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A B S T R A C T   

The mitigation of uncertainties in the identification of natural systems is a fundamental aspect in the develop
ment of hydrological models, and represents a major challenge for the improvement of modelling techniques. In 
particular, the calibration of hydrological models based on streamflow measurements at the outlet of a catchment 
is exposed to significant sources of uncertainty, such as the impact of landscape features on runoff generation. 
Remote sensing-based actual evapotranspiration (AET) data can be incorporated with streamflow to improve 
model accuracy and reduce the uncertainty in hydrological modelling, resulting in a significant enhancement of 
the model performance. The selection of the right AET dataset for hydrological modelling is a crucial task, in 
front of the availability of multi-source datasets that differ in methods, parameters, and spatiotemporal reso
lution. Despite the existence of a few studies proposing the usage of remote sensing-based AET data, there is a 
lack of systematic comparisons between different products, in terms of performance for hydrological modelling. 
This paper aims to compare the efficacy of different remote sensing-based AET products in improving the 
simulation of hydrological responses, both in single and in multi-variable scenarios. In this investigation, the Soil 
and Water Assessment Tool (SWAT) hydrological model was calibrated with observed streamflow data by 
experimenting with eight different AET datasets. The findings of our study suggest that the incorporation of 
remote sensing-based AET data in the calibration process of a hydrological model can significantly enhance the 
accuracy and reliability of model predictions. Thus, the proposed approach can contribute to improving the 
effectiveness of hydrological modelling as a quantitative tool for the management of water resources. Another 
finding of this study is that the calibration of the model based solely on AET yields reasonable simulation results 
of the streamflow, which is an advantageous and promising feature for ungauged basins.   

1. Introduction 

Hydrological modelling and predictions are playing a key role in the 
current scenario of climate change, and have an increasing impact on 
management decisions, planning and resilience to future possible sce
narios. Advancements in hydrological modelling techniques are 
frequently focused on the mitigation of measurement uncertainties and 
on the reduction of the ambiguities due to the contribution of multiple 
parameters to the state of a hydrological process. Remote sensing 
techniques are significantly contributing to the field of hydrological 
modelling, carrying new possibilities to collect and assimilate data into 

hydrological models and improve their accuracy. 
In particular, physically-based semi-distributed hydrological models 

involve a high number of parameters to reflect the landscape charac
teristics (Devia et al., 2015), most of which cannot be directly measured 
and must be estimated during the calibration process (Abbaspour et al., 
2017). Distributed hydrological models are often calibrated using the 
observed streamflow at the outlet of a catchment (Gupta and Govin
daraju, 2022). However, this approach may mislead landscape features 
that significantly affect runoff generation, because the streamflow em
beds contributions from several hydrological components in natural 
catchments (He et al., 2021; Taia et al., 2023). Moreover, relying simply 
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on a single point for calibrating distributed models may not provide 
correct simulations in every part of the study area (Sirisena et al., 2020). 
Thus, the calibration process can be effective for certain parameters and 
not for others (Abbaspour et al., 2007), and some combinations of pa
rameters may lead to similar objective functions, resulting in ambigu
ities for the determination of correct values of such parameters (Beven 
and Freer, 2001). This issue is referred to as “equifinality” in the liter
ature (Beven, 2006). Equifinality increases the uncertainty of parame
ters, thereby reducing confidence in model predictions (Casado- 
Rodríguez and del Jesus, 2022; Her and Seong, 2018; Moges et al., 
2021). Typical approaches for the mitigation of equifinality can be based 
on the inclusion of other variables in addition to streamflow measure
ments, or the usage of non-quantitative data based on experts' knowl
edge (Efstratiadis and Koutsoyiannis, 2010; Lee et al., 2022; Liu et al., 
2020; Tobin and Bennett, 2020). 

The calibration of multiple variables can be challenging in data- 
scarce areas, characterized by insufficient ground measurements. 
Earth observation datasets based on remote sensing techniques offer an 
effective solution to this problem (Jeyalakshmi et al., 2021; Nourani 
et al., 2021; Sun et al., 2019). Remote sensing permits a kind of regular 
sampling (in time and space) of essential hydrological parameters, such 
as precipitation, snow cover area, soil moisture, water storage, and 
evapotranspiration (Chen and Wang, 2018; Shawky et al., 2023; Ustin 
and Middleton, 2021). By collecting data on relatively large areas at 
frequent time intervals, remote sensing can help to minimize un
certainties of model parameters that are crucial for an accurate simu
lation of the water balance (Kunnath-Poovakka et al., 2021; Wambura 
et al., 2018). Furthermore, remotely sensed data can be used jointly with 
hydrological models to forecast other variables, such as streamflow, in 
poorly gauged or even totally ungauged areas (Gleason and Durand, 
2020; Jiang and Wang, 2019). 

Actual evapotranspiration (AET) is a significant component of the 
water balance (Zhang et al., 2016), as it transfers soil moisture to the 
atmosphere, playing a crucial role in the energy and water cycles 
(Schlesinger and Jasechko, 2014). Consequently, the accurate predic
tion of AET is important for improving the performance of hydrological 
models (Jiang et al., 2020; Ukkola and Prentice, 2013). There's an ample 
literature showing that remotely sensed AET, when incorporated in 
hydrological modelling, enhances the accuracy and reduces the uncer
tainty of the model predictions. In particular, several studies demon
strated that MOD16A2 AET data obtained from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) can enhance hydrological model
ling by reducing the degree of equifinality and predictive uncertainties 
(Koltsida and Kallioras, 2022; Rajib et al., 2018, 2020; Rane and Jayaraj, 
2022; Shah et al., 2021; Wambura et al., 2018). Similarly, the AET data 
from the Global Land Evaporation Amsterdam Model (GLEAM) were 
found to improve model calibration, permitting accurate simulations of 
streamflow (Jin and Jin, 2020; López López et al., 2017; Odusanya et al., 
2019, 2021; Sirisena et al., 2020). 

There are various global AET datasets available, which are essen
tially based on remotely sensed data, on land surface models, and on 
hydrological models. These datasets vary in their algorithms, ap
proaches, and also in the spatial and temporal resolutions (Aryalekshmi 
et al., 2021). Therefore, the selection of the most appropriate AET 
product to suit a specific study area is crucial. Recent studies, such as 
those by Chen et al. (2022), Guo et al. (2022a), and Salazar-Martínez 
et al. (2022), focused on comparing satellite-based AET products with 
the widely accepted and highly accurate Eddy-Covariance technique to 
assess their performance in estimating AET across various landscapes 
and climates. It is also essential to investigate the comparison between 
AET products in terms of direct effects on the hydrological modelling, in 
order to understand the impact of their uncertainties on hydrological 
processes. Studies such as those by Ding and Zhu (2022), and Herman 
et al. (2018) highlighted that in a given area different AET products can 
perform differently in terms of parameter calibration for the hydrolog
ical simulation. This is due to the differences in AET estimation models 

and in their input data, which characterise each AET product. 
Most of the previous studies using AET for the calibration of hy

drological models were limited to the experimentation of only one or 
two products. Only a limited number of investigations really delved into 
the performance of various datasets when incorporated in hydrological 
models. Dembélé et al. (2020) evaluated 12 actual evaporation datasets 
for their ability to improve the performance of the fully distributed 
mesoscale Hydrologic Model (mHM). Four distinct multivariate cali
bration strategies were implemented, based on actual evaporation and 
streamflow, resulting in 48 scenarios whose results were compared with 
a benchmark model calibrated solely with streamflow data. Further
more, Herman et al. (2020) attempted to combine streamflow with 8 
distinct remote-sensing AET products in calibrating Soil and Water 
Assessment Tool (SWAT) parameters. They employed the Non- 
dominated Sorting Genetic Algorithm III (U-NSGA-III) to compare the 
different Pareto-optimal solutions resulting from the incorporation of 
different AET datasets using a multi-variable approach. In addition, Guo 
et al. (2022b) examined the suitability of five remote-sensing-based AET 
datasets for calibrating the parameters of the variable infiltration ca
pacity (VIC) hydrological model, with the objective to simulate 
streamflow and soil moisture. 

