
Available online at www.sciencedirect.com
ScienceDirect

SoftwareX 5 (2016) 183–189
www.elsevier.com/locate/softx

PySpike—A Python library for analyzing spike train synchrony

Mario Mulansky∗, Thomas Kreuz

Institute for Complex Systems, CNR, Via Madonna del Piano 10 – 50019 Sesto Fiorentino, Italy

Received 10 March 2016; received in revised form 14 July 2016; accepted 15 July 2016

Abstract

Understanding how the brain functions is one of the biggest challenges of our time. The analysis of experimentally recorded neural firing
patterns (spike trains) plays a crucial role in addressing this problem. Here, the PySpike library is introduced, a Python package for spike train
analysis providing parameter-free and time-scale independent measures of spike train synchrony. It allows to compute similarity and dissimilarity
profiles, averaged values and distance matrices. Although mainly focusing on neuroscience, PySpike can also be applied in other contexts like
climate research or social sciences. The package is available as Open Source on Github and PyPI.
c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Keywords: Synchrony; Spike train analysis; Spike train distance; Python
Code metadata

Current code version v0.5.1
Permanent link to code/repository used for this code version https://github
Legal Code License BSD License
Code versioning system used git
Software code languages, tools, and services used Python, Cyth
Compilation requirements, operating environments & dependencies numpy, cyth
If available Link to developer documentation/manual http://www.p
Support email for questions mario.mulan

1. Introduction

Gaining insight into the inner workings of the brain remains
a largely unsolved challenge that requires combined efforts of
biophysics, medicine, experimental as well as computational
neuroscience [1]. The basis for scientific advancement in this
field are experimental recordings of neural activity usually
represented in terms of spike trains, i.e. lists of spike times
for each recorded neuron. With sophisticated modern recording
techniques, it is now possible to perform highly parallel
measurements of neural activity, typically resulting in very
large sets of spike trains [2,3]. This generates an increased

∗ Corresponding author.
E-mail addresses: mario.mulansky@isc.cnr.it (M. Mulansky),

thomas.kreuz@cnr.it (T. Kreuz).

http://dx.doi.org/10.1016/j.softx.2016.07.006
2352-7110/ c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open acce
by-nc-nd/4.0/).
.com/ElsevierSoftwareX/SOFTX-D-16-00032

on
on, matplotlib, nosetests
yspike.de
sky@gmx.net

demand for powerful and high quality data analysis tools that
are capable of processing large datasets as produced by parallel
recordings.

There exist numerous methods to analyze spike train data,
e.g. based on spike count distributions, interspike intervals or
exact spike times. One very important approach is to quantify
the synchrony between spike trains. In the past decades several
synchrony measures have been proposed [4–6] which have al-
ready been used, among others, to quantify the reliability of
neuronal responses [7], to analyze the role of spike synchro-
nization in feature binding [8], and to distinguish different stim-
uli in the context of neuronal coding [1].

The PySpike library1 introduced here (logo shown in
Fig. 1) is a Python package that allows one to compute two

1 www.pyspike.de.

ss article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2016.07.006&domain=pdf
http://www.elsevier.com/locate/softx
http://dx.doi.org/10.1016/j.softx.2016.07.006
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-16-00032
http://www.pyspike.de
mailto:mario.mulansky@gmx.net
mailto:mario.mulansky@isc.cnr.it
mailto:thomas.kreuz@cnr.it
http://www.pyspike.de
http://dx.doi.org/10.1016/j.softx.2016.07.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

184 M. Mulansky, T. Kreuz / SoftwareX 5 (2016) 183–189
Fig. 1. Logo of the PySpike library.

different dissimilarity measures, the ISI-distance [9], the
SPIKE-distance [10] and additionally the similarity measure
SPIKE-Synchronization [11,12]. Each of these three methods is
time-resolved, parameter-free and time-scale independent and
therefore highly versatile. Being time-resolved, for example,
means these measure can detect changes in synchrony over
time, while being parameter-free makes them readily applicable
with unambiguous results, as no parameter optimization is
required. These measures have already been applied in many
experimental studies in the past, for example [13–16].

