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Abstract
Breast cancer (BC) is known as the most prevalent form of cancer among women. Recent 
research has demonstrated the potential of Machine Learning (ML) techniques in predict-
ing the five-year BC risk using personal health data. Support Vector Machine (SVM), Ran-
dom Forest, K-NN (K-Nearest Neighbour), Naive Bayes, Neural Network, Decision Tree 
(DT), Logistic Regression (LR), Discriminant Analysis, and their variants are commonly 
employed in ML for BC analysis. This study investigates the factors influencing the perfor-
mance of ML techniques in the domain of BC prevention, with a focus on dataset size and 
feature selection. The study’s goal is to examine the effect of dataset cardinality, feature 
selection, and model selection on analytical performance in terms of Accuracy and Area 
Under the Curve (AUC). To this aim, 3917 papers were automatically selected from Sco-
pus and PubMed, considering all publications from the previous 5 years, and, after inclu-
sion and exclusion criteria, 54 articles were selected for the analysis. Our findings highlight 
how a good cardinality of the dataset and effective feature selection have a higher impact 
on the model’s performance than the selected model, as corroborated by one of the studies, 
which gets extremely good results with all of the models employed.

Keywords  Breast cancer · Machine learning · Preventive diagnosis · Random forest · 
Support vector machine
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qCT	� Quantitative CT
FFPE	� Formalin-fixed paraffin-embedded
BCIMS	� Breast cancer information management system
CEDM	� Contrast-enhanced digital mammography
WDBC	� Wisconsin diagnostic breast cancer
CBC	� Coimbra breast cancer

1  Introduction

1.1 � Historical review

Cancer is recognized as a significant healthcare challenge by the Horizon Europe program 
[1]. Among female cancers, Breast Cancer (BC) is the most prevalent, with an incidence 
rate of 5 cases per 1,000 women, as extensively documented in the literature [2–8]. In the 
European Union (EU) in 2020, 2.7 million BC cases were diagnosed, resulting in 1.3 mil-
lion deaths. The World Health Organization (WHO) guidelines strongly recommend opti-
mising cancer treatment and care [9]. The "European Commission Cancer Plan" highlights 
the crucial role of cancer prevention and treatment optimization [10]. It also provides infor-
mation on the allocation of funds for cancer research on early detection and introduces a 
new "EU supported Cancer Screening Scheme" aiming to offer screening to 90% of the EU 
population by 2025. As an immediate objective, the European Commission plans to pro-
pose an update to the Council Recommendation on cancer screening by 2022, incorporat-
ing the most recent scientific evidence. The updated recommendation suggests expanding 
cancer screening campaigns beyond breast, colorectal, and cervical cancer to include pros-
tate, lung, and gastric cancer. Furthermore, the Commission proposes identifying criteria 
to target screening based on personal risk and characteristics rather than just age.

BC is categorised into three subtypes based on the presence or absence of molecular 
markers for estrogen receptor (ER) or progesterone receptor (PR) and human epidermal 
growth factor 2 (ERBB2 or HER2). Specifically, hormone receptor positive/ERBB2 nega-
tive cancers account for 70% of all BCs, ERBB2 positive accounts for 15%-20%, and tri-
ple-negative for 15% [11]. More than 90% of BC cases are non-metastatic at the time of 
diagnosis, and the therapeutic goals in such cases include tumor eradication and prevention 
of recurrence.

As shown in Table 1, BC mortality exhibits significant geographical variability [12–15], 
influenced by factors such as population structure, lifestyle, genetics, and the environment 
[16]. The 5-year net survival rate after BC diagnosis also varies and reaches 87% in devel-
oped countries where screening and early diagnosis are practised [17].

Risk factors for BC incidence and mortality can be classified into two groups: genetic 
risk factors (such as BRCA1 and BRCA2) and non-genetic risk factors (age at menarche, 
menopause, childbearing, breastfeeding, mammography density, overweight and obesity, 
physical inactivity, alcohol consumption, and lifestyle choices).

Breast Cancer Risk Models [18] utilise a model-driven analysis that incorporates a com-
bination of several factors. However, aside from female gender and increasing patient age, 
certain risk factors have shown weak effects on BC, necessitating a large amount of data 
for accurate evaluation [19]. Data-driven analysis approaches in the field of Artificial Intel-
ligence (AI) offer the potential to more effectively identify combinations of risk factors that 
contribute to increased BC incidence. These approaches leverage AI techniques to analyse 
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and derive insights from extensive datasets, allowing for the identification of complex rela-
tionships and interactions among various risk factors. By harnessing the power of AI, we 
can enhance our understanding of BC risk and potentially improve the accuracy of risk 
prediction models.

1.2 � Brief summary of the most recent studies

In recent years, Machine Learning (ML) techniques have emerged as one of the most 
prominent topics in the fields of Information Technology (IT) and Artificial Intelligence 
(AI). ML has experienced continuous growth and its applications extend across various 
domains, including pattern recognition, computer vision, finance, entertainment, compu-
tational biology, as well as biomedical and medical applications [20, 21]. ML represents 
an engineering approach that aims to enhance the ability to extract valuable information 
from data itself, without relying heavily on external inputs or prior knowledge. The pri-
mary objective of ML is to develop and refine models that can be trained using context-
specific data, enabling decision-making without complete knowledge of external factors. 
The process of ML involves two essential steps: training and inference. During the training 
phase, an ML algorithm processes a dataset and identifies the function that best captures 
the underlying patterns in the data. This function is then encoded and referred to as the 
model, which is subsequently employed to extract knowledge from new data instances [22].

1.3 � Opening problems under investigation

In recent years, significant advancements have been made in applying ML techniques to 
healthcare, as extensively documented in the literature [23]. Previous studies have demon-
strated that augmenting the widely-used Gail risk model with additional inputs improves its 
ability to predict BC risk.