Our study aims to address several research gaps in the field of 
incorporating remotely sensed AET in hydrological modelling. Firstly, 
previous studies have not considered the comparison between several 
AET products in a single-variable calibration, despite its crucial role in 
hydrological modelling and potential benefits for predicting streamflow 
in ungauged basins. An accurate prediction of streamflow in ungauged 
basins is essential for various ecological applications such as flood 
forecasting, drought monitoring, and irrigation planning, particularly in 
countries with limited streamflow data, and where the deployment of 
new monitoring stations is not yet sufficient. Secondly, we emphasize 
the importance of considering the impact of additional data on the 
distribution of the involved parameters and on uncertainty in the model 
output. While the aforementioned studies focused on optimizing hy
drological model parameters to achieve the best fit to observed data, our 
study recognizes that hydrological models are complex and often rely on 
numerous input parameters, leading to uncertainty in model pre
dictions. Neglecting to account for parameter uncertainty can lead to 
inaccurate results and potentially harmful decisions in water resource 
management and hydrological forecasting (Abbaspour et al., 2017). 
Thirdly, our study investigates the potential benefits of using remote- 
sensing-based AET products in hydrological modelling over regions in 
the Atlantic, particularly in Morocco, where the current literature is 
lacking. This investigation has the potential to provide valuable infor
mation to the stakeholders, enabling them to gain insights into the 
available AET products and their effectiveness in the region, thereby 
allowing them to select the appropriate product for a given purpose. 

In light of this, we experimented with eight different AET datasets in 
both single and multi-variable calibration alongside streamflow data 
and we extended the analytical approach with respect to the former 
literature, by incorporating the predictive uncertainty derived from 
parameter distribution with the Sequential Uncertainty Fitting v2 al
gorithm (Sufi2). The SWAT model was chosen for this study as it has 
been previously implemented and validated in the same catchment of 
this study (Taia et al., 2023), making it a suitable tool for further hy
drological modelling analyses. Therefore, the current study offers a 
systematic comparison of the performance of AET datasets and their 
effectiveness in reducing parameters and predictive uncertainties in a 
SWAT hydrological model. As detailed in Section 2.1, two sub- 
catchments of the Oued El Abid catchment in the central High Atlas of 
Morocco were chosen for this purpose. 

The primary objectives of this study are: (1) evaluate the ability of a 
single-variable approach for calibrating the SWAT model to predict 
streamflow, by experimenting with eight different remotely sensed AET 
products; (2) assess the effectiveness of a two-variable calibration 
approach (combining remotely sensed AET data and streamflow 
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observations) for improving the model's robustness, its ability to make 
accurate predictions, and for better quantifying model parameters. 

2. Materials and methods 

To address the objectives of this study, we implemented the SWAT 
model for the Oued El Abid catchment, as detailed in the next section. 
This task entailed the assimilation of data about land use, soil attributes, 
elevation, and climatic conditions. Then, model calibration was done by 
using both AET and streamflow through distinct scenarios. In some 
scenarios, the calibration was exclusively based on AET, providing in
sights into the impact of using this variable alone. In contrast, other 
scenarios combined both AET and streamflow, enabling an assessment 
of a multi-calibration strategy. 

The Sufi2 algorithm facilitated the optimization of relevant param
eters of the SWAT model for each scenario. Addressing questions of 
performance and uncertainty demanded a comprehensive analysis of the 
uncertainty for both output and parameters, along with an assessment of 
equifinality. We employed methods like the posterior distribution for 
analysing parameters' uncertainty and leveraged the 95% prediction 
uncertainty concept to estimate the predictive uncertainty originated by 
variations of the parameters. 

2.1. Study area 

This research has been carried out on the 7950 km2 Oued El Abid 
catchment, which is a major sub-catchment of the Oum Er-Rbia basin, 
located in the central High Atlas of Morocco. The catchment of Oued El 
Abid is characterized by extremely high evaporation rate, where 
snowfall plays a primary role in its water cycle, as reported by Taia et al. 

(2023), and Tuel et al. (2021). The Oued El Abid river feeds one of 
Morocco's main dams, the Bine El Ouidane dam. In addition to supplying 
irrigation and drinking water to the population of the central High Atlas, 
this dam is also vital for hydropower generation, making the economy of 
the region very vulnerable to water scarcity. Nevertheless, significant 
climatic changes, including frequent droughts and rising precipitation 
variability, have been reported in this region (El Khalki et al., 2021). 
Thus, new modelling approaches are of great importance for a better 
planning and for an improved allocation of water resources in the area. 

The main river in the region of Oued El Abid originates from the 
northeast and flows towards the west, converging with the Ahmed 
Ahansal river that drains water from the southern region. Together, 
these rivers provide an annual volume of freshwater to the Bine El 
Ouidane dam ranging from 400 to 1500 Mm3. The elevation of the Oued 
El Abid catchment varies from 3690 m at Jbel Azourki in the east to 300 
m in the plain downstream of Bine El Ouidane (Fig. 1). Runoffs pro
gressively pass from a regime of rain to snow-rain, then to purely snow 
depending on the elevation. The land cover in the catchment is mainly 
composed of bare soil, scrub and forest with some croplands. The annual 
mean rainfall in the north-eastern part of the catchment is around 450 
mm, whereas in the western part, it is <250 mm. Oued El Abid's 
catchment experiences significant seasonal temperature variations, with 
winter temperatures as low as − 9 ◦C and summer temperatures reaching 
43 ◦C. Average temperatures range from 15 ◦C to 18 ◦C up to 1500 m, 
decreasing rapidly at higher altitudes. 

2.2. Setting up the SWAT model for the Oued El Abid catchment 

2.2.1. SWAT model description 
SWAT is a hydrological model for the simulation of surface and 

Fig. 1. Location map of the study area depicting elevation, streamflow and rainfall gauges, and main dams.  
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groundwater quantity and quality, capable to simulate eco-hydrological 
and anthropogenic processes at various scales, from small catchments to 
full river basins (Acharki et al., 2023; Erraioui et al., 2020; Strauch et al., 
2012; Taia et al., 2021). As per Neitsch et al. (2011), SWAT hydrological 
processes are modelled in two distinct stages: the land phase and the 
routing phase. The land phase determines the presence of water, sedi
ment, nutrients, and pesticides in each subbasin, while the routing phase 
computes the flow and spread of these elements through the channel 
network of the catchment. Streamflow in the SWAT model is simulated 
by considering lateral flow, groundwater flow, and surface runoff. SWAT 
uses the Soil Conservation Service Curve Number (SCS-CN) method to 
estimate the surface runoff (Neitsch et al., 2011). Once soil water 
routing processes are completed (i.e., infiltration, runoff and water 
intercepted by the plants' canopy), the amount of water required to 
satisfy evapotranspiration requirements from each soil layer is calcu
lated. Three calculation methods for estimating the potential evapo
transpiration (PET) are offered by the SWAT model: Penman-Monteith 
(Monteith, 1965), Priestley-Taylor (Priestley and Taylor, 1972), and 
Hargreaves (Hargreaves and Samani, 1985). The Penman-Monteith 
stands out for its holistic integration of energy and aerodynamics. Its 
robustness, further endorsed by the Food and Agriculture Organization 
(FAO), made it our chosen method for this study. 

2.2.2. Data used 
Table 1 lists the data required for implementing the SWAT model, 

including elevation, land cover, soil, precipitation, weather, and flow 
data. The elevation data used were obtained from the Shuttle Radar 
Topography Mission (SRTM) in a GeoTIFF format, and have a spatial 
resolution of 30 m. The land cover map was reclassified using a super
vised classification based on Sentinel 2 A images and classified into 
several categories such as farmland, forest, sparse vegetation, water 
bodies, urban land, and bare land. Soil datasets were extracted using the 
global soil map of the Food and Agriculture Organization (FAO), spatial 
soil information from the International Soil Reference and Information 
Center (ISRIC), and the Harmonized World Soil Database (HWSD). The 
precipitation datasets used consist in daily data acquired in the period 
between 1980 and 2015 from 4 ground stations located within and 
around the catchment area (Fig. 1). The Climate Forecast System 
Reanalysis (CFSR) provided daily climate data including minimum and 
maximum temperature, relative humidity, solar radiation, and wind 
speed. We sourced daily average streamflow data for two stations 
(Tillouguite and Ait Ouchene) from the Hydraulic Basin Agencies, 
covering the period 1988–2014. These data originated from continuous 
water level measurements at hydrometric stations and periodic flow 
measurements using a v-notch weir. The agencies employed a rating 
curve to process these measurements, yielding the daily average 
streamflow values that we adopted. The dataset is predominantly 
continuous, offering daily streamflow estimates with very few missing 
samples. The former data were aggregated to monthly values for sub
sequent use in the calibration process. However, due to gaps in the data, 
in particular rainfall and streamflow, we employed the Multiple Impu
tation by Chained Equations (MICE) method to fill in missing values in 

the dataset (Van Buuren and Groothuis-Oudshoorn, 2011). This method 
is a sophisticated approach that utilizes a probabilistic model based on 
the observed data to estimate missing data points. After preparing the 
data, SWAT model setup was carried out using ArcSWAT 2012 in ArcGIS 
environment. 