Although developed with a neuroscientific context in mind,
the synchrony measures discussed here can be applied to any
form of discrete time series consisting of event sequences of
any kind. In fact, such measures have already been utilized in
several other research areas, such as climate research [17] or
social sciences [18,19].

PySpike is a library aimed to perform automatized data
analysis with Python scripts. It is therefore a complementary
approach to the SPIKY software package,2 a Matlab framework
for spike train analysis providing a similar functionality but
additionally offering a sophisticated GUI [11,20]. Several other
software packages for spike train analysis have been developed
in the recent past, notably SyncPy3 [21], a Python based GUI
for quantifying synchrony in time series. However, it currently
does not include the synchrony measures implemented in
PySpike. A C++ implementation of the spike train distance
measures4 was presented in [22], but it is based on sampled
data and therefore of substantially inferior performance [11].
Finally, a comprehensive collection of scientific software for
spike train analysis is also provided as part of [23], aiming
specifically at multivariate recordings.5

2. Spike train distances

Here, discrete time series are represented by spike trains,
sequences of time points denoting the occurrence of an event
(spike) at those time points: s = {t1, t2, t3, . . .}. Generally, a
time-resolved distance measure maps a pair of spike trains s1,
s2 onto a profile {s1, s2} → S(t) with 0 ≤ S(t) ≤ 1. The
overall distance value can easily be obtained by integration:
DS =

S(t) dt .

PySpike provides three such distance measures: ISI-
distance, SPIKE-distance and SPIKE-Synchronization. These
methods are sensitive to different aspects of spike train

2 http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html.
3 https://github.com/syncpy/SyncPy.
4 https://github.com/modulus-metric.
5 http://spiketrain-analysis.org/software.
synchrony (interspike intervals, exact spike timings, spike
matching, respectively). Hence, the choice of method should
be informed by assumptions on how information is encoded in
the spike trains. In the following, we give a brief introduction
to the measures provided in the PySpike library. For a detailed
discussion of the methods and their properties see Appendix A
and [12].

The ISI-distance profile I (t), introduced in [9], quantifies
dissimilarity in terms of the relative differences of the concur-
rent interspike intervals of the two spike trains. Essentially, it
measures the relative differences of the instantaneous rates of
the two spike trains, but it is not sensitive to exact spike tim-
ings. The ISI-distance profile is a bivariate piecewise constant
function.

The SPIKE-distance profile S(t), first introduced in [24]
and refined in [10], represents a dissimilarity profile based on
exact spike timings. Thus, the SPIKE-distance quantifies spike
train dissimilarity in terms of deviations from exact coinci-
dences of spikes in the two spike trains. This results in a bi-
variate piecewise linear profile.

While the fundamental definition of both the ISI- and the
SPIKE-distance profile is bivariate (distance profile of two
spike trains), the generalization to a multivariate context is a
straightforward average over all spike train pairs [25].

SPIKE-Synchronization [11,12] is a straight-forward, nor-
malized coincidence counter with an adaptive coincidence
window. It quantifies similarity in terms of the fraction of
coincidences between two spike trains and hence is a very in-
tuitive measure. The generalization of SPIKE-Synchronization
for many spike trains can be defined based on all spike train
pairs leading to a consistent multivariate framework with simi-
larity again quantified as the overall fraction of coincidences in
all spike trains [11,12].

3. Package structure

3.1. The spike train

The central data structure of the PySpike library is the
SpikeTrain, a Python class representing an individual spike
train. This class contains the (sorted) spike times as a
numpy.array as well as the start and end time of the
spike train. Such SpikeTrain objects can either be created
directly by providing the spike times, generated randomly
from a Poisson process using the generate poisson spikes
function, imported from text files via load spike trains
from txt or imported from time series via import spike
trains from time series. These objects then serve as input
to calculate the distance measures, cf. Fig. 2.