Table 1   Mean (SD) for breast cancer mortality rate for each IHME super region from 1995 to 2015, from 
[15]

Year

Super Region 1990 1995 2000 2005 2010 2015

Sub-Saharan Africa 6.63
(2.52)

6.67
(2.46)

6.99
(2.76)

7.11
(3.16)

7.18
(3.00)

7.66
(3.24)

North Africa 6.91 7.58 8.17 8.70 9.12 9.72
Middle East (3.15) (3.43) (3.67) (3.99) (4.06) (4.00)
South Asia 6.12

(3.49)
6.79
(4.29)

7.35
(4.81)

7.80
(5.17)

8.30
(5.20)

9.14
(5.25)

Southeast Asia
East Asia
Oceania

9.06
(4.40)

10.11
(4.90)

11.35
(5.43)

12.53
(5.63)

13.72
(5.95)

14.70
(6.47)

Latin America 12.12 13.53 14.94 16.08 17.95 19.64
Caribbean (7.16) (8.01) (8.92) (9.36) (10.39) (11.25)
Central Europe
Eastern Europe
Central Asia

20.43
(9.74)

22.63
(10.76)

24.27
(11.45)

25.33
(11.49)

26.02
(11.25)

26.99
(11.61)
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The Gail model incorporates six breast cancer risk factors, namely: age, age at 
menarche, age at first live birth, number of breast biopsies, history of atypical hyperpla-
sia, and number of first-degree relatives with breast cancer. Based on this information the 
model provides the individual estimate of BC risk. Based on the Gail model, women with 
a breast cancer risk of > 1.66% were considered as high-risk according to the estimated 
5-year breast cancer- risk assessment [24].

However, these models, including Gail, typically rely on simple statistical architectures 
and incorporate inputs obtained from expensive and/or invasive procedures. In contrast, 
recent studies [25] have presented ML models that utilise readily available personal health 
data to predict BC risk over a five-year period. Many of these studies have compared the 
accuracy of different models based on various ML algorithms and techniques, such as Ran-
dom Forest (RF), K-Nearest Neighbour (K-NN), Naive Bayes (NB), Neural Network (NN), 
Decision Tree (DT), Logistic Regression (LR), Discriminant Analysis (DA), or Support 
Vector Machine (SVM) [26–28].

ML methods employed for tumor identification, classification, detection, or differentia-
tion have demonstrated highly competitive results [29].

This review primarily focuses on the potential role of Artificial Intelligence (AI) in sup-
porting BC prevention and the challenges that need to be addressed to enhance operational 
quality. Specifically, this work aims to analyse various ML techniques applied in the field 
of early detection of BC. To achieve this objective, recent papers (from 2017 to 2022) 
employing these techniques were collected and compared to determine the optimal com-
bination of data types, feature extraction methods, and models that yield the most accurate 
results. Additionally, a secondary goal is to investigate the reasons behind the preference 
for certain ML techniques while neglecting others.

Aside from the primary goal of investigating the use of ML techniques in research 
studies, a secondary goal of this research initiative is to conduct a thorough investigation 
into the underlying factors that lead researchers to prefer certain ML methodologies while 
ignoring others. The availability and quality of training data, computational resource con-
straints, the established body of previous research in the respective field, the inherent com-
plexity of the problem to be addressed, and the potential interpretability and explainability 
of the chosen ML models are all factors to consider when selecting machine learning tech-
niques. The ML models used by all the authors of the publications included in this review 
will be examined in the discussion chapter, with an emphasis on how the most commonly 
used models have changed over time.

2 � Methods

2.1 � Search and selection of literature

The studies included in this review were identified through a systematic literature review 
conducted on PubMed and Scopus databases until December 2022. The search included 
articles published between 2017 and 2022. The search terms used were: "[Model name]" 
AND "machine learning" AND "breast cancer" AND "validation" AND ("prevention" OR 
"diagnosis" OR "risk analysis") AND "AUC" AND "accuracy" AND PUBYEAR > 2016. 
Only full-text documents written in English that defined validation methods and presented 
performance results in terms of Area Under the Curve (AUC) and accuracy were consid-
ered eligible for inclusion. Some articles have been excluded if they did not present either 



Multimedia Tools and Applications	

1 3

of the two-performance metrics mentioned above, articles suggesting the use of Deep 
Learning (DL) models instead of ML models, articles unrelated to BC, and articles that did 
not specify the dataset size.

DL is a subclass of ML that is a data-driven technique for learning features and tasks. 
The term ’deep’ refers to the various layers of algorithms that data passes through during 
computing to construct a neural network. This study decided to remove DL algorithms, 
which we know require a lot bigger quantity of data than typical ML algorithms, in order to 
compare datasets with a higher cardinality to each other. The distinctions between the two 
modalities are adequately highlighted in Section 2.1 of the paper [30], where it is stated 
that there are significant disparities between the two modalities in both the approach and 
the description of the data required.

Figure  1 illustrates the search queries used in the PubMed and Scopus databases to 
retrieve articles related to the early detection and prevention of breast cancer using ML 
algorithms tested between 2017 and 2022.

Model validation is a critical step in the process that ensures the effectiveness of the 
developed model. It involves evaluating the model’s performance using an external dataset 
known as the validation set. The validation set is separate from the training data and is used 
to assess the quality and fit of the model’s results. In the reviewed papers, the majority of 
studies employed the cross-validation method for model validation.

Cross-validation is a resampling technique where different subsets or partitions of the 
data are used for training and testing the model. There are several variations of cross-val-
idation based on how the data is divided and utilised. One of the most commonly used 
approaches is the tenfold cross-validation, as depicted in Fig. 2 in [31]. In this method, the 
data is divided into 10 equal-sized subsets or folds. The model is then trained on 9 folds 
and tested on the remaining fold. This process is repeated 10 times, with each fold serving 
as the test set once. The results from each iteration are aggregated to assess the overall per-
formance of the model.

Figure 2 in [31] provides an illustration of the tenfold cross-validation approach, high-
lighting the repeated training and testing steps with different subsets of the data.

2.2 � ML performance metrics considered for the paper selection

The performance evaluation of the ML techniques was conducted by comparing them in 
terms of two key metrics: Area Under the Curve (AUC) and accuracy.

Accuracy is an important and intuitive performance measure in evaluating classification 
models. It represents the ratio of correctly predicted observations (True Positives and True 
Negatives) to the total number of observations. In the context of a binary classification 
problem, True Positives (TP) and True Negatives (TN) correspond to the correctly clas-
sified instances of the positive and negative classes, respectively. False Positives (FP) and 
False Negatives (FN) represent the instances that are incorrectly classified as positive and 
negative, respectively.