Several AET products are available, characterized by different 
spatial/temporal resolutions and coverages, as well as different algo
rithms, methods, and approaches. The choice of an AET product depends 
on the specific goals and constraints of the study, as well as on the 
availability of the necessary data. In this study, eight freely available 
AET products have been experimented with, as summarised in Table 2. 
Fig. 2 shows the monthly and annual trends of AET according to each 
selected product. The remotely sensed AET products used in this study 
are the following: GLEAM v3.6a, GLEAM v3.6b, MOD16A2, GLDAS v2.1 
(Global Land Data Assimilation System version 2.1), PML v2 (Penman- 
Monteith-Leuning version 2), TerraClimate, FLDAS (The Famine Early 
Warning Systems Network Land Data Assimilation System), and SSEBop 
(Operational Simplified Surface Energy Balance). 

We sourced AET datasets in NetCDF and Raster formats, which 
provided evapotranspiration data at varied spatial resolutions (from 
500 m to 27,750 m) and temporal resolutions (daily, 8-day, and 
monthly). To ensure uniformity in the AET data for the SWAT model 
calibration, the AET time series for each subbasin were extracted using 
the weighted average method (Rajib et al., 2018; Zhang et al., 2016). 
The method involves calculating the area-weighted average AET for 
each subbasin, by multiplying the AET data for each grid cell within the 
subbasin by the area of the cell, and then summing the values for all grid 
cells. This method provides an estimate of the average AET time series 
for all subbasins. Once the AET time series for each subbasin was 
extracted, daily and 8-day data were then aggregated to monthly data 
based on the sum of AET values within each month. After these pre- 
processing steps, the AET data were ready to be used in the calibra
tion process of the SWAT hydrological model. 

2.3. Calibration of the SWAT model 

2.3.1. Calibration approach 
A set of 17 distinct scenarios was formulated, based on the monthly 

streamflow data described above and on AET time series from diverse 
sources. 

Reference Scenario (S0): in the initial scenario, the SWAT model 
was calibrated solely using monthly streamflow measurements taken at 
the sub-catchment outlet. This method is commonly adopted in model
ling literature, especially in data-scarce regions. It serves as a founda
tional baseline to understand and compare the performance of the model 
by adding constraints at successive steps 

Single-variable AET Scenarios (S1 to S8):eight distinct scenarios 
were implemented, each of them based on a unique AET dataset from 
the eight datasets considered for calibrating the SWAT model. The 
objective was to explore the efficacy of a SWAT model calibrated with 
AET in predicting streamflow. 

Multi-variable Scenarios (M1 to M8): in this set of scenarios we 
sought to determine if a multi-variable calibration strategy could 
improve the optimization of the SWAT model. For this purpose, the 
calibration of the model was done by pairing each of the eight AET 
datasets with streamflow data at the outlet of the sub-catchment. 

For all the scenarios, we adjusted the SWAT model parameters using 
the SWAT-CUP software. After that, we analysed and compared the 
outcomes in order to understand how each scenario impacts the cali
bration process. This comparison gave insights into the best solutions, 
uncertainties involved, and how parameters change. Moreover, we ran 
all the mentioned scenarios for two sub-catchments: Tillouguite and Ait 
Ouchene, simultaneously. 

Calibrations of the model were carried out on a monthly basis, 
covering the period from 2003 to 2014, with the initial five years 
(1998–2002) used as a warm-up period. The calibrated scenarios were 

Table 1 
Input data used to implement the SWAT model.  

Data Resolution Source 

Elevation Grid cell 30 m Shuttle Radar Topography Mission (SRTM) 
Land use Grid cell 10 m Supervised classification of Sentinel 2 A images 
Soil Grid cell 1 km FAO-UNESCO Global Soil Map and global soil 

database (HWSD) 
Precipitation Points Hydraulic basin agency of Oum Er-Rbia 

(ABHOER) 
Weather Grid cell 38 

km 
Climate Forecast System Reanalysis (CFSR) 
database. 

Flow Points Hydraulic basin agency of Oum Er-Rbia 
(ABHOER)  
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validated for streamflow during an independent period from 1992 to 
2002, with a warm-up period of five years (1988–1992). In our study, 
we employed an overlapping warm-up period for both calibration and 
validation phases, specifically from 1998 to 2002. We wish to emphasize 
that this overlapping period was used exclusively to stabilize the model 
and did not play a role in the optimization of parameters during cali
bration. Despite the shared warm-up periods, the data utilized for cali
bration (2003–2014) and validation (1992–2002) remained distinct and 
independent, to ensure the integrity and validity of the predictive as
sessments output by the model. 

2.3.2. Model parameters 
In the study area, snow plays a pivotal role in the water cycle. Thus, 

the calibration process must prioritize the integration of snow parame
ters. However, following the guidance of Abbaspour et al. (2015), and 
Rahman et al. (2013), it's crucial to calibrate snow parameters inde
pendently and before other parameters. This initial calibration ensures 
that the model captures snow processes accurately before delving into 
the intricacies of other parameters. For our specific objective, which 
focuses on incorporating remotely sensed evapotranspiration into the 
calibration process, integrating snow processes may not be appropriate. 
Thus, the aforementioned parameters were calibrated by strictly using 
streamflow data. This calibration was later validated with both 
streamflow and snow cover area data, as outlined by Taia et al. (2023). 

After determining the optimal values for the snow parameters, they have 
been fixed before moving on to the other parameters. 

The SWAT model manages elevation-related changes by using 
elevation bands to discretize the snowmelt process based on watershed 
topography (Grusson et al., 2015). Oued El Abid watershed, known for 
its steep elevation gradients impacting precipitation and temperature 
variations. Therefore, we had set five elevation bands (Taia et al., 2023). 
Two lapse rates (PLAPS) and (TLAPS) are commonly used to adjust 
precipitation and temperature in the SWAT model according to eleva
tion (Abbaspour et al., 2017). We then included other catchment pa
rameters, incorporating evapotranspiration. This hierarchy was 
instrumental to examine whether possible alterations of parameters 
could be directly linked to the integration of evapotranspiration in the 
calibration process. The selection of the SWAT parameters was based on 
a rigorous sensitivity analysis. We conducted this analysis using both Q 
and AET as single and multi-variable criteria across several parameters 
sets. Parameters that yielded a p-value above 0.05 in all scenarios were 
deemed statistically insignificant and were consequently excluded from 
the analysis. This approach ensures that the parameters included in the 
calibration process are relevant and significant to the model. 

Establishing the bounds (i.e. the absolute minimum and maximum) 
of the parameters to be optimized (listed in Table 3) is a fundamental 
aspect in the preparation of the model. Without any prior information on 
the distribution of the parameters, we assume that all parameters have 

Table 2 
Remotely sensed AET products used in this study.  

Products ET scheme Temporal resolution Spatial resolution (m) Spatial coverage Temporal coverage Reference 

PML v2 Penman-Monteith-Leuning 8-day 500 Global 2002–2022 (Zhang et al., 2019) 
TerraClimate Soil water balance Monthly 4638.3 Global 1958–2022 (Abatzoglou et al., 2018) 
FLDAS Land surface model Monthly 11,132 Global 1982–2022 (McNally et al., 2017) 
SSEBop Penman-Monteith Monthly 1065.6 Global 2003–2022 (Senay et al., 2013) 
GLEAM v3.6a Priestley-Taylor Daily 27,750 Global 1980–2022 (Martens et al., 2017) 
GLEAM v3.6b Priestley-Taylor Daily 27,750 Global 2003–2022 (Martens et al., 2017) 
MOD16A2 Penman-Monteith 8-day 500 Global 2000–2022 (Mu et al., 2007, 2011) 
GLDAS v2.1 Land Surface Model 3-h 27,750 Global 2000–2022 (Rodell et al., 2004)  

Fig. 2. Monthly average and yearly evolution of AET in the study area.  
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an equal distribution within the defined ranges (Abbaspour et al., 2015). 
Thus, it is critical to determine a reasonable range for each parameter, in 
order to obtain a well performing calibrated model (Kayastha et al., 
2011). This task can be based on existing data about the catchment and 
on knowledge gained by previous studies. The absolute boundaries of 
each parameter play a significant role in restricting the solution; former 
literature shows that a trade-off is necessary for assessing such bound
aries, keeping them as large as possible while being physically mean
ingful (Abbaspour et al., 2007). 

In SWAT, the HRU represents the smallest spatial entity within a 
watershed. Watersheds are divided into elementary items (HRUs) based 
on factors like elevation, soil, and land use. Given this granularity, 
spatial parameters such as hydraulic conductivity, bulk density, or CN2 
can potentially be defined for each HRU. This detailed categorization 
poses a challenge for the analysts, as it requires the collection or esti
mation of numerous input parameters, which are often not readily 
available. Instead of defining each parameter individually, an alterna
tive strategy is to group or lump them based on attributes like soil type, 
land use, location, slope, or a mix of them. These lumped parameters can 
then be calibrated using a global modification term, either multiplica
tive or additive, thus simplifying the process. Therefore, the v_ prefix 
indicates a direct replacement of the original value with a new one, 
while the r_ prefix signifies a modification where the original value is 
multiplied by (1 + the given r_ value). These prefixes offer a systematic 
approach to adjust the parameters' values for diverse model simulations. 