3.2. Computing profiles

Being time-resolved is a main advantage of the three
spike train synchrony measures discussed here. Hence,
PySpike contains functionality to compute synchrony profiles:
isi profile computes the piecewise constant ISI-profile
I (t), spike profile returns the piecewise linear SPIKE-
profile S(t) and spike sync profile yields the discrete

http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html
https://github.com/syncpy/SyncPy
https://github.com/modulus-metric
http://spiketrain-analysis.org/software

M. Mulansky, T. Kreuz / SoftwareX 5 (2016) 183–189 185
Fig. 2. Structure of the PySpike package. The SpikeTrain is the central class for which several functions are provided to compute the dissimilarity or similarity-
profiles, as well as distance/similarity values and matrices.
Listing 1: Using profile and distance functions.
g e n e r a t e t h r e e a r b i t r a r y s p i k e t r a i n s
w i t h s t a r t / end t i m e o f 0 and 4
st1 = SpikeTrain ([1.0 ,2.0 ,3.0] , edges =[0 ,4])
st2 = SpikeTrain ([0.5 ,3.0 ,3.5] , edges =[0 ,4])
st3 = SpikeTrain ([2.5 ,3.8] , edges =[0 ,4])

b i v a r i a t e p r o f i l e o f s p i k e t r a i n s 1 , 2 :
isi_prof = isi_profile(st1 , st2)

d i s t a n c e v a l u e a s a v e r a g e o v e r p r o f i l e
isi_dist = isi_prof.avrg()

f a s t e r : d i r e c t l y f r o m t h e s p i k e t r a i n s
isi_dist = isi_distance(st1 , st2)

p r o f i l e o f 3 s p i k e t r a i n s :
spike_prof = spike_profile ([st1 , st2 , st3])

c o m p u t i n g p a i r w i s e s p i k e s y n c m a t r i x
o f t h e w h o l e l i s t o f s p i k e t r a i n s :
spike_trains = [st1 , st2 , st3]

M = spike_sync_matrix(spike_trains)
M i s a 3 x3 numpy a r r a y

SPIKE-Synchronization profile Ck . As the three profiles have
different mathematical properties, they are represented by
different Python classes in PySpike: PieceWiseConstFunc,
PieceWiseLinFunc and DiscreteFunc, as seen in Fig. 2.
By introducing specific data structures for each of these
objects, PySpike can utilize their mathematical properties and
use a highly efficient implementation while still providing a
convenient user interface. All three function classes provide an
avrg member function that returns the total (time-averaged)
distance of the respective measure. In Listing 1 several profiles
are computed and averaged. Furthermore, the profiles offer a
get plottable data member function for easy visualization
of the profile, shown exemplarily in Listing 2.

3.3. Computing distances and distance matrices

Besides calculating the time-resolved profiles, PySpike
also provides functionality to directly compute the overall
distance values for the ISI-distance and the SPIKE-distance
as well as the overall SPIKE-Synchronization value. The
respective functions are isi distance, spike distance and
spike sync, see Listing 1 for an example on how to compute
profiles and Fig. 3 for example profile plots. Although the
overall distances can also be computed from the profiles
by using the avrg() member function, the specific distance
functions allow for a more efficient implementation and hence
a significantly better performance, as will be discussed in
Section 4.2.

When analyzing sets of spike trains, one might not
only be interested in the multivariate distance of the
whole set, but also in the pairwise distances between
all spike trains. For this purpose, PySpike offers the
isi distance matrix, spike distance matrix and the
spike sync matrix functions. Listing 1 shows an example
on how to compute the SPIKE-Synchronization matrix. As
all distance measures in PySpike are symmetric, the distance
matrices are also always symmetric.

Finally, note that the distance and distance matrix functions
can also be used to compute selective averages, that is averages
over specified intervals of the profiles. This is accomplished
by providing the (optional) named parameter interval to
the distance functions, and similarly for the avrg member
function of the profiles. An example for computing and plotting
such a selective distance matrix is given in Listing 2. This
allows for a very detailed analysis of the profiles, for example
by comparing the average distances before and after repeated
stimuli or triggers. Fig. 4 shows an example of a changing
synchrony pattern revealed by distance matrices with different
averaging intervals.