Although accuracy is a regularly used metric to evaluate classifier performance, 
it may be insufficient to provide a thorough evaluation, particularly in circumstances 
involving unbalanced datasets. When dealing with imbalanced classes, a classifier that 
predicts the majority class for all occurrences can nevertheless generate a high rate of 

(1)Accuracy =
TP + TN

TP + FP + TN + FN
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accuracy even if it fails to identify the minority class adequately. This is the most obvi-
ous limitation in depending solely on accuracy as a performance metric.

To solve this constraint, more measures must be incorporated into the review process.

Fig. 1   Papers selection flow
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The Area Under the Receiver Operating Characteristic Curve (AUC) being visually 
appealing and providing an overview of a classifier’s performance across a wide range of 
specificities, is the performance measure most frequently used within the ML studies work-
ing with imbalanced datasets [32].

Additionally, by incorporating the AUC alongside accuracy, practitioners can acquire a 
more nuanced and trustworthy picture of classifier performance, which is especially impor-
tant in cases when class imbalances are widespread.

The AUC is a measure of the classifier’s ability to distinguish between different classes, 
and it provides a summary of the Receiver Operator Characteristic (ROC) curve (see 
Fig. 3). The ROC curve plots the true positive rate (sensitivity) against the false positive 
rate (1-specificity) at various classification thresholds. The AUC represents the area under 
this curve corresponding to the probability that the model will rate a random positive case 
higher than a random negative example.

Fig. 2    10-fold-cross-validation, 
modified from [31]

Fig. 3   Example of ROC curve, 
with False Positive Rate (FPR) 
on x-axis and True Positive Rate 
(TPR) on y-axis
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A higher AUC indicates a better performance of the model in distinguishing between 
the positive and negative classes. When the AUC is equal to one, the classifier achieves 
perfect discrimination between all the positive and negative class instances. Conversely, an 
AUC value of zero suggests that the classifier incorrectly predicts all negatives as positives 
and all positives as negatives. Higher AUC values indicate better performance.

It is worth noting that AUC, as well as accuracy, is affected by distortions due to the 
problem of imbalanced training data occurring frequently in bioinformatics. When ML 
methods are trained on very imbalanced data sets, they often tend to produce majority 
classifiers – over-predicting the presence of the majority class being mild levels of imbal-
ance – at 30–40% of the data in the minority class – sufficient to alter the values of the 
measures commonly used to assess models performance. When large amounts of data in 
the minority class are easy to obtain, some authors suggested to undersample the majority 
class and effectively balance the data sets.The same authors also suggested when these data 
are sparse, then bioinformatics researchers would do well to consider the oversampling and 
cost-sensitive learning techniques, developed in machine learning in recent years [33, 34]. 
Furthermore, Saitto and colleagues, focusing on the performance evaluation of the final 
ML models, proposed some ROC alternatives as the Concentrated ROC (CROC), the Cost 
Curves (CC), and the Precision/Recall (PRC) plots. The authors concluded that being the 
PRC the only visual analysis tool that changes with the ratio of positives and negatives it 
represents the most informative one [32].

3 � Results

A total of 184 articles were initially selected, with 86 retrieved from Scopus and 98 
from PubMed. After removing duplicates, the remaining 160 papers underwent screen-
ing and evaluation. Among these, 106 articles were excluded based on specific criteria. 
This included 11 articles that were not available in full-text, 1 article written in Chinese, 
31 articles that focused on Deep Learning (DL) or other techniques instead of Machine 
Learning (ML) techniques, 49 articles with incomparable results, and 14 articles that either 
focused on the prevention of morbidities other than BC or were not specifically focused on 
prevention.

After applying these exclusion criteria, a total of 54 papers were included in the 
review. The majority of these papers utilised the LR model, accounting for 22.4% of the 
included studies. The SVM model followed with 18.3% representation, while the RF model 
accounted for 13.8%. The remaining papers, approximately 45.5%, employed various other 
ML techniques. The distribution of these works across different methods and years of pub-
lication is depicted in Fig. 4.

Although the majority of the analysed studies were conducted in the USA, the patient 
populations in the included papers encompassed individuals from other countries such 
as China, Japan, Africa, and Iran, indicating a broader geographical representation in the 
research.

This information highlights the selection process, the distribution of ML techniques used 
in the included papers, and the geographical diversity of the studied patient populations.

The temporal distribution of papers based on the ML models provides insights into the 
growing interest in ML methods, particularly the notable increase in publications focus-
ing on Logistic Regression (LR) since 2021. The high number of papers utilising the 
SVM model could be attributed to its frequent use as a benchmark when evaluating the 
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performance of other algorithms. Additionally, the number of studies utilising the RF tech-
nique has also increased in recent years. RF is often compared to DT to showcase the dif-
ferences in results when using a single DT versus combining multiple DTs to obtain the 
final outcome.

The results of the 59 selected articles are organised by ML methods in Tables [2–15]. 
Each table provides the main characteristics of the study and presents the accuracy and 
AUC results. These metrics serve as indicators of the performance achieved by the respec-
tive ML models.

By examining these tables, readers can gain an understanding of the characteristics and 
outcomes of studies conducted using different ML techniques, allowing for comparisons 
and evaluations based on accuracy and AUC performance measures.

3.1 � Support Vector Machine (SVM)

Support Vector Machines (SVMs) are supervised learning algorithms commonly used for 
binary classification tasks. In SVMs, a hyperplane is established to separate the sample 
items into two classes, as illustrated in Fig.  5. The hyperplane established by SVMs is 
determined by a subset of data points called support vectors, which lie closest to the deci-
sion boundary. These support vectors play a crucial role in defining the hyperplane and 
determining the classification boundaries.

The goal is to find the optimal hyperplane that maximises the margin between the two 
classes, ensuring the best generalisation ability.

By maximising the margin, SVMs aim to achieve high accuracy not only on the training 
set but also on new, unseen data that may be added to the dataset in the future [35]. This 
ability to generalise well to new data is a key advantage of SVMs.