This process underwent several iterations, each one comprising 600 
simulations based on 600 sets of parameters obtained through the Latin 
Hypercube approach (Abbaspour, 2013). During each iteration, the 
prior parameter ranges were fine-tuned by calculating the sensitivity 
matrix (equivalent to the Jacobian), the Hessian matrix, and the 
covariance matrix, as well as the 95% confidence intervals and corre
lation matrices of the parameters (Abbaspour et al., 2007). Given the 
wide range of parameters involved, further rounds of sampling were 
necessary, involving the refinement of the parameter ranges to make 
them narrower and focused on achieving optimal simulation (Abbas
pour, 2013). 

The sensitivity analysis, calibration, and validation were carried out 
using the SWAT-Calibration and Uncertainty Programs (SWAT-CUP) 
software (Abbaspour, 2013). 

2.3.3. Sensitivity analysis 
To assess the relative sensitivity of the selected parameters (see 

Table 3), 2000 simulations for each sub-catchment (Tillouguite and Ait 
Ouchene) were carried out. By ‘relative sensitivity,’ we refer to the de
gree to which a slight change in a particular parameter influences the 

model's output, in comparison to changes in other parameters. Essen
tially, we're evaluating which parameters have the most significant ef
fect on the objective function. The relative sensitivity was computed by 
using the following multiple regression approach, which regresses the 
sampled parameters' values against their corresponding objective func
tion values (Abbaspour et al., 2007): 

g = ∝+
∑m

i=1
βibi.

Relative sensitivity was estimated based on linear approximations. A 
t-stat factor was computed to assess the sensitivity. It is the coefficient of 
a parameter (βi) divided by its standard error. The t-stat measures the 
precision of the regression coefficient. A parameter is considered “sen
sitive” when its regression coefficient is relatively larger than its stan
dard error, resulting in a larger absolute t-stat. The significance of the 
sensitivity of each parameter is then calculated by using the p-value test. 
Each parameter's p-value tests the null hypothesis, i.e., that the coeffi
cient equals zero (no effect). Thus, the parameter is more sensitive when 
the t-stat is large and the p-value is relatively small, e.g., lower than 0.05 
as a practical value. 

2.3.4. Performance criteria 
Percent Bias (PBIAS) and Nash Sutcliffe Efficiency (NSE) were used 

to evaluate the SWAT model performance. PBIAS measures the tendency 
of the model to overestimate or underestimate data values, while NSE 
assesses its ability to reproduce the observed variability. Both metrics 
provide a comprehensive evaluation of the model accuracy in simulating 
hydrological processes (Moriasi et al., 2007). 

In multi-variable optimisation, the objective function is defined as: 

g =
∑

j
wjgj 

Where wj is the weight of the j − th variable. 

2.4. Uncertainty analysis 

The Sufi2 algorithm (Abbaspour, 2013) was employed to perform a 
predictive uncertainty analysis of the model's output. This implied the 
adoption of Latin hypercube sampling to propagate the uncertainty of 
each parameter and calculate the cumulative distribution of each vari
able at its 2.5% and 97.5% levels. In fact, the predictive uncertainty is 
commonly referred to as the 95% prediction uncertainty (95PPU). Two 
statistical indices can be used to quantify predictive uncertainty: (i) the 
p-factor, which measures the percentage of observed data falling within 
the 95PPU, and (ii) the r-factor, which is calculated as the ratio between 
the width of the 95PPU band and the standard deviation of the observed 
data. Ideally, the p-factor should range from 0.8 to 1.0, but in case of 
low-quality data, a value above 0.5 can be considered sufficient. The r- 
factor ranges from 0 to ∞, and ideally, its value should be <1. Achieving 
a balance between these two factors is crucial to ensure that most of the 
observed data fall within the 95PPU while minimizing the width of the 
uncertainty band. 

3. Results 

3.1. Assessment of models' performance based on optimal simulation 

Table 4 presents the performance metrics for the best simulation in 
each scenario. As per Moriasi et al. (2007), the reference scenario S0 
performed well in both the Tillouguite and Ait Ouchene sub-catchments, 
except for the validation in Ait Ouchene, where the NSE barely achieved 
0.37 with a PBIAS of − 37.06%. The evaluation of the single-variable 
models (S1-S8) in the two sub-catchments reveals stark differences in 
their performance. The Tillouguite sub-catchment presents a chal
lenging scenario, as none of the models provided satisfactory results. 

Table 3 
Calibrated parameters and their initial ranges. The prefixes v_, and r_ indicate a 
replacement, and relative change to the initial parameter value.  

Parameter Description Min max 

v__TLAPS.sub Temperature lapse rate (◦C/km) − 7 2 
v__PLAPS.sub Precipitation lapse rate (mm/km) 0 200 
r__CN2.mgt Curve number − 0.35 0.3 
v__ALPHA_BF.gw Baseflow alpha factor 0 1 
r__ESCO.hru Soil evaporation compensation factor − 0.2 0.2 
v__LAT_TIME.hru Lateral flow travel time (days) 0 20 
v__SLSOIL.hru Slope length for lateral subsurface flow (m) 0 80 
v__CANMX.hru Maximum canopy storage (mm H2O) 0 40 
v__CH_N2.rte Manning's “n” value for the main channel 0.05 0.15 
v__CH_K2.rte Effective hydraulic conductivity in main 

channel alluvium (mm/h) 
0 50 

r__SOL_AWC().sol Available water capacity of the soil 
(mmH2O/mmSoil) 

− 0.1 1 

r__SOL_BD().sol Moist bulk density (Mg/m3) − 0.3 0.3 
v__BLAI{8}.plant. 

dat 
Maximum potential leaf area index 0.5 10 

v__DLAI{8}.plant. 
dat 

Fraction of growing season when leaf area 
begins to decline. 

0.15 1  
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Table 4 
Statistical criteria of the best simulation obtained from the last iteration. 

Calibration Validation Calibration Validation Calibration Validation Calibration Validation

S0:Q 0.63 0.58 0.82 0.38 -16.25 -27.65 -37.06

S1:PML v2 -0.50 -1.08 0.77 0.41 -8.63 -19.62 -14.34
S2:TerraClimate 0.01 0.01 -0.71 -2.25 -12.84 -26.50 -95.50
S3:FLDAS 0.31 0.42 0.73 0.19 36.07 22.25 -37.26
S4:SSEBop -1.14 -1.18 0.33 -0.47 -70.79 -78.19 -70.78
S5:GLEAM v3.6a 0.16 0.11 0.74 0.41 -34.03 -44.02 -30.64
S6:GLEAM v3.6b 0.25 0.23 0.73 0.19 3.82 -8.94 -37.26
S7:MOD16A2 -2.23 -2.74 -3.19 -5.06 -82.20 -101.23 -171.39
S8:GLDAS v2.1 0.35 0.34 0.15 -0.55 -14.84 -33.10 -84.49

M1:Q & PML v2 0.63 0.58 0.81 0.40 -16.25 -27.65 -24.05
M2:Q & TerraClimate 0.61 0.55 0.73 0.38 -12.15 -23.65 -21.05
M3:Q & FLDAS 0.49 0.62 0.81 0.39 33.96 21.30 -24.05
M4:Q & SSEBop 0.63 0.58 0.82 0.38 -16.25 -27.65 -37.06
M5:Q & GLEAM v3.6a 0.60 0.68 0.81 0.40 4.20 -5.50 -24.05
M6:Q & GLEAM v3.6b 0.60 0.68 0.81 0.40 4.20 -5.50 -24.05
M7:Q & MOD16A2 0.37 0.37 0.58 0.01 -45.57 -61.57 -62.28
M8:Q & GLDAS v2.1 0.52 0.48 0.82 0.37 -27.46 -42.20 -37.06

Legend

Scenario

Nash Sutcliffe Efficiency (NSE) Percent Bias (PBIAS) 

Tillouguite Ait Ouchene Tillouguite Ait Ouchene

-11.34

-11.34
3.71
4.20
1.51

-63.22
-156.19
-13.11
-10.87
-50.22
-13.11
-75.33
13.62

Minimum value of NSE                                                      Maximum value of NSE Maximum absolute value of PBIAS              Minimum absolute value of PBIAS

-11.34
-39.63
1.51
1.51

Fig. 3. Hydrographs of simulated vs observed discharge from the best parameter set according to each scenario (Tillouguite sub-catchment).  
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Nonetheless, the best-performing models in terms of NSE were GLDAS 
v2.1 (0.35), FLDAS (0.31), GLEAM v3.6b (0.25), and GLEAM v3.6a 
(0.16), in the given order. Meanwhile, the Ait Ouchene sub-catchment 
yielded encouraging results for some models, as PML v2, FLDAS, 
GLEAM v3.6a, and GLEAM v3.6b demonstrated outstanding perfor
mances, with NSE values exceeding 0.7 and PBIAS values below ±15%. 
On the other hand, MOD16A2 and SSEBop exhibited the poorest per
formance in terms of both NSE and PBIAS. Nevertheless, multi-variable 
models (M1-M8) outperform single-variable models (S1-S8) and the 
reference scenario (S0) in terms of NSE and PBIAS. When compared to 
S0, PBIAS was enhanced in most multi-variable models, and, more 
importantly, the streamflow validation was improved both in terms of 
NSE and PBIAS. 