4. Implementation and performance

4.1. Code base

PySpike is written following modern coding standards and
best practices in scientific computing [26], specifically adhering
to the official Style Guide for Python Code (PEP8).6 It is

6 https://www.python.org/dev/peps/pep-0008/.

https://www.python.org/dev/peps/pep-0008/

186 M. Mulansky, T. Kreuz / SoftwareX 5 (2016) 183–189
Listing 2: Load spike trains and plot profile and distance matrix.
l o a d s p i k e t r a i n d a t a
spike_trains = load_spike_trains_from_txt(

"spike_trains.txt",
edges=(0, 4000))

c o m p u t e and p l o t I S I p r o f i l e
isi_prof = isi_profile(spike_trains)
x, y = isi_prof.get_plottable_data ()
plot(x, y, ’-k’)

p l o t SPIKE d i s t a n c e m a t r i x
w i t h s e l e c t i v e a v e r a g i n g t = 0 . . . 1 0 0 0
spike_mat = spike_distance_matrix(

spike_trains ,
interval =[0, 1000])

imshow(spike_mat)

Fig. 3. Multivariate ISI, SPIKE and SPIKE-Synchronization profiles for M =

50 spike trains (shown in top panel). In this example, artificially generated spike
trains are used where the first half consists of noisy spiking superimposed with
a few synchronous events with more and more jitter. The second half contains
increasingly synchronized events without the noisy background.
Source: Adapted from [12].

compatible with both the Python2 and Python3 runtime and
available as open source software distributed under the BSD
License. The frontend is entirely implemented in Python,
whereas for the crucial computations a Cython [27] version is
provided for maximal performance, as shown in Section 4.2
below. As most scientific Python libraries, PySpike requires
NumPy as numpy arrays [28] are the underlying data structures.
Furthermore, it is designed to interact with matplotlib for
the plotting of profiles and distance matrices and it can also
be easily combined with other scientific libraries such as
scikit-learn for cluster analysis [29].
Fig. 4. Spike-distance matrices for a set of M = 40 artificial spike trains
(top panel) with changing synchronous firing. The spike trains are divided into
four groups, which fire in two different synchrony patterns in the first half and
second half of the observation interval. This change of synchrony structure is
clearly captured by using selective averaging for the SPIKE-distance matrices
(T = [0, 50] on the left and T = [50, 100] on the right).

The PySpike library is developed on Github7 with periodic
releases on PyPI.8 It is fully unit tested using the nosetest
framework,9 including an extensive test matrix on a continuous
integration server,10 where all tests are performed on each
commit using Python versions 2.6, 2.7, 3.3, 3.4, 3.5, and for
both the Python and the Cython backend.

4.2. Performance

With the increasing experimental abilities in neuroscience
it is now possible to obtain parallel recordings of thousands
and more spike trains in both cultured neurons [30] and in-
vivo recordings [2]. This requires an efficient implementation
of spike train analysis tools that allow one to process such huge
datasets within acceptable times. However, Python is known
for its very poor performance compared to low-level languages
such as C/C++. We therefore designed the PySpike library
to consist of two parts: (1) A front-end implemented fully in
Python representing the interface of the PySpike functionality
to the library users; and (2) A backend providing the numeric
implementation of the distance measures. For the backend,
PySpike provides two versions, a pure Python implementation
and a much faster C implementation based on Cython. The
Cython backend is the default choice, and only if Cython is not
available PySpike falls back to the Python backend.

Utilizing Cython (and therefore the speed of C), we were
able to gain performance improvements of more than a factor
of 200. Fig. 5 shows the runtime of a multivariate analysis
of M = 1000 Poissonian spike trains each containing N ≈

500 spikes, representative of a realistic experimental situation.

7 https://github.com/mariomulansky/PySpike/.
8 https://pypi.python.org/pypi/pyspike/.
9 https://nose.readthedocs.org/en/latest.

10 https://travis-ci.org/mariomulansky/PySpike.

https://github.com/mariomulansky/PySpike/
https://pypi.python.org/pypi/pyspike/
https://nose.readthedocs.org/en/latest
https://travis-ci.org/mariomulansky/PySpike

M. Mulansky, T. Kreuz / SoftwareX 5 (2016) 183–189 187
Fig. 5. Runtime for computing the multivariate ISI-distance, SPIKE-distance
and SPIKE-Synchronization for a set of M = 1000 spike trains each containing
N = 500 spikes on average. Dark gray bars represent the runtime for first
computing profiles and then averaging, while light gray bars indicate the direct
computation of the distance values. The left panel shows the runtime (in
seconds) for the Cython backend, while the right panel presents the runtime
for the Python backend.