Overall, SVMs are powerful tools for binary classification, providing an effective means 
of separating data into distinct classes by finding an optimal hyperplane that maximises the 
margin between them.

Fig. 4   Distribution of different methods used in selected related works in years
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Articles concerning the application of SVM models in the BC prevention field are sum-
marised in Table 2, sorted by dataset cardinality.

SVM models in some cases are combined with Fast Fourier Transform (FFT), in other 
cases with Discrete Cosine Transform (DCT), with Structural Similarity Index (SSIM) or 
with Sequential Forward Feature Selection (SFSS) as feature selection techniques. Paper 
[45] combines SVM with PET (Positron Emission Tomography) features and CT (Com-
puted Tomography) features. Paper [56] instead applies SVM to Quantitative UltraSound 
(QUS) features. In other cases, SVM is combined with Semi-Supervised Learning (SSL) or 
Supervised Learning (SL) techniques.

The selected papers in the field of BC prevention propose various approaches to achieve 
optimal performance. Some common strategies include feature selection, modifying the 
algorithm to fit the data, and selecting data to suit the specific model being used.

In study [36], the SVM model is combined with three different feature selection tech-
niques: the SSIM, which quantifies image quality degradation due to compression or data 
transmission losses, the DCT, which transforms pixel information from spatial domain to 
frequency domain, and the FFT, which computes the discrete Fourier transform of input 
sequences. These techniques aim to identify important patterns and information in the 
input images.

Another approach is presented in a different paper [37], where the dataset is divided into 
a modelling dataset and an external verification dataset. The authors selected 75% of the 
samples from the modelling dataset as the training set. They employed variable selection, 
one-hot encoding, and a basic model, which were assembled into a pipeline. This pipeline 
was then entered into grid search using the tenfold cross-validation technique, allowing for 
thorough evaluation and optimization of the model’s performance.

The selected papers [40, 42, 44, 54] introduce specific variations of the SVM model, dif-
ferent from the standard version, and investigate their impact on performance. For instance, 
paper [61] achieved the best accuracy and AUC values by using SVM with the quadratic 
kernel function (SVMQ), while the worst performance was observed when using SVM with 
the linear kernel function (SVML). This indicates that different SVM models applied to the 
same data can have varying effects on performance outcomes.

In contrast, paper [39] employed the linear version of the SVM and combined it with 
both SL and SSL techniques. The performance achieved in this case was significantly 

Fig. 5   Optimal hyperplane in 
SVM, for a binary classification. 
Modified from [35]
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better than that of paper [61]. The authors attribute this improvement to the utilisation of 
labelled data in training the SL algorithm and the availability of a larger training dataset. 
SSL, on the other hand, is a hybrid approach that combines SL and unsupervised learning, 
utilising unlabeled data and unsupervised information. It achieves competitive results with 
a smaller amount of data compared to SL methods.

Other papers in the selection combine the standard SVM model with specific features 
or additional learning models. Among these, paper [50] achieved the highest values for 
both accuracy and AUC, followed by papers [42, 49, 52]. These studies demonstrate the 
potential of incorporating additional features or employing hybrid models to enhance the 
performance of SVM in breast cancer prevention.

The paper [38] achieved the worst result by combining the SVM model with Molecu-
lar subtype features. The authors reviewed histopathological reports to identify prognostic 
biomarkers (such as Lymph node status, tumor grade, ER, PR, HER2, and Ki67) that were 
strongly associated with molecular subtypes of BC. Despite the inclusion of these features, 
the performance of the SVM model in this study was low.

Similarly, paper [54] obtained low performance values when using Precontrast and Post-
contrast images. Precontrast images are acquired before contrast material injection, while 
postcontrast images are acquired during the fifth phase after contrast material injection. 
Subtraction images are obtained by subtracting the Precontrast and Postcontrast images. 
The SVM model performed better when applied to the subtraction images compared to the 
other two types of images.

These findings suggest that the inclusion of certain features or imaging modali-
ties does not always lead to improved performance in breast cancer prevention using 
SVM models. It highlights the importance of carefully selecting relevant features and 
considering the specific characteristics of the data to optimise the performance of the 
SVM model.

3.2 � Naive Bayes

The Bayesian classifier, as demonstrated in the paper [63], is capable of predicting the 
probabilities of class membership, which represent the likelihood that a given sample 
belongs to a specific class. This classifier is built on the foundation of Bayes’ theorem, 
which is expressed by the following formula:

The Bayesian classifier uses probabilities to estimate the likelihood of a sample belong-
ing to different classes and assigns it to the class with the highest probability. It considers 
both the prior probability of each class and the likelihood of observing the input given each 
class, providing a probabilistic framework for classification.

The naive Bayesian classifier makes the assumption of class conditional independence, 
meaning it assumes that the effect of an attribute value on a class is independent of the 
values of other attributes. This assumption simplifies the computation and is the reason 
behind the "naive" characteristic of the classifier.

Table 3 collects all the performance results obtained by the articles using the NB algo-
rithms, sorted by descending cardinality of the dataset.

(2)P(h|d) =
P(d|h) ∗ P(h)

P(d)
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The paper [39] achieved the best results in terms of NB application, similar to the find-
ings for SVM models. Additionally, the NB model showed different performance values 
when combined with Supervised Learning (SL) and Semi-Supervised Learning (SSL) 
techniques. The authors concluded that better performance can be obtained using a fuzzy 
version of the algorithm instead of the Gaussian one.

On the other hand, the worst performance was observed in the paper [38], where Naive 
Bayes was combined with Lymph node features and Molecular subtype features.

3.3 � Linear and logistic regression

In the paper [66], the performance values of different types of regression models were 
described. Regression models are used to estimate the impact of independent predictors 
on a single dependent variable. Specifically, the Linear Regression model assumes a linear 
relationship between the predicted continuous variable and the predictor variables (Fig. 6). 
On the other hand, the LR model assumes that the predicted variable represents the loga-
rithmic probability of an event occurrence, based on the predictor variables. The predicted 
variable in LR is dichotomous, ranging from 0 to 1, representing the probability of the 
event happening.

As well as in the previous sections, the data presented in Table 4 are sorted by decreas-
ing dataset cardinality.