Fig. 3 and Fig. 4 present the hydrographs of the best simulation for 
each scenario in the Tillouguite and Ait Ouchene sub-catchments. The 
figures also illustrate the percentage of exceedance probability of both 
the observed and simulated values for each scenario during the cali
bration and validation phases. To better distinguish and visualize low 
values, the exceedance probability was plotted using a log10 normal 
probability scale. The visual analysis of the plot aligns with the statis
tical findings, providing further support to the results obtained. The 
reference scenario (S0) performed reasonably well, although it slightly 
overestimated peak values in years 1995/96 and 2009/10, particularly 
in the Tillouguite sub-catchment. On the other hand, single-variable 
models (S1-S8) had poor performance, resulting in higher peak esti
mates in both the Tillouguite and Ait Ouchene sub-catchments. The 
multi-variable models (M1-M8) performed significantly better in terms 

of peak values. 

3.2. Predictive uncertainty in streamflow simulations 

A further fundamental step consists in the analysis and quantification 
of the predictive uncertainty in streamflow simulations. Fig. 5 illustrates 
the results from the final iteration of the calibration and validation 
process, based on the two statistical criteria (r-factor and p-factor) 
mentioned in section 2.4. The r-factor and p-factor are projected onto a 
scatter plot, which enables a clear differentiation between the various 
investigated scenarios. into quantify. These two criteria represent a tool 
for the trade-off between the precision (via r-factor) and reliability (via 
p-factor) of model predictions across various calibration scenarios. 

The calibration of the Tillouguite sub-catchment using the reference 
scenario (S0) resulted in a p-factor of 0.60 and a r-factor of 1.5. The 
single-variable models (S1-S8) exhibited a higher prediction uncertainty 
(higher r-factors) but captured a lesser portion of observed data (lower 
p-factors) compared to the baseline. Meanwhile, the multi-variable 
models M1, M2, M3, M5, and M6 had lower r-factors but higher p-fac
tors compared to S0. In the validation, all scenarios had lower p-factors 
than S0, with the single-variable models showing a significant decrease 
compared with multi-variable models. 

In the Ait Ouchene sub-catchment, the S0 model demonstrated the 
lowest p-factor in both calibration and validation. Single-variable 
models showed an increase in both r-factors and p-factors, suggesting 
a higher predictive uncertainty in their streamflow estimations. In 
contrast, certain multi-variable models reduced their r-factor when 

Fig. 4. Hydrographs of simulated vs observed discharge from the best parameter set according to each scenario (Ait Ouchene sub-catchment).  
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compared to the baseline scenario (S0), indicating a more precise pre
diction range. 

3.3. Best-performing parameters' sets 

3.3.1. Evaluation of parameters' uncertainties 
To evaluate the uncertainty, posterior probability distributions were 

constructed from the top 100 performing parameter sets obtained from 
the final iterations of each scenario. These distributions were converted 
into a Gaussian density function (Houska et al., 2014). Every subplot 
displayed in Fig. 6 represents the distribution of one parameter ac
cording to each scenario. Due to the use of the Latin Hypercube sampling 
(Abbaspour et al., 2015), the prior distribution is a simple horizontal 
line. If no information is gained during the calibration period, the pos
terior distribution will be similar to the prior distribution (horizontal 
line), and the parameter will be regarded as unidentifiable. The more a 
parameter is identifiable, the more its posterior distribution will move 
from a horizontal line towards a single peak, implying less uncertainty 
about its optimal value (Houska et al., 2021). 

According to the results, the S0 scenario displayed significant un
certainty when analysing the top 100 optimal parameter sets. This un
certainty is further emphasized by the observation of multiple peaks 
(multimodality) within the posterior parameter distributions. It is 
important to note that the incorporation of AET decreased the uncer
tainty for several parameters, including TLAPS, ESCO, SOL_BD, SLSOIL, 

and DLAI. This effect is particularly noticeable in the single-variable 
models (S1-S8), where the probability distributions for the aforemen
tioned parameters exhibit a reduction in the posterior variance and a 
strong posterior distribution, implying lower degrees of uncertainty 
compared to S0. When examining the parameter distribution of the 
multi-variable models (M1 to M8), we found that for many parameters, 
the shape of the posterior distribution was somewhat similar to the S0 
scenario. However, it's possible to observe some slight differences, 
which suggest a reduced range of posterior variance and a narrower 
posterior distribution. 

It is noteworthy that using a particular dataset for the calibration of 
the SWAT model resulted in a diverse range of outcomes with regard to 
the parameter values. As an example, in the Tillouguite sub-catchment, 
the optimal TLAPS value was below − 5 as per the results obtained from 
S5 and S7, whereas in the majority of cases, it ranged between 0 and − 5. 
This trend can be observed across multiple parameters, such as CANMX, 
CH_N2, CH_K2, ALPHA_BF, ESCO, and BLAI. However, the distribution 
of PLAPS was considerably narrowed by the majority of models, 
although the optimal values for all the models were relatively similar 
and close to 100 mm/km for both Tillouguite and Ait Ouchene sub- 
catchments. In fact, most of the models narrowed the posterior distri
bution of PLAPS to a similar optimal value for both sub-catchments. It 
can also be observed that the distribution of CN2 in the Ait Ouchene sub- 
catchment shows a similar trend. 

Fig. 5. 95PPU predictive uncertainty analysis of streamflow under different scenarios.  
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3.3.2. Equifinality in performance metrics 
Fig. 7 shows an evaluation of streamflow simulations obtained by 

using the top 100 performing parameter sets, in both the calibration and 
the validation phases. The box plots show the bounds of the performance 
metrics calculated. The first and second subplots illustrate the NSE and 
PBIAS metrics, respectively, obtained for the Tillouguite sub-catchment. 
The third and fourth subplots represent the same metrics for the Ait 
Ouchene sub-catchment. The red lines denote the thresholds regarded as 
satisfactory, as per Moriasi et al. (2007). In the S0 scenario, the median 

value of the boxplot indicated behavioural performance during the 
calibration for Ait Ouchene, whereas for Tillouguite it was <0.5. 
Furthermore, scenario S0 demonstrated the least variation in both NSE 
and PBIAS metrics as compared to other scenarios, and the performance 
spectrum of the best 100 simulations was the lowest. Conversely, the 
single-variable models (S1-S8) have larger variations and lower medians 
in terms of NSE values. When comparing different single-variable AET 
models, it was observed that scenario S3 exhibited the least amount of 
variation, while S7 and S8 showed the largest degree of variation. 

Fig. 6. Posterior distributions of 100 best-performing parameter sets in a) Tillouguite and b) Ait Ouchene.  
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Notably, S7 was unable to deliver satisfactory scores within its best- 
performing parameter sets. In multi-variable models (M1-M8), the 
boxes are smaller than those in single-variable models (S1-S8), but the 
variation is somewhat larger than that in the S0 model. With the 
exception of M7, the median values for most of the datasets used in 
multi-variable scenarios are closely clustered together. 

3.3.3. Uncertainties in water balance components 
Fig. 8 depicts the distribution of interannual averages for the water 

yield, AET, and soil moisture as simulated by SWAT, derived from the 
top 100 parameter sets, spanning the period between 1992 and 2015. 

When the SWAT model is calibrated using only the streamflow (S0), the 
top parameter sets exhibit a smaller variability in the simulated water 
yield, but a larger one in simulated AET and soil moisture, with respect 
to other models. On the other hand, when calibrating the SWAT model 
using only AET (S1-S8), the estimated AET and soil moisture exhibit less 
variabiity compared to the simulated water yield. The multi-variable 
models (M1-M8) showed relatively smaller variational bounds in the 
three simulated fluxes, including water yield, AET and soil moisture. 
Comparing the differences between the datasets used, it can be observed 
that calibrating with MOD16A2 and GLDAS v2.1 led to a relative 
overestimation of water yield, whereas AET and soil moisture were 

Fig. 7. Performance criteria (NSE and PBIAS) given by the 100 best-performing parameter sets in Tillouguite and Ait Ouchene.  
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underestimated. 