For both backends, Cython (left) and Python (right), we show
the runtime of a full multivariate computation of the ISI-
distance, SPIKE-distance and SPIKE-Synchronization for first
computing the profile and then averaging, as well as for the
immediate distance functions. All performance measurements
were done on an Intel Core i5-3210M CPU @ 2.50 GHz.
First, note that with the Python backend, the computation time
reaches several hours, which is clearly beyond any tolerable
runtime for a data analysis procedure. Using the Cython
backend, however, the computations require only 10–20 s
(distance) or around one minute (profiles), which we believe
are acceptable runtimes for a data analysis of this size. Second,
as mentioned earlier, the direct computations of the overall
distance values (light gray in Fig. 5) are significantly faster
than first computing the profile and then averaging (dark gray),
which is the reason why PySpike provides this functionality.

While Fig. 5 only shows the results for one size of dataset,
namely M = 1000 spike trains with each on average containing
N ≈ 500 spikes, it is known that the runtime scales linearly
with the number of spikes N and quadratically with the number
of spike trains M (as the number of pairs grows ∼M2). Hence,
the expected runtime for larger (or smaller) datasets can easily
be estimated from the results in Fig. 5.

5. Conclusions and outlook

We presented PySpike, a Python library for measuring
synchrony in experimental and simulated spike train data.
PySpike provides three parameter-free, time-scale independent
and multivariate synchrony measures as well as facilities for
plotting, Poisson spike train generation and selective averaging.
It is implemented in a clean, fully documented code base
that follows official Python code style guidelines. Furthermore,
PySpike’s development utilizes advanced software engineering
techniques such as version control, unit testing and continuous
integration. By virtue of a Cython backend, it also shows
excellent performance and hence is suitable for the analysis of
large datasets.

Besides regular maintenance and bug fixing, future work on
PySpike will include the addition of new synchrony measures
specifically designed for spike trains with bursts [31]; support
for event detection (transformation from continuous to discrete
data); and extended functionality of spike train generation.
Current work is focused on the development of a spike
order indicator that allows to analyze propagation patterns by
quantifying temporal leader/follower properties within sets of
spike trains [32]. A preliminary Python implementation already
exists and will become part of an official PySpike release in the
near future.

In conclusion, we are convinced that the PySpike library is a
helpful software package for spike train analysis. It provides
a clean, well documented and consistent Python interface to
compute measures of spike train synchrony, while offering
excellent performance.

Acknowledgments

We thank N. Bozanic and E. Räisänen for numerous useful
discussions. Furthermore, we thank I. Gnatenko, I. Samuel
and R. Tomsett for their contributions to PySpike. M. M. and
T. K. acknowledge funding support from the European
Commission through the Marie Curie Initial Training Network
“Neural Engineering Transformative Technologies (NETT)”
Project 289146, and T. K. was also supported through the
Marie Curie European Joint Doctorate “Complex Oscillatory
Systems: Modeling and Analysis (COSMOS)” Project 642563.
Furthermore, T. K. acknowledges the Italian Ministry of
Foreign Affairs regarding their support of the Joint Italian-
Israeli Laboratory on Neuroscience.

Appendix. Mathematical definitions

A.1. ISI-distance

With {t (1)
i } being the spike times of the first spike train, its

interspike intervals are given as ν
(1)
i = t (1)

i+1 − t (1)
i and similarly

for the second spike train (cf. Fig. A.6) [9]. The ISI-profile is
then computed as the normalized absolute difference of these
interspike intervals:

I (t) =
|ν(1)(t) − ν(2)(t)|

max{ν(1)(t), ν(2)(t)}
, t ∈ [T0, T1], (A.1)

where T0 ≤ t (1,2)
i ≤ T1 are the edges of the spike trains.

