreover, the use of large density prior did not affect the performance of the proposed
segmented Bayesian approaches, allowing a sufficiently robust initialization. The CAR spatial regularization, in general, improves the estimation
accuracy, especially forD∗, despite a slightly lower maps quality in the simulated images, due to the smoothing effect of noise and to the presence
of functional gradients. However, future works will be directed to an optimizedmanagement of borders in the images, considering both anatomical
and functional gradients, in order to face up this drawback and to recover high quality parametric maps.
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FIGURE LEGENDS
FIGURE 1. Parametricmaps ofD (top left), f (top right),D∗ (bottom left) and product fD∗ (bottom right) estimated from simulated images of theHN
region using the fivemethods (rows) at different SNR (columns). The truemaps are also reported besides.
FIGURE 2.Bias (a) and CV (b) in the maps of the simulated HN images for theD (first row), f (second row) andD∗ (last row) in the three structures
(muscle, first column; parotid, second column; tumor, last column).
FIGURE 3. Parametric maps ofD (first row), f (second row),D∗ (third row) and product fD∗ (last row), estimated from the second selected slice of a
real HN patient using the five methods (columns). The tumor, the parotid gland and the masticatory muscle were delineated in red, green and blue,
respectively, also on the image at b = 0 reported on the left.
FIGURE4. Parametricmaps ofD (first row), f (second row),D∗ (third row) and product fD∗ (last row), estimated from the first selected slice of a real
pelvic patient using the five methods (columns). The tumor, the prostate and the internal obturator muscle were delineated in red, green and blue,
respectively, also on the image at b = 0 reported on the left.
FIGURE5.Maps ofRMSEij for theHN (first row) and the pelvic (second row) region for the patients in Figures 3 and 4, respectively, obtained by the
five approaches; the three structures of interest are delineated in red.
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FIGURE 1 Parametric maps ofD (top left), f (top right),D∗ (bottom left) and product fD∗ (bottom right) estimated from simulated images of the HN
region using the fivemethods (rows) at different SNR (columns). The truemaps are also reported besides.
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FIGURE 2 Bias (a) and CV (b) in the maps of the simulated HN images for theD (first row), f (second row) andD∗ (last row) in the three structures
(muscle, first column; parotid, second column; tumor, last column).
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FIGURE 3 Parametric maps ofD (first row), f (second row),D∗ (third row) and product fD∗ (last row), estimated from the second selected slice of a
real HN patient using the five methods (columns). The tumor, the parotid gland and the masticatory muscle were delineated in red, green and blue,
respectively, also on the image at b = 0 reported on the left.
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FIGURE 4Parametricmaps ofD (first row), f (second row),D∗ (third row) and product fD∗ (last row), estimated from the first selected slice of a real
pelvic patient using the five methods (columns). The tumor, the prostate and the internal obturator muscle were delineated in red, green and blue,
respectively, also on the image at b = 0 reported on the left.
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FIGURE 5Maps ofRMSEij for theHN (first row) and the pelvic (second row) region for the patients in Figures 3 and 4, respectively, obtained by the
five approaches; the three structures of interest are delineated in red.
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SNR = 80 SNR = 60 SNR = 40 SNR = 20

Mean StD Mean StD Mean StD Mean StD
HNmuscle

D

1.5× 10−3mm2/s

LSQ-FULL 1.49 0.13 1.48 0.24 1.45 0.40 1.36 0.55
LSQ-SEG 1.50 0.09 1.49 0.12 1.49 0.19 1.48 0.38
GAUSS-FULL 1.45 0.05 1.44 0.07 1.43 0.10 1.40 0.17
GAUSS SEG 1.49 0.07 1.47 0.09 1.44 0.11 1.39 0.17
CAR 1.50 0.03 1.49 0.03 1.48 0.05 1.43 0.08

f

0.066

LSQ-FULL 0.071 0.069 0.075 0.132 0.086 0.214 0.120 0.271
LSQ-SEG 0.069 0.027 0.072 0.037 0.078 0.060 0.101 0.131
GAUSS-FULL 0.085 0.017 0.092 0.020 0.100 0.024 0.111 0.029
GAUSS SEG 0.072 0.023 0.078 0.028 0.089 0.033 0.107 0.032
CAR 0.068 0.008 0.069 0.011 0.073 0.013 0.088 0.016

D∗

45.9× 10−3mm2/s

LSQ-FULL 43.5 252.9 41.3 302.7 32.5 344.0 14.8 340.7
LSQ-SEG 43.3 271.6 41.7 321.9 33.6 357.1 13.0 361.7
GAUSS-FULL 19.4 4.9 16.4 4.6 13.7 4.1 12.1 3.3
GAUSS SEG 20.4 5.2 17.4 4.9 14.5 4.3 12.6 3.2
CAR 43.1 8.4 42.0 10.6 37.5 12.8 25.8 7.8