All of the articles in Table  4 use logistic regression (LR) on their datasets, combin-
ing it with various feature selection approaches [62], applying it to training and testing 
subsets [68], to different types of pictures [54], or to different forms of analysis [69]. The 
study [65] proposes a variant of the conventional LR that incorporates the LASSO (Least 
Absolute Shrinkage and Selection Operator) technique, whereas the paper [53] employs a 
Logistic elastic net to analyse its data.

The paper [39] demonstrated the best performance in terms of the LR model, consistent 
with the findings for other models in previous tables. In [69], the authors aimed to high-
light the importance of early detection of lymphedema in BC survivors. They identified 

Fig. 6   Scatter plot showing a 
linear relation between the two 
variables, from [66]
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24 lymphedema-associated symptoms as potential predictors and found that Logistic 
Regression achieved the best performance for early detection. Conversely, in [49], all stud-
ied models showed no significant differences in performance. In this study, features were 
extracted using LASSO from DCE-MRI images.

In [57], excellent results were achieved by utilising 279 textual features for each case. 
These features were analysed using the MaZda software, publicly accessible through [71, 
72]. To reduce the complexity of subsequent ML analysis, a feature selection analysis was 
performed using SPSS, resulting in the reduction of weak features.

Interestingly, in [54], the LR model performed well when applied to subtraction images, 
but yielded poorer results when applied to Precontrast and Postcontrast images.

In [67], the LR model was applied to data collected through a questionnaire to investi-
gate the impact of demographic and other risk factors on BC onset. The authors selected a 
total of 10 variables, including 3 demographic factors, 6 reproductive history factors, and 
family history of BC. However, the LR model yielded poor performance results in this 
study.

Similarly, in [38], when the LR model was combined with the molecular subtype fea-
tures of BC, low performance results were obtained.

3.4 � K‑nearest neighbour

In the paper [73], the K-Nearest Neighbors (K-NN) algorithm is described as one of the 
most fundamental and straightforward classification methods. It involves associating new 
data with the most common class among its k nearest neighbours, where k is a predefined 
parameter that influences the final result. The accuracy of the K-NN classifier is influenced 
by both the choice of k and the distance metric used to compute distances between data 
points. Different distance measures can yield varying levels of accuracy depending on the 
presence of noise in the data, as discussed in [74].

In Fig. 7, from paper [74], a visual comparison of 10 distance measures is presented, 
including the Average (L1, Linf) distance, Canberra distance, Clark distance, Correlation 

Fig. 7   Average Accuracy of 
KNN classifier using top 10 
distance measures with different 
level of noise from paper [74]. 
AvgD, Average (L1, Linf) dis-
tance; CanD, Canberra distance; 
ClaD, Clark distance; CorD, Cor-
relation distance; CosD, Cosine 
distance; DicD, Dice distance; 
DivD, Divergence distance; LD, 
Lorentzian distance; MD, Man-
hattan distance; SCSD, Squared 
Chi-Squared; WIAD, Whittaker’s 
index of association distance
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distance, Cosine distance, Dice distance, Divergence distance, Lorentzian distance, Man-
hattan distance, Squared Chi-Squared distance, and Whittaker’s index of association dis-
tance. These distance measures are used to compute the distances between data points in 
the K-Nearest Neighbors (K-NN) algorithm.

In Table 5, all the papers listed combine the standard K-NN model with a set of features. 
However, the paper [61] is excluded from the table as its results for the K-NN model are 
not comparable with the other papers.

The paper [53] proposes a different version of the K-NN model called Weighted 
KNN. In this version, the distance of the nearest neighbours is incorporated, and the 
observations of the nearest neighbours are upweighted compared to those of more dis-
tant neighbours. The authors conclude that this weighted version improves the classi-
fier’s performance [75].

In the context of supervised and semi-supervised learning, the paper [39] achieved 
the best results among the studies examined. On the other hand, the paper [47] obtained 
low results when combining the K-NN model with twofold and threefold cross-valida-
tion. This can be attributed to the fact that with small training sets, increasing the num-
ber of folds in cross-validation helps reduce bias in generalisation error estimation by 
utilising more training data in each iteration.

3.5 � Decision tree

According to the paper [76], a DT is a formal representation of classification flow within a 
given set of instances. In a DT, each leaf node represents one of the possible classes, and 
the intermediate nodes correspond to the tests performed on the data. Each branch originat-
ing from a node represents one of the possible outcomes of the test conducted at that node.

Table 6 contains papers that utilise a DT model, while Table 7 includes papers that 
focus on other tree-based classification approaches.

The paper [39] stands out as one of the best-performing articles in Table 6. On the 
other hand, the results of the paper [49] cannot be considered the best due to overfitting, 
even though it achieved 100% accuracy on the training set. Therefore, the paper [39] 
still holds the best results.

Additionally, the paper [38] has already been mentioned in previous sections for its 
poor performance when combining the DT model with molecular subtype features. In 
the case of the paper [62], the authors extracted 23 features from the dataset for each 
lesion but only used three features as reference standards: histopathologic Residual Can-
cer Burden (RCB) class, Recurrence-Free Survival (RFS), and Disease-Specific Sur-
vival (DSS). The DT model combined with RFS yielded low results. Table 6 presents 
the median of the four-fold cross-validation results.

While Table 6 compiles all publications that show DTs as a model, Table 7 com-
piles all research that presents another form of tree. These models can be utilised in 
various forms of analysis, as in article [69], or can be used for training and testing 
datasets, as in papers [37, 77, 79]. Paper [77] includes a Linear Discriminant Analysis 
(LDA) step to maximise the ratio of between-class variation to within-class variance in 
the dataset, assuring maximum separability. The LDA model will be presented in more 
detail in Section 3.6.

Study [49] experienced overfitting when the model was applied to the training set, 
and therefore, its result cannot be considered the best in Table 7.
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In the study [69], the authors aimed to determine the most effective model for 
stratifying the risk of breast cancer survivors and excluding potential patients with 
lymphedema. When the two proposed models were applied to the late detection of 
lymphedema, they achieved some of the best results, as shown in Table 7.