A.2. SPIKE-distance

The computation of S(t) is based on the four corner
spikes surrounding the current time t : the preceding spikes
t (1),(2)
P (t) and the following spikes t (1),(2)

F (t) of each spike train
(cf. Fig. A.6) [10]. For each of the corner spikes, the distance to
the closest spike of the other spike train is computed, e.g.:

∆t (1)
P (t) = min

i
{|t (1)

P − t (2)
i |}, (A.2)

188 M. Mulansky, T. Kreuz / SoftwareX 5 (2016) 183–189
Fig. A.6. Local definitions of interspike intervals and time differences required
for the calculation of the ISI- and the SPIKE-profile.

and similarly for ∆t (2)
P and ∆t (1),(2)

F . These distances are then
combined by a linear interpolation according to the current time
point t resulting in the following quantity:

S1(t) =
∆t (1)

P (t)x (1)
F (t) + ∆t (1)

F (t)x (1)
P

ν(1)(t)
, (A.3)

and similarly S2(t) is defined for the second spike train. Based
on these quantities, we finally arrive at the definition of the
SPIKE-profile using the following normalization:

S(t) =
S1(t)ν(2)(t) + S2(t)ν(1)(t)

1
2 (ν(1)(t) + ν(2)(t))2

, t ∈ [0, T]. (A.4)

Note, that this is a piecewise linear function as S1,2 are
piecewise linear while the other terms are piecewise constant.

A.3. SPIKE-Synchronization

For SPIKE-Synchronization, a coincidence indicator C (1),(2)
i

is defined for every spike of the two spike trains s(1),(2), where
Ci = 1 if the spike at ti is part of a coincidence, and Ci = 0
if not [11]. A coincidence is defined in terms of an adaptive
coincidence window τ according to the local firing rate:

τ
(1,2)
i j =

1
2

min{ν
(1)
i , ν

(1)
i−1, ν

(2)
j , ν

(2)
j−1}, (A.5)

with ν(1),(2) being the interspike intervals as above. The value
of the coincidence indicator is then given by:

C (1)
i =

1 if min

j
(|t (1)

i − t (2)
j |) < τ

(1,2)
i j

0 otherwise.
(A.6)

In the same way, the coincidence indicator for the second spike
train C (2)

i is computed.
The SPIKE-Synchronization profile is then given by the dis-

crete function defined from the pooled coincidence indicators
{Ck} = {C (1)

i } ∪ {C (2)
i } and spike times: {t ′k} = {t (1)

i } ∪ {t (2)
i }.

Since integrals are not defined for discrete functions, the over-
all SPIKE-Synchronization value SYNC is obtained via sum-
mation:

SYNC =
1
M

M
k=1

Ck =
C

M
, (A.7)
where M is the total number of spikes in the pooled spike train
{t ′k} and C denotes the total number of coincident spikes. In con-
trast to the other two measures, SPIKE-Synchronization quan-
tifies similarity rather than distance.

References

[1] Quian Quiroga R, Panzeri S. Principles of neural coding. Boca Raton, FL,
USA: CRC Taylor and Francis; 2013.

[2] Alivisatos AP, et al. Nanotools for neuroscience and brain activity
mapping. ACS Nano 2013;7(3):1850.

[3] Marblestone AH. et al. Physical principles for scalable neural recording,
Front Comput Neurosci 7 (137).

[4] Victor JD, Purpura KP. Nature and precision of temporal coding in visual
cortex: A metric-space analysis. J Neurophysiol 1996;76:1310.

[5] van Rossum MCW. A novel spike distance. Neural Comput 2001;13:751.
[6] Quian Quiroga R, Kreuz T, Grassberger P. Event synchronization: A

simple and fast method to measure synchronicity and time delay patterns.
Phys. Rev. E 2002;66:041904.

[7] Tiesinga PHE, Fellous JM, Sejnowski TJ. Regulation of spike timing in
visual cortical circuits. Nat Rev Neurosci 2008;9:97.

[8] Singer W. Distributed processing and temporal codes in neuronal
networks. Cogn Neurodyn 2009;3:189.

[9] Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K,
Grassberger P. Measuring synchronization in coupled model systems: A
comparison of different approaches. Physica D 2007;225:29.

[10] Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F.
Monitoring spike train synchrony. J Neurophysiol 2013;109:1457.

[11] Kreuz T, Mulansky M, Bozanic N. SPIKY: A graphical user interface for
monitoring spike train synchrony. J Neurophysiol 2015;113:3432.

[12] Mulansky M, Bozanic N, Sburlea A, Kreuz T. A guide to time-resolved
and parameter-free measures of spike train synchrony. In: Proceedings of
the international conference on event-based control, communication, and
signal processing (EBCCSP). IEEE; 2015. p. 1.