Parotid

D

0.72× 10−3mm2/s

LSQ-FULL 0.72 0.04 0.71 0.06 0.71 0.10 0.66 0.25
LSQ-SEG 0.72 0.06 0.72 0.08 0.72 0.12 0.72 0.25
GAUSS-FULL 0.70 0.04 0.69 0.05 0.68 0.07 0.68 0.13
GAUSS SEG 0.72 0.06 0.73 0.07 0.74 0.10 0.74 0.15
CAR 0.72 0.02 0.72 0.02 0.72 0.04 0.73 0.07

f

0.133

LSQ-FULL 0.135 0.016 0.136 0.024 0.140 0.048 0.163 0.132
LSQ-SEG 0.134 0.020 0.135 0.027 0.137 0.041 0.149 0.086
GAUSS-FULL 0.140 0.015 0.142 0.020 0.144 0.028 0.136 0.039
GAUSS SEG 0.132 0.020 0.130 0.026 0.127 0.034 0.120 0.040
CAR 0.133 0.008 0.132 0.009 0.133 0.011 0.130 0.017

D∗

36.3× 10−3mm2/s

LSQ-FULL 35.8 31.5 35.3 78.9 35.9 215.3 29.0 331.9
LSQ-SEG 35.8 37.3 35.4 90.6 35.7 223.7 31.2 353.3
GAUSS-FULL 27.2 4.3 24.6 4.3 21.2 4.3 16.2 3.7
GAUSS SEG 28.1 5.1 25.8 4.9 22.1 4.8 16.3 3.8
CAR 36.6 4.2 36.9 5.2 38.3 7.6 38.0 9.2

HN tumor

D

0.83× 10−3mm2/s

LSQ-FULL 0.82 0.07 0.83 0.12 0.82 0.19 0.74 0.34
LSQ-SEG 0.84 0.07 0.83 0.09 0.84 0.13 0.83 0.26
GAUSS-FULL 0.82 0.05 0.82 0.06 0.82 0.07 0.83 0.13
GAUSS SEG 0.84 0.06 0.84 0.08 0.85 0.10 0.83 0.15
CAR 0.83 0.02 0.83 0.03 0.83 0.03 0.82 0.05

f

0.121

LSQ-FULL 0.123 0.034 0.128 0.059 0.131 0.107 0.167 0.200
LSQ-SEG 0.120 0.027 0.124 0.036 0.121 0.052 0.137 0.100
GAUSS-FULL 0.125 0.022 0.130 0.026 0.127 0.030 0.123 0.035
GAUSS SEG 0.118 0.025 0.120 0.031 0.116 0.038 0.118 0.039
CAR 0.122 0.008 0.123 0.009 0.122 0.011 0.126 0.019

D∗

16.9× 10−3mm2/s

LSQ-FULL 16.1 8.7 16.3 49.3 16.3 160.2 11.9 236.0
LSQ-SEG 16.3 9.7 16.0 69.9 17.5 182.1 13.7 282.6
GAUSS-FULL 16.2 4.1 15.9 3.9 15.0 3.6 13.5 3.3
GAUSS SEG 16.8 4.8 16.4 4.7 15.9 4.4 13.5 3.6
CAR 16.8 3.2 17.1 3.6 18.6 4.9 19.2 5.6

TABLE 1 Values of D, f and D∗ estimated in each structure of interest by the five methods, for the simulated images in the HN region. Diffusion
properties are reported asmean and standard deviation over the ROI. The true coefficients are also reported.
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D [mm2/s] f D∗ [mm2/s]
Mean StD Mean StD Mean StD

HN region
Muscle LSQ-FULL 0.0013 0.0004 0.2336 0.0682 0.1066 0.0204

LSQ-SEG 0.0016 0.0005 0.1814 0.0684 0.1240 0.0083
GAUSS-FULL 0.0015 0.0004 0.1586 0.0276 0.0151 0.0024
GAUSS-SEG 0.0015 0.0004 0.1458 0.0229 0.0151 0.0020
CAR 0.0015 0.0005 0.1691 0.0621 0.0341 0.0069

Parotid LSQ-FULL 0.0009 0.0001 0.2727 0.0425 0.1378 0.0405
LSQ-SEG 0.0010 0.0001 0.2140 0.0421 0.1320 0.0363
GAUSS-FULL 0.0011 0.0001 0.1835 0.0277 0.0189 0.0035
GAUSS-SEG 0.0011 0.0001 0.1782 0.0275 0.0184 0.0035
CAR 0.0011 0.0001 0.1994 0.0354 0.0378 0.0084

Tumor LSQ-FULL 0.0008 0.0002 0.2564 0.0867 0.1250 0.0569
LSQ-SEG 0.0009 0.0001 0.1728 0.0849 0.1332 0.0681
GAUSS-FULL 0.0010 0.0002 0.1556 0.0558 0.0163 0.0035
GAUSS-SEG 0.0010 0.0001 0.1505 0.0639 0.0162 0.0034
CAR 0.0009 0.0001 0.1631 0.0777 0.0421 0.0235