4. Discussion 

4.1. Challenges and limitations of the streamflow-calibrated model 

In the first scenario (S0), we used streamflow data from the outlets to 
calibrate the SWAT model, which is a common approach in the scientific 
community. In our case, this scenario serves as a benchmark for 
assessing the benefits of incorporating remotely sensed AET datasets. 
Despite S0 demonstrated a good level of agreement with the observed 
streamflow data (as shown in Table 4, Fig. 3 and Fig. 4), this scenario 
exhibited substantial uncertainty among the top 100 performing 
parameter sets, which is further underlined by the presence of multi
modality in the posterior parameter distributions (Fig. 6). In fact, a 
posterior distribution that is highly multimodal reveals a scarce identi
fication of the parameters. Additionally, most of these combinations of 
parameters generated comparable objective functions (as shown in 
Fig. 7) even if based on substantially different solutions, exemplifying an 
equifinality issue (Beven, 2006). This circumstance implies a non- 
uniqueness in the calibration process and the same streamflow obser
vations can be replicated by different sets of parameters (Abbaspour 
et al., 2017), which could be explained by counter-balancing effects 
between parameters, structural uncertainty, or data limitations (Triana 
et al., 2019). The existence of compensating processes resulted in mul
tiple parameter combinations that yield identical output signals. It is 
worth noting that distinct combinations represent underlying processes 
and assumptions about the system (Abbaspour et al., 2007), exacer
bating the challenge of determining true parameter values by making 
the model predictions ambiguous. As shown in Fig. 8, when employing 

the top 100 performing parameter sets, S0 produced substantial vari
ability in both AET and soil moisture, whereas it estimated a smaller 
variational range in the water yield. 

Thus, the model's performance in forecasting streamflow does not 
necessarily imply the capability to accurately capture other hydrological 
variables, such as AET and soil moisture. Assuming that a particular 
model is sufficient to reproduce the hydrologic response of a system by 
considering solely its performance about the streamflow can be decep
tive. Moreover, the equifinality may also stem from using a lumped 
calibration approach that simplifies the spatial representation of the 
hydrological system (Devia et al., 2015). It is conceivable that the point- 
calibrated model may not entirely capture the spatial complexities of the 
natural system, resulting in a greater degree of uncertainty in the dis
tribution of the parameters. Another possible source of equifinality is the 
use of large parameter ranges, which might introduce ambiguity into the 
model's interpretations. Nevertheless, the findings of this paper align 
with other studies, suggesting that relying solely on streamflow data to 
calibrate a hydrological model may result in inadequate simulations of 
other variables, misleading downstream analysis such as drought, 
climate change impact, and environmental studies (Chen et al., 2023; 
Lee et al., 2022; Rajib et al., 2018; Sirisena et al., 2020; Wanders et al., 
2014). Such inaccuracies can have significant implications for water 
management and policy decisions. Ultimately, it is critical for modelers 
to consider the limitations implied by the usage of streamflow data and 
the potential effects of equifinality when using them in calibrating hy
drological models. To establish the validity of a hydrologic model, it 
must accurately depict the behaviour of all the system's variables. 

Fig. 8. Water balance components according to the 100 best-performing parameter sets under different scenarios: water yield, evapotranspiration, and soil moisture.  
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4.2. Evaluating the efficacity of the AET-calibrated model in streamflow 
prediction 

In order to demonstrate the effectiveness of AET products in pre
dicting streamflow, we employed a single-variable approach to calibrate 
the SWAT model with the different global AET datasets (designated as 
S1 to S8). Unlike the streamflow-calibrated model (S0), which is rep
resented by a single point, AET was incorporated spatially into each 
subbasin. Fig. 6 highlights a significant finding, i.e., AET integration 
narrowed down the posterior distributions of several key parameters, 
including PLAPS, ESCO, SOL_AWC, SOL_BD, SLSOIL, and DLAI, to a 
single optimum, enabling their identification. These parameters are 
related to soil moisture, water retention, transpiration, and leaf growth 
(Neitsch et al., 2011), which are all significant AET-influencing factors 
and their identification leads to a better streamflow prediction (Ferreira 
et al., 2021). 

According to Table 4, the inclusion of AET data into the SWAT 
model's calibration for a single variable demonstrated mixed results in 
predicting streamflow. In the Ait Ouchene sub-catchment, a majority of 
single-variable AET models provided encouraging monthly streamflow 
estimates with NSE values surpassing 0.7 during the calibration phase. 
However, it's important to note that these models produced lower NSE 
values during the validation period, indicating some limitations in their 
predictive accuracy over different periods. For the Tillouguite sub- 
catchment, single-variable AET models were less effective, with the 
highest NSE value reached using GLDAS v2.1 at 0.35, trailed by FLDAS 
at 0.31, and GLEAM v3.6b at 0.25. Although single-variable AET models 
in some cases can provide reasonable streamflow estimates without 
direct streamflow measurements, the inconsistencies between calibra
tion and validation periods, as well as between the two sub-catchments, 
are clearly showing the challenges of this approach. Additionally, while 
some single-variable AET calibrated models exhibited satisfactory per
formance (Table 4), other models presented suboptimal results, 
demonstrating a clear tendency towards overestimating peak flows by 
most of the single-variable AET models (Fig. 3 and Fig. 4), leading to 
significant negative PBIAS values, as shown in Table 4. 

Moreover, the exceedance probability curves shown in the picture 
insets in Fig. 3 and Fig. 4 suggest that the calibration AET alone resulted 
in an increase of the probability of exceedance for high and median 
values, accompanied by a decrease in the probability of low flows. The 
graphical representation implies that most models provide better esti
mates of low flows compared to high and median values, which present 
larger discrepancies. Such a trend is particularly evident in the Ait 
Ouchene sub-catchment. According to Kunnath-Poovakka et al. (2016), 
and Odusanya et al. (2021), investigations into satellite-based AET 
calibration showed that catchments with high flows produce less precise 
forecasts compared to those with lower flows. This can be attributed to 
the rapid events that often characterise the high flows, which are not 
accounted for by the relatively slower process of AET, which in turn is 
based on satellite acquisitions that have a relatively slow revisit time. 
Differently from streamflow, AET appeared to be unsensitive to pa
rameters such as ALPHA_BF, LAT_TIME, CH_K2, and CH_N2 (Fig. A1). 
The parameters' lack of sensitivity to AET may be attributed to either 
their negligible interaction with the process (Neitsch et al., 2011), or due 
to the inadequate range of values considered during the sensitivity 
analysis (Wu et al., 2022). These parameters are related to the routing of 
water through the stream network and the calculation of extreme values 
of streamflow. ALPHA_BF determines the proportion of baseflow in 
streamflow, while LAT_TIME affects the delay in the stream response to 
precipitation events. CH_K2 and CH_N2 determine the ease of water flow 
through the channel and the resistance to flow within the channel, 
respectively, which can impact the behaviour of the streamflow. Fig. 6 
reveals a significant level of uncertainty in these parameters, which 
make them poorly constrained when using the AET alone. This implies 
that their values might have been scattered randomly across the best 
parameter sets produced by the single-variable AET models. By 

calibrating AET alone, the model may not be able to accurately estimate 
the optimal values for these parameters, leading to possible inaccurate 
predictions of the streamflow or other variables. Consequently, Fig. 8 
suggests that using the top 100 performing parameter sets from cali
brating AET alone leads to less variability in AET but larger variability in 
soil moisture and water yield. 

Therefore, calibrating the model solely for AET without considering 
other water balance components may not sufficiently represent the 
entire water balance and can increase the uncertainty in soil moisture 
and streamflow. Similar studies suggested that, while the model per
formance may improve for the calibrated variable, it may decline for 
what regards the other variables (López López et al., 2017; Odusanya 
et al., 2021; Sirisena et al., 2020; Tobin and Bennett, 2020). Satisfactory 
streamflow performance is not always guaranteed by calibrating AET 
alone, and the good results obtained by some models could be attributed 
to the equifinality or the over-parametrisation of the parameters used, 
wherein distinct parameter sets can yield similar streamflow 
performances. 