Additionally, it is noted that the paper [49] obtained the worst result when the Gradi-
ent Boosting Decision Tree model was applied to the testing set. This confirms that the 

Table 6   Decision tree results

Authors Paper Model Accuracy AUC​ Dataset

Xu et al. 2019 [68] DT + training group 73% 0.70 1570 patients from Sun 
Yat-sen Memorial 
Hospital database

Xu et al. 2019 [68] DT + testing group 75% 0.69 1570 patients from Sun 
Yat-sen Memorial 
Hospital database

Al-Azzam et al. 2021 [39] DT + SL 91% 0.89 569 patients from WDBC 
dataset

Al-Azzam et al. 2021 [39] DT + SSL 93% 0.9 569 patients from WDBC 
dataset

Jiang et al. 2021 [40] DT 65% 0.70 243 Tumor marker meas-
urements

Park et al. 2019 [38] Decision + Tree lymph 
node

66% 0.65 723 CT

Park et al. 2019 [38] DT + Tumor grade 71% 0.69 723 CT
Park et al. 2019 [38] DT + Tumor size 65% 0.65 723 CT
Park et al. 2019 [38] DT + ER 72% 0.69 723 CT
Park et al. 2019 [38] DT + PR 69% 0.67 723 CT
Park et al. 2019 [38] DT + HER2 77% 0.67 723 CT
Park et al. 2019 [38] DT + Ki67 66% 0.66 723 CT
Park et al. 2019 [38] DT + Molecular subtype 50% 0.63 723 CT
Nanglia et al. 2021 [47] DT + twofold cross 

validation
73% 0.75 192 patients from CBC 

dataset
Nanglia et al. 2021 [47] DT + threefold cross 

validation
66% 0.67 192 patients from CBC 

dataset
Nanglia et al. 2021 [47] DT + fivefold cross 

validation
66% 0.67 192 patients from CBC 

dataset
Nanglia et al. 2021 [47] DT + tenfold cross valida-

tion
73% 0.74 192 patients from CBC 

dataset
Nanglia et al. 2021 [47] DT + 20-fold cross valida-

tion
76% 0.78 192 patients from CBC 

dataset
Zhu et al. 2021 [49] Decision + Tree training 

set
100% 1.00 177 DCE-MRI

Zhu et al. 2021 [49] Decision + Tree valida-
tion set

74% 0.74 177 DCE-MRI

Tomas et al. 2022 [50] DT 69% 0.69 166 FFPE breast biopsies
Tahmassebi et al. 2019 [62] DT + RCB ∼ 73% 0.77 38 mpMRI
Tahmassebi. et al. 2019 [62] DT + RFS ∼ 52% 0.57 38 mpMRI
Tahmassebi et al. 2019 [62] DT + DSS ∼ 75% 0.80 38 mpMRI
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high result achieved when applying the same model to the training set was solely due to 
overfitting.

3.6 � Discriminant analysis

Linear Discriminant Analysis (LDA) [78] is a method that handles cases where within-
class frequencies are uneven. It has been tested using randomly generated test data, and 
its performance has been evaluated. The goal of LDA is to maximise the ratio of between-
class variance to within-class variance in a given dataset, ensuring maximal separability.

The use of Linear Discriminant Analysis for data classification is particularly applied 
to classification problems in speech recognition. In comparison to Principal Component 
Analysis (PCA) [79], literature suggests that LDA performs better. PCA is another dimen-
sionality reduction technique commonly used in machine learning, but LDA has shown to 
provide improved results in terms of separability and classification accuracy.

Among the papers listed in Table 8, the paper [60] achieved the best results. The study 
aimed to assess the differentiation of benign and malignant breast lesions using Blood 
Oxygenation Level Dependent Magnetic Resonance Imaging (BOLD-MRI) and Diffusion 
Weighted Magnetic Resonance Imaging (DW-MRI). The combination of LDA with robust 
BOLD and DWI features, extracted using the Least Absolute Shrinkage and Selection 
Operator (LASSO), yielded the best performance.

Another paper, [51], also obtained high results. The study compared the effects of radi-
omic analysis on 2D and 3D tumor segmentation using different machine learning (ML) 
models. An independent testing technique was employed, where a training set of 103 
patients and a testing set of 51 patients were used. The LASSO method, followed by a ten-
fold cross-validation, was used to select the best subset of features based on mean square 
error. The performance of the models was evaluated using these selected features, compar-
ing their distributions in 2D and 3D analysis.

On the other hand, the papers [50, 62] achieved the worst outcomes in Table 8. In the 
first paper, the authors mainly focused on comparing their results with artificial neural 
network (ANN) results and did not extensively investigate the reasons behind the perfor-
mance of other machine learning models. The second paper, [50], extracted 23 features for 
each lesion but only utilised three of them: histopathologic Residual Cancer Burden (RCB) 
class, Recurrence-Free Survival (RFS), and Disease-Specific Survival (DSS). The results 
presented in Table 8 represent the median of a fourfold cross-validation.

3.7 � Artificial neural network

As defined in the paper [81], Artificial Neural Networks (ANN) are an intelligent system 
inspired by biological neural networks.

ANN are characterised by the activation function used by their artificial neurons (see 
Fig. 8) and by the links between artificial neurons in different layers of the networks, as 
presented in Fig. 9.

In Table 9, the paper [69] achieved the best results, in addition to the previously dis-
cussed paper [39]. The study described in [69] aimed to find an effective approach to strat-
ify the risk of BC survivors while excluding potential lymphedema patients. The DT model 
was used to achieve this goal, and it yielded impressive results.
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On the other hand, the paper [38] obtained low results when applying the Artificial Neu-
ral Network (ANN) model to the molecular subtype features. This suggests that the chosen 
model was not suitable for the molecular subtype features, but it performed well with the 
other types of features.

It’s important to note that the performance of a model can vary depending on the spe-
cific features and characteristics of the dataset being analysed. The success or failure of a 
model in one context does not necessarily guarantee the same outcome in a different con-
text or with different features.

Table 10 collects results from papers that describe other types of Neural Networks 
(NN), like MultiLayer Perceptron Neural Network (MLP—NN) or Feed Forward Neural 
Network (FNN). The studies in Table 10 use the MLP—NN to specific feature sets, PET 
(Positron Emission Tomography) features or CT (Computed Tomography) features, or 
to certain types of images, DES (Dual-energy subtracted) or LE (Low-Energy), with 
associated segmentation.