Pelvic region
Muscle LSQ-FULL 0.0009 0.0006 0.3956 0.3776 0.0677 0.2315

LSQ-SEG 0.0014 0.0003 0.1692 0.1523 0.0685 0.2285
GAUSS-FULL 0.0014 0.0001 0.1288 0.0049 0.0125 0.0005
GAUSS-SEG 0.0013 0.0002 0.1268 0.0049 0.0128 0.0005
CAR 0.0013 0.0001 0.1331 0.0238 0.0131 0.0012

Prostate LSQ-FULL 0.0009 0.0005 0.3334 0.3088 0.0710 0.2201
LSQ-SEG 0.0012 0.0002 0.1455 0.1137 0.0781 0.2257
GAUSS-FULL 0.0013 0.0002 0.1279 0.0120 0.0127 0.0010
GAUSS-SEG 0.0012 0.0003 0.1262 0.0105 0.0129 0.0009
CAR 0.0012 0.0003 0.1500 0.0551 0.0148 0.0073

Tumor LSQ-FULL 0.0007 0.0004 0.2211 0.2628 0.0930 0.2500
LSQ-SEG 0.0009 0.0003 0.1036 0.0688 0.0584 0.1913
GAUSS-FULL 0.0009 0.0003 0.1194 0.0399 0.0128 0.0058
GAUSS-SEG 0.0009 0.0003 0.1154 0.0464 0.0129 0.0057
CAR 0.0009 0.0003 0.1137 0.0533 0.0167 0.0132

TABLE 3Values ofD, f andD∗ estimated in each structure of interest by the fivemethods, for the real images. Diffusion properties are reported as
mean and standard deviation across subjects.
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CV ofD CV of f CV ofD∗ RMSE

Mean StD Mean StD Mean StD Mean StD
HN region
Muscle LSQ-FULL 0.46 0.27 1.04 0.37 2.48 0.27 23.6 8.8

LSQ-SEG 0.32 0.23 0.95 0.31 2.28 0.10 26.8 10.4
GAUSS-FULL 0.28 0.21 0.47 0.04 0.36 0.05 31.9 9.2
GAUSS-SEG 0.31 0.18 0.43 0.03 0.32 0.05 33.5 8.7
CAR 0.29 0.20 0.59 0.14 0.62 0.12 28.5 9.2

Parotid LSQ-FULL 0.53 0.10 0.86 0.06 2.22 0.39 25.8 6.1
LSQ-SEG 0.32 0.08 0.77 0.04 2.24 0.31 28.9 7.2
GAUSS-FULL 0.44 0.15 0.54 0.03 0.53 0.07 35.8 9.8
GAUSS-SEG 0.42 0.08 0.55 0.06 0.52 0.08 39.1 9.3
CAR 0.40 0.11 0.58 0.06 0.91 0.24 31.3 8.1

Tumor LSQ-FULL 0.57 0.22 0.97 0.37 2.38 0.41 30.8 15.1
LSQ-SEG 0.34 0.17 0.81 0.31 2.28 0.43 33.0 14.5
GAUSS-FULL 0.30 0.10 0.50 0.14 0.51 0.21 36.7 13.4
GAUSS-SEG 0.29 0.09 0.54 0.15 0.48 0.21 37.7 12.8
CAR 0.29 0.10 0.63 0.20 0.92 0.29 32.7 14.8

Pelvic region
Muscle LSQ-FULL 0.65 0.07 0.95 0.07 2.85 0.60 13.3 1.6

LSQ-SEG 0.30 0.09 0.84 0.06 2.72 0.62 14.4 1.6
GAUSS-FULL 0.12 0.04 0.12 0.05 0.11 0.05 20.3 3.1
GAUSS-SEG 0.18 0.04 0.10 0.04 0.10 0.04 19.1 2.5
CAR 0.14 0.04 0.29 0.09 0.30 0.15 18.8 2.9

Prostate LSQ-FULL 0.63 0.06 0.86 0.09 3.92 1.16 17.8 1.7
LSQ-SEG 0.19 0.02 0.63 0.21 3.72 1.18 18.6 1.4
GAUSS-FULL 0.15 0.01 0.16 0.09 0.16 0.12 28.1 3.2
GAUSS-SEG 0.21 0.08 0.15 0.10 0.16 0.12 25.7 1.5
CAR 0.21 0.08 0.32 0.06 0.47 0.03 25.2 1.7

Tumor LSQ-FULL 0.62 0.12 1.01 0.18 2.83 0.56 39.0 10.4
LSQ-SEG 0.40 0.12 0.85 0.18 2.83 0.68 40.5 10.6
GAUSS-FULL 0.43 0.09 0.53 0.14 0.51 0.13 45.0 10.5
GAUSS-SEG 0.40 0.10 0.58 0.14 0.51 0.15 44.7 11.2
CAR 0.40 0.10 0.59 0.11 0.80 0.21 42.6 10.7

TABLE 4 CV and RMSE values obtained in each structure of interest by the five methods, for the real images. Values are reported as mean and
standard deviation across subjects.
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