4.3. Improved predictability of the multi-variable calibration approach 

For an optimal reproduction of the hydrological cycle, both vertical 
and horizontal flux components should be simultaneously constrained 
with relevant calibration targets. Therefore, a multi-variable approach 
was used to optimize the models based on AET and streamflow, with 
scenarios labelled M1 to M8. According to the results in Table 4, most of 
the multi-variable models obtained very good performances in terms of 
NSE values. However, during the calibration period, the NSE values for 
the eight multi-variable models frequently aligned with, or were even 
exceeded by, those of the S0 scenario. Fig. 3 and Fig. 4 also suggest 
similarities between the results for S0 and the multi-variable models. 
Ding and Zhu (2022) employed remote sensing-based AET to spatially 
calibrate the SWAT model and reported that their use of multi-variable 
calibration was also successful in validating the model. In our study, 
only three out of the eight multi-variable models showed better results 
than the S0 during the validation phase. This suggests that, while spatial 
AET products can have potential utility, their effectiveness might vary 
based on the specific context and conditions of the study. 

From the exceedance probability curves illustrated in Fig. 3 and 
Fig. 4 (see the insets in each sub-plot), it can be inferred that the usage of 
multi-variable models led to significant enhancements in both high and 
median outcomes, resulting in considerable improvement in PBIAS 
values when compared to single calibration methods that rely solely on 
AET or streamflow. The improvement in PBIAS agrees with previous 
studies suggesting that, unless the horizontal and vertical fluxes are 
simultaneously adjusted, single calibrated models tend to underestimate 
or overestimate significantly the vertical water flux to the atmosphere 
(Odusanya et al., 2021; Rajib et al., 2018). Furthermore, multi-variable 
models reduced the uncertainties for several parameters (Fig. 6), as 
many parameters were easily identifiable, resulting in a reduced pre
dictive uncertainty in streamflow compared to a single variable 
approach. This is because multi-variable models can better account for 
various parameters affecting multiple variables (Rajib et al., 2018; Rane 
and Jayaraj, 2022). 

Our study found that the multi-variable models performed best, 
exhibiting a smaller variability of the water balance compared to the 
other models (Fig. 8), while also displaying better values in variability 
metrics than the baseline model S0 (Fig. 7). This suggests that the multi- 
variable models strike a good balance between reducing uncertainties in 
different simulated hydrological components and reducing equifinality 
in performance metrics. 

It is worth noting that recent studies, such as those by Kunnath- 
Poovakka et al. (2021), and Wambura et al. (2018), suggested that using 
a multi-variable approach to constrain parameter sets can lead to fewer 
behavioural simulations.Jiang et al. (2020) used satellite-based AET for 
the spatially distributed calibration of the VIC model to determine the 
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effectiveness on simulated streamflow. They reported that the hydro
logic model calibrated with AET can efficiently tune the relevant model 
parameters for better AET and streamflow simulations within their 
physically meaningful ranges. Similarly, Shah et al. (2021) hypothesized 
that the uncertainty problem associated with SWAT model could be 
improved by enhancing sub-processes embedded in the SWAT hydro
logical cycle, such as plant growth, AET, water yield, and soil–water 
balance, by applying remotely sensed AET data. Authors demonstrated 
the significance of this approach using a design experiment based on 
repeated measurements, in which the calibration was performed under 
both single variable and multi-variable schemes. Similar to our results, 
they showed that multi-variable calibration can improve the accuracy of 
streamflow simulation and reduce the equifinality of related parameters. 
Moreover, Dembélé et al. (2020) found that using evaporation data in 
addition to streamflow can enhance the model's proficiency in specific 
aspects, such as terrestrial water storage and soil moisture dynamics. 
Therefore, the use of multiple variables in calibrating the SWAT model 
can lead to improved predictability and a transition towards a better 
model state. 

4.4. Comparing different AET products in hydrological modelling 

The selection of the appropriate AET product is critical, due to dif
ferences in algorithms and approaches among these global datasets, as 
well as in their input data sources (Guo et al., 2022a). Thus, in order to 
evaluate how different products based on multiple sources affect the 
modelling of hydrological processes, we integrated eight freely acces
sible AET products into the SWAT model and compared their impact on 
model responses. 

The findings of our study reveal that the inclusion of a specific 
dataset in the calibration of the SWAT model led to different results. In 
terms of sensitivity analysis, several parameters are commonly influ
encing AET scenarios. Nevertheless, the magnitude and ranking of 
sensitivity were different, depending on the AET data source used 
(Fig. A1). Furthermore, based on the Fig. 6, the shape of the posterior 
distribution for the top 100 performing parameter sets varies depending 
on which AET product is used. This suggests that the use of a specific 
dataset affects the model's output in a way that changes the parameter 
estimates. As a result, different datasets lead to different calibrated 
parameter sets, which consequently causes a different quantification of 
water resources in the region of study (Fig. 8). This happens because 
AET products may take different biases or uncertainties that affect the 
accuracy of the model's predictions. E.g., if one AET product consistently 
overestimates AET compared to the others, it provides different 
parameter values in the calibration of the SWAT model, which could 
have significant implications on the hydrological behaviour. Thus, 
modelers need to evaluate the performance of each product and care
fully select the most appropriate AET product that delivers reasonable 
parameter estimates for a given case study. 

GLEAM v3.6b and GLEAM v3.6a exhibited the best performance in 
our experiments, followed by FLDAS and PML v2 (as illustrated in 
Table 4). On the other hand, the capacity of MOD16A2, GLDAS v2.1, and 
SSEBop to calibrate the SWAT model was comparatively suboptimal. 
Notably, when MOD16A2 was employed in a single-variable calibration, 
the SWAT model displayed a remarkable negative PBIAS in streamflow, 
resulting in a dramatic overestimation of the peak values (Fig. 3 and 
Fig. 4). Even in a multi-variable calibration scheme, MOD16A2 per
formed the worst, resulting in larger negative PBIAS. The reason for this 
could be that MOD16A2 estimated the lowest amount of AET, compared 
to other AET products (as shown in Fig. 2). As a result, MOD16A2 de
creases ESCO and TLAPS (Fig. 6), which ultimately leads to a reduction 
in the simulated AET. Consequently, MOD16A2 overestimated water 
yield while underestimated AET and soil moisture (Fig. 8). The decrease 
in AET to match MOD16A2 constrain is expected, nevertheless the 
model increased soil moisture simultaneously and increased in water 
yield. To our knowledge, no study has been carried out in the region 

using MOD16A2 product. However, recent studies investigated the 
performance of MOD16A2 in various regions and under different envi
ronmental conditions, and its ability to accurately estimate AET when 
used to calibrate hydrological models. Odusanya et al. (2019) calibrated 
the SWAT model with MOD16A2 product and found that it tended to 
underestimate AET. Jepsen et al. (2021) found that the dependence of 
MOD16A2 on vapor pressure deficit led to significant underestimations 
of AET during warm periods. Weerasinghe et al. (2020) used a water 
balance approach and found that MOD16A2 was less reliable compared 
to other AET products in Africa, particularly under water stress and 
drought conditions. Additionally, Huang et al. (2019), Ramoelo et al. 
(2014), and Tang et al. (2015) found low agreement between MOD16A2 
and Eddy-Covariance flux data in South Africa, China, and Norway, 
respectively. Our results are in line with these studies suggesting that 
MOD16A2 may not be the most reliable AET product for certain regions 
and environmental conditions, and alternative AET products should be 
considered when calibrating the SWAT model. It is important to note 
that different studies, characterized by different conditions, yielded 
different results, even suggesting a better performance of MOD16A2 in 
calibrating hydrological models. For instance, Herman et al. (2020) 
found that SSEBop and MOD16A2 delivered the best streamflow and 
AET performance among eight AET datasets. In addition, Ding and Zhu 
(2022) indicated MOD16A2 as the best performing product in stream
flow simulation when calibrating the SWAT model in a single-variable 
calibration. 