In Table 10, the paper [50] achieved the best results. This study focused on designing 
and testing different types of Feed Forward Neural Networks (FNN) with varying layer 

Fig. 8   Different types of activation functions from [81]: a Threshold, b Piecewise linear, c Singmoid and 
(d) Gaussian

Fig. 9   Different types of artificial neural networks from [81]
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sizes. The authors found that the optimised learning rate for each model was 0.01, and 
they determined the specific number of nodes per layer to maximise performance. The 
best-performing models were FNN2 with 350 nodes, FNN4 with 400 nodes, and FNN8 
with 300 nodes.

On the other hand, the paper [45] obtained the worst result among the papers in 
Table  10. This study applied Artificial Neural Networks (ANN) to PET features. The 
PET and CT images were processed using different methods, including Exponential, 
Gradient, Laplacian of Gaussian (LoG), Logarithm, Square, Square root, and Wavelet 
filtering. The PET/CTconcat features represented an integration of all the PET and CT 
radiomic features, while the PET/CTmean radiomic feature was the average value of the 
individual CT and PET radiomic features.

The performance of a model can be influenced by various factors, such as the choice 
of features, data preprocessing techniques, and model configuration. The best and worst 
results in Table 10 reflect the outcomes specific to the approaches taken in each respec-
tive paper.

3.8 � Random forest

The RF algorithm combines several decision trees and aggregates their prediction by aver-
aging [83]. Some authors think RF aggregates random decision trees without considering 
how the trees are obtained. Other authors instead claim that RF refers to Breiman’s [84] 
original algorithm.

In Table 11, it is important to consider the issue of overfitting and not solely rely on 
accuracy results obtained on the training set. The paper [49] achieving 100% accuracy on 
the training set but lower accuracy on the validation set indicates a potential case of overfit-
ting, where the model has memorised the training data instead of learning general patterns.

As mentioned, the paper [39] consistently achieved the best results among the stud-
ies reported in Table 11. This indicates the effectiveness of the approach presented in that 
paper across multiple evaluation metrics or datasets.

The paper [77] also achieved excellent results by manually segmenting scanner images 
and extracting texture features for classification. This indicates the importance of careful 
pre-processing and feature extraction techniques in achieving good performance.

On the other hand, the paper [62, 67] obtained poor results in Table 11, which were also 
mentioned in previous sections. It suggests that the chosen models or feature representa-
tions might not have been suitable for the respective datasets or for classification tasks.

In summary, it is crucial to consider the impact of overfitting and the generalizability of 
results when evaluating the performance of classification models. The best results are often 
achieved by papers that effectively address these considerations and demonstrate good per-
formance on validation or independent test sets.

3.9 � Boosting

Boosting is a particular ML approach based on a combination of a highly accurate rule 
with other weaker or less accurate rules.
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As explained in [86], the Adaptive Boosting (AdaBoost) is the first practical boosting 
algorithm and it is still one of the most used and studied. AdaBoost pseudocode is pre-
sented in Algorithm 1.

Algorithm 1   AdaBoost pseudocode from paper [86]

XGBoost is short for eXtreme Gradient Boosting package. As described in the paper 
[87], XGBoost is an efficient and scalable implementation of a Gradient Boosting 
Machine, that is defined in [88].

For each round t = 1,…,T, a distribution Dt is computed over the m training instances, 
and a particular weak learner or weak learning algorithm is performed to find a weak 
hypothesis, as defined in Eq.  4. The weak learner’s goal is to find a weak hypothesis 
with a low weighted error �t relative to Dt . Equation 8 is the final or combined hypoth-
esis H(x). H(x) is calculated as a weighted majority vote of the weak hypothesis ht , with 
weight �t assigned to each hypothesis.

The latter paper presents a general gradient descent “boosting” model developed 
for any of the fitting criteria. Specific algorithms for Least Squares, Least Absolute 
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Deviation, Huber-M loss functions for regression, and multiclass logistic likelihood for 
classification are also described.

To describe the Boosting algorithms’ results, papers are divided in three Tables 12, 
13, and 14.

Table  12 focuses on papers that describe the results of AdaBoost [80] in various 
machine learning tasks. Among the papers listed, the best result was achieved by the 
paper [58], which applied AdaBoost with two different classifiers: SVM and DT. The 
AdaBoost-DT classifier performed the best among the two, surpassing the performance 
of the hybrid classifier proposed in the same paper, which combined SVM, RF, and DT 
classifiers. On the other hand, the worst result in Table 12 was obtained by the paper 
[62], which was already mentioned in the previous sections.

AdaBoost is known for its ability to boost the performance of weak classifiers by 
focusing on misclassified instances and iteratively updating the weights of the training 
data. It has been successfully applied to various classification and regression problems, 
and the papers in Table 12 provide insights into its effectiveness when combined with 
different base classifiers and applied to specific datasets.

Table  13 focuses on papers that present results of Gradient Boosting algorithms. 
Among the papers listed, the best result was achieved by the paper [39], which has 
already been discussed extensively in previous sections. Another paper, [52], introduced 
a modified version of the standard Gradient Boosting algorithm [89] called LightGBM, 
which showed excellent results. LightGBM is considered a new addition to the collec-
tion of boosting models and is known for its efficiency and performance advantages over 
XGBoost in certain aspects. The principles of LightGBM, Gradient Boosting Decision 
Trees (GBDT), and XGBoost are similar, with all three methods utilising the negative 
gradient of the loss function to approximate the residuals and fit decision trees.

In the paper [52], radiomic feature extraction was performed on the original paramet-
ric images without any filtering, and features related to shape, grey-level, and grey-tone 
were calculated. A total of 293 features for each subject’s imaging set were extracted in 
this study.

On the other hand, the worst result in Table  13 was obtained by the paper [40], 
where only eight features were selected because they were detected in all patients in the 
dataset. Among these features, five markers were identified for differentiating between 
breast cancers and benign tumors.