[13] Dodla R, Wilson CJ. Asynchronous response of coupled pacemaker
neurons. Phys Rev Lett 2009;102:068102.

[14] Ibarz JM, Foffani G, Cid E, Inostroza M, de la Prida LM. Emergent
dynamics of fast ripples in the epileptic hippocampus. J Neurosci 2010;
30:16249.

[15] Wildie M, Shanahan M. Establishing communication between neuronal
populations through competitive entrainment. Front Comput Neurosci
2012;5:62.

[16] Di Poppa M, Gutkin BS. Correlations in background activity control
persistent state stability and allow execution of working memory tasks.
Front Comput Neurosci 2013;7:139.

[17] Malik N, Marwan N, Kurths J. Spatial structures and directionalities in
monsoonal precipitation over South Asia. Nonlinear Process Geophys
2010;17:371.

[18] Williams MJ, Whitaker RM, Allen SM. Measuring individual regularity
in human visiting patterns. In: Proceedings of the ASE international
conference on social computing; 2012. p. 117.

[19] Rabinowitch TC, Knafo-Noam A. Synchronous rhythmic interaction
enhances children’s perceived similarity and closeness towards each other.
PLoS ONE 2015;10:e0120878.

[20] Bozanic N, Mulansky M, Kreuz T. SPIKY. Scholarpedia 2014;9(12):
32344. revision #152246.

[21] Varni G, Avril M, Usta A, Chetouani M. SyncPy: a unified open-source
analytic library for synchrony. In: Proceedings of the 1st workshop on
modeling interpersonal synchrony and influence. ACM; 2015. p. 41.

[22] Rusu CV, Florian RV. A new class of metrics for spike trains. Neural
Comput 2014;26(2):306.

[23] Grün S, Rotter S. Analysis of parallel spike trains. Springer; 2010.
[24] Kreuz T, Chicharro D, Greschner M, Andrzejak RG. Time-resolved

and time-scale adaptive measures of spike train synchrony. J Neurosci
Methods 2011;195:92.

[25] Kreuz T, Chicharro D, Andrzejak RG, Haas JS, Abarbanel HDI.
Measuring multiple spike train synchrony. J Neurosci Methods 2009;183:
287.

[26] Wilson G, et al. Best practices for scientific computing. PLoS Biol 2014;
12(1):1.

http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref1
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref2
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref4
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref5
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref6
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref7
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref8
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref9
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref10
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref11
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref12
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref13
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref14
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref15
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref16
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref17
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref18
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref19
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref20
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref21
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref22
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref23
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref24
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref25
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref26

M. Mulansky, T. Kreuz / SoftwareX 5 (2016) 183–189 189
[27] Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn D, Smith K. Cython:
The best of both worlds. Comput Sci Eng 2011;13(2):31.

[28] van der Walt S, Colbert SC, Varoquaux G. The numpy array: A structure
for efficient numerical computation. Comput Sci Eng 2011;13(2):22.

[29] Pedregosa F, et al. Scikit-learn: Machine learning in Python. J Mach Learn
Res 2011;12:2825.
[30] Berdondini L, Imfeld K, Maccione A, Tedesco M, Neukom S, Koudelka-
Hep M, Martinoia S. Active pixel sensor array for high spatio-temporal
resolution electrophysiological recordings from single cell to large scale
neuronal networks. Lab Chip 2009;9:2644.

[31] Satuvuori E, Mulansky M, Bozanic N, Kreuz T. in preparation; 2016.
[32] Kreuz T, Satuvuori E, Pofahl M, Mulansky M. in preparation; 2016.

http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref27
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref28
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref29
http://refhub.elsevier.com/S2352-7110(16)30025-5/sbref30

	PySpike---A Python library for analyzing spike train synchrony
	Introduction
	Spike train distances
	Package structure
	The spike train
	Computing profiles
	Computing distances and distance matrices

	Implementation and performance
	Code base
	Performance

	Conclusions and outlook
	Acknowledgments
	Mathematical definitions
	ISI-distance
	SPIKE-distance
	SPIKE-Synchronization

	References