However, GLDAS v2.1 and SSEBop, as well as TerraClimate, 
exhibited modest success, causing the model to unsatisfactory estimates 
of the streamflow, mainly in single variable calibration. The negative 
PBIAS in streamflow still occurs at low values, causing these models to 
slightly overestimate the streamflow peaks. In addition, TerraClimate, 
MOD16A2, SSEBop, and GLDAS v2.1 resulted in more uncertainty in 
streamflow predictions compared to other datasets (Fig. 5), while 
MOD16A2 was the weakest at bracketing measured streamflow inside 
the 95PPU. According to Table 4, GLEAM v3.6b and GLEAM v3.6a 
datasets performed the best among all the AET datasets in calibrating the 
SWAT model for streamflow. Previous studies confirmed the superiority 
of GLEAM data over other products in calibrating hydrological models. 
For example, Odusanya et al. (2019) used two AET products (GLEAM 
and MOD16A2) to calibrate the SWAT model for the data-sparse Ogun 
River Basin in southwestern Nigeria. They reported that the SWAT 
model using the Hargreaves PET equation and calibrated using the 
GLEAM_v3.0a data performed well for the simulation of AET and 
streamflow with acceptable predictive uncertainty. Furthermore, Ding 
and Zhu (2022) investigated the accuracy of multisource AET products 
and their applicability in hydrological modelling over a large catchment 
in China. They found that GLEAM has the lowest relative uncertainties, 
followed by MOD16A2 and GLDAS. Dembélé et al. (2020) analysed 
twelve sets of actual evaporation data to see if they could improve the 
performance of a distributed model. They tested four different multi- 
variable calibration strategies using both evaporation and streamflow 
data, and compared the results to a benchmark model calibrated only 
with streamflow data. The top three performing evaporation datasets 
were GLEAM v3.3a, SSEBop, and GLEAM v3.2a, while the bottom three 
were MOD16A2, CMRSET, and SEBS. According to the authors, the 
excellent performance of the GLEAM datasets was probably attributable 
to the Inclusion of soil moisture data in the computation of GLEAM AET 
(Martens et al., 2017). In a regional study, López López et al. (2017), 
used GLEAM data to calibrate the streamflow at Oum Er-Rbia. They 
reported good performance when using a step-wise calibration and a 
satisfactory streamflow prediction resulted from calibrating the model 
with AET alone. 

4.5. Potentiality and limitations of this research 

Although the present study provides valuable insights into the 
impact of incorporating remotely sensed AET products into a 
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hydrological model, this practice is subject to certain limitations that 
need to be analysed. Firstly, the investigation was conducted in two sub- 
catchments in the High Atlas region, and it is known that model per
formances are strongly depending on the peculiarities of the studied 
area, thus the rankings of the various experimented products are ex
pected to be different. As an example, in this study several products of 
remote sensing-based AET achieved better performances in the single- 
variable calibration of Ait Ouchene compared to Tillouguite (Table 4). 
The performance of AET products can vary across regions, depending on 
a variety of factors including the specific location, climatic conditions, 
and the type of crop being grown locally (Guo et al., 2022a; Liaqat and 
Choi, 2017). Consequently, the global applicability of an AET product, i. 
e. its ability to be applied to other areas with different land cover types, 
weather patterns, and hydrological conditions may be limited. 

This research emphasizes the potential of eight different satellite- 
based AET datasets to enhance streamflow, providing guidance for 
modelers to select the most suitable product for their specific applica
tions. Additionally, this information can assist data developers in their 
efforts to enhance global estimations of AET (McCabe et al., 2019). 
However, it should be noted that the selection of these AET products was 
based on their accessibility and relevance to the study. It is possible that 
alternative products could have produced varying outcomes. Impor
tantly, none of the AET products included in our investigation was 
compared to ground-based data inside the study region. Since the SWAT 
model is physically based, the fact that some products did better than 
others means that these products are more in line with the model 
conceptualization, but do not necessarily reflect the real accuracy. To 
better assess the accuracy of AET products, future studies should 
investigate adding Eddy-Covariance measurements. Furthermore, it is 
important to note that only AET datasets were employed to constrain the 
SWAT model. While AET is a crucial variable, using additional infor
mation such as soil moisture and LAI may have provided further insights 
(Rajib et al., 2020; Tobin and Bennett, 2020). 

5. Conclusions 

The main objectives of this study are: (1) to test the capacity of a 
single-variable calibration using eight freely available satellite-based 
AET products in the SWAT model for streamflow prediction, and (2) 
to examine the benefits of a dual-variable calibration (integrating 
remotely sensed AET and streamflow data) in enhancing the model's 
accuracy and parameter identification. Hence, we evaluated eight 
distinct AET datasets, including GLEAM v3.6a, GLEAM v3.6b, 
MOD16A2, GLDAS v2.1, PML v2, TerraClimate, FLDAS, and SSEBop, 
which were integrated into the calibration of the SWAT model. To 
optimize the parameterization and predictions by the model, we 
experimented with both a single and a multi-variable calibration 
approach, combining streamflow observations with the remotely-sensed 
AET. In summary, our investigation yielded the following key findings:  

• Although the use of a streamflow-calibrated model (S0) generates a 
reasonable agreement with observed streamflow data, it can result in 
considerable uncertainty and equifinality in the calibration process. 
As a consequence, hydrological variables such as AET and soil 
moisture may not be adequately simulated, leading to potential im
pacts on water management and policy decisions. Though stream
flow remains an indispensable data point in hydrological modelling, 
this observation emphasizes the need to complement it with other 
variables, especially when there are concerns about the model's 
comprehensiveness. Thus. it's essential to appreciate both the value 

and potential limitations of streamflow data in the calibration 
process. 

• While some single-variable AET models provide satisfactory esti
mates of streamflow without relying on direct streamflow measure
ments, the calibration of AET alone may lead to overestimation of 
peak flows and increasing uncertainty in soil moisture and water 
yield. Thus, a calibration process relying solely on AET may take 
benefits, but caution should be exercised when using it.  

• An approach based on the incorporation of multiple variables can 
significantly increase the precision of streamflow simulation 
compared to the single-variable approach mentioned above. By using 
AET and streamflow simultaneously, the models enhanced consis
tency and decreased variability, according to the performance met
rics used. The application of AET products based on remote sensing 
contributed to a more stable streamflow simulation during the vali
dation phase. Thus, this study highlights the potential taken by 
including multiple variables in the calibration of the hydrological 
cycle, in terms of improved predictability of the model.  

• Different AET datasets led to different calibrated parameter sets, 
which consequently led to a different quantification of the hydro
logical cycle in the study area. GLEAM v3.6b and GLEAM v3.6a 
performed best among all AET datasets for calibrating the SWAT 
model as to streamflow, while MOD16A2 was the weakest in our 
study. Different AET products have different biases or uncertainties 
that affect the accuracy of the predictions, so modelers need to 
evaluate the performance of each product and carefully select the 
most appropriate for their specific case study. 

At this end, the implications of our study extend beyond the Oued El 
Abid catchment and can be applied to other similar regions with at least 
similar climatic conditions, such as high variability in snow and 
evapotranspiration. By using the models that performed well in our 
study, hydrological modelers in similar areas can improve the accuracy 
of streamflow predictions, leading to better water management and 
allocation decisions. Also, assuming the importance of AET products for 
the calibration of overall hydrological models, the proposed approach 
can be used to individuate the most suitable AET product for a given 
area of interest, according to its peculiarities. 

Accurate streamflow predictions can help the planning and opera
tion of irrigation systems and the related reservoirs, as well as the 
assessment of water availability for all the possible stakeholders. 
Moreover, we highlighted the importance of selecting appropriate AET 
data for hydrological modelling, as different models perform differently 
in different regions. This emphasizes the need for further research to 
improve our understanding about the complex hydrological processes in 
different regions, and to develop more accurate AET products that can 
be used in hydrological modelling. These findings have practical im
plications in various sectors, including water resources management and 
hydrological forecasting. Therefore, this research aims to serve as a 
useful reference for future studies and practical applications in these 
fields, as a building block for the advancement of modelling capabilities. 
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Appendix A. Results of the sensitivity analysis of parameters 

The t-stat and p-value resulting from each combination of parameters and AET products is displayed in Fig. A1. This permits to identify which 
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parameters, for a given configuration of the model, will influence the simulation more. In general, the sensitivity of the parameters varies considerably 
between different scenarios. Except for CH_N2, and DLAI, the majority of parameters in a single-variable scenario (S0) have a p-value lower than 0.05, 
indicating a significant sensitivity to streamflow. While the sensitivity of BLAI to S0 was not significant in the Tillouguite sub-catchment, it was found 
to be considerably significant in the Ait Ouchene sub-catchment. Furthermore, the higher absolute values of t-stat obtained for PLAPS and CN2 in S0, 
followed by SOL_AWC, suggest that these parameters are the most sensitive to streamflow. However, several parameters including ALPHA_BF, 
LAT_TIME, CH_K2, and CH_N2, resulted poorly significant in single-variable AET scenarios (S1-S8). According to our metric, the sensitivity of the 
parameter CH_N2 can be considered insignificant (p-value > 0.05) in all the investigated scenarios. As depicted in Fig. A1, TLAPS, ESCO, SOL_AWC, 
and CANMX are more sensitive to the output when considering AET, either in single-variable calibration (S1 to S8) or in combination with streamflow 
in multi-variable calibration (M1 to M8). The inclusion of MOD16A2, in both scenarios S7 and M7, yielded a slightly higher negative value of t-stat for 
PLAPS, CANMX, and SOL_AWC compared to other datasets. While ESCO was not significantly sensitive to GLDAS v2.1 as a single-variable in both 
basins.

Fig. A1. Relative sensitivity analysis of the parameter under different scenarios.  
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