Table  14 presents the results of papers that utilised the XGBoost model. Apart 
from the paper [39], the best results among the papers in the table were achieved by 
the papers [52, 59]. In the paper [59], a large number of quantitative imaging features 
(1,409 features) were automatically extracted from each VOI (Volume of Interest). 

Table 12   AdaBoost results

Authors Paper Model Accuracy AUC​ Dataset

Vamvakas et al. 2022 [52] Adaboost 83% 0.90 140 mpMRI
MoghadasDastjerdi et al. 2020 [58] AdaBoost—SVM 78% 0.78 72 qCT
MoghadasDastjerdi et al. 2020 [58] AdaBoost—DT 84% 0.84 72 qCT
Tahmassebi et al. 2019 [62] AdaBoost + RCB ∼ 77% 0.81 38 mpMRI
Tahmassebi et al. 2019 [62] AdaBoost + RFS ∼ 65% 0.70 38 mpMRI
Tahmassebi et al. 2019 [62] AdaBoost + DSS ∼ 79% 0.83 38 mpMRI
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These features were then categorised into four groups. Data preprocessing and a tenfold 
cross-validation were performed, followed by the use of the LASSO function to select 
relevant features. Radiomic features with non-zero coefficients were identified as the 
final set of features.

On the other hand, the paper [45] obtained the worst results when the XGBoost model 
was applied to CT and PET features. In this study, a semi-automatic segmentation algorithm 
was used to determine the VOI of the three-dimensional gross tumor volume (GTV), and 
manual adjustment was performed for accuracy. Subsequently, PET and CT images under-
went various processing methods, including Exponential, Gradient, Laplacian of Gaussian 
(LoG), Logarithm, Square, Square root, and Wavelet filtering. A total of 1,218 CT and 1,218 
PET radiomic features were extracted from the segmented tumor region of each patient.

3.10 � RBF network

The Radial Basis Function (RBF) Networks, as described in the paper [90], are a type of 
machine learning model commonly used for prediction and forecasting tasks. The structure 
of an RBF Network typically consists of three layers: an input layer, a hidden layer, and an 
output layer, as shown in Fig. 10.

Unlike traditional neural networks with multiple intermediate layers, RBF Networks 
have only a single hidden layer. However, they are still capable of solving complex prob-
lems. This is achieved through the use of a Gaussian function applied in the hidden layer, 
which allows the network to transform nonlinear inputs into linear outputs. The hidden 
layer computes the nonlinear output based on the input, utilising the Gaussian function 
centred around specific radial basis functions.

The linear output of the RBF Network is obtained by summing the weighted nonlinear 
outputs from the hidden layer. This combination of nonlinear transformations and linear 
aggregation enables RBF Networks to effectively capture and model complex relationships 
in the data.

The description of paper [39], the only one in Table 15, has been thoroughly explored 
in the preceding sections, being often one of the best results in the tables previously 
discussed.

In order to understand why the RBF+SSL model outperforms the RBF+SL model in 
paper [39], one first needs to outline the dataset on which the two models are applied. The 

Fig. 10   RBF Network structure, 
from [90]
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Wisconsin Diagnostic Breast Cancer (WDBC) dataset contains 569 samples, 357 of which 
are benign and 212 of which are malignant. Although it is not a small dataset, it is also 
not excessively enormous. The RBF+SSL model can improve its knowledge of the data 
by making better use of the limited labelled samples. Furthermore, where there is a class 
imbalance, such as more benign than malignant instances in the WDBC, RBF+SSL is able 
to balance the model’s exposure to both classes, increasing classification performance.

4 � Discussion

AI techniques have advanced quickly in recent years allowing consistent improvements in 
medical image processing, computer-aided diagnosis, image interpretation, fusion, regis-
tration, segmentation, image-guided therapy, image retrieval, and image analysis. To date, 
understanding the associated data structures and statistics to the aim of converting the ML 
algorithm into a product working consistently in broad clinical use is still complex and 
prone to ethical issues [91]. This makes the scientific research about the ML algorithms 
performance, as well as the most recent development of DL techniques, a focus of the 
discussion about early pathology detection and medical imaging interpretation times and 
health costs saving, to the final goal of address to society’s expectations towards innovative 
health solutions based on concrete and health safe models and policies.

This study selected and analysed the recent literature on the application of ML tech-
niques in the field of preventive BC diagnosis along three dimensions: Accuracy, AUC 
and Dataset cardinality. Papers that applied the same models to different datasets and used 
different feature selection methods have been compared. The selected models included LR, 
RF, DT, Boosting algorithms (such as XGBoost), and Artificial Neural Networks. To the 
aim of reducing the heterogeneity in terms of cardinality among the reviewed studies, the 
ones led by applying DL models only, have been excluded as they are generally based on 
substantially larger datasets [92]. Additionally, our choice of excluding DL studies on large 
amounts of data is motivated by the most realistic condition of managing limited data sets 
of medical imaging. This is the fundamental issue affecting the creation of ML models that 
simultaneously learns from its surroundings and it largely depends on the time-consuming 
procedures of medical picture segmentation and annotation, which greatly limit medical 
imaging data collection [92].

Based on the analysis of the reviewed papers, the performances of the selected models 
showed to be generally comparable. Figure 11 plots the performance results across differ-
ent models. It’s important to note that the apparent superiority of the RBF model’s perfor-
mance may be skewed by the fact that only one paper meeting the selection criteria was 
found for this particular model.

This suggests that while different models may exhibit varying degrees of performance 
in different scenarios, no single model emerged as consistently superior across all stud-
ies. The choice of the most appropriate model may depend on factors such as the specific 

Table 15   RBF network results

Authors Paper Model Accuracy AUC​ Dataset

Al-Azzam et al. 2021 [39] RBF SVM + SL 96% 0.96 569 patients from WDBC dataset
Al-Azzam et al. 2021 [39] RBF SVM + SSL 97% 0.96 569 patients from WDBC dataset
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dataset, feature selection methods, and other considerations relevant to the particular appli-
cation of preventive breast cancer diagnosis.

The paper by Al-Azzam et al. [39] demonstrated the best performance among the papers 
reviewed in terms of tumor type diagnosis. The authors explored various algorithms and 
combined them with both SL and SSL approaches to achieve high specificity in their 
diagnosis.

In SL, the use of labelled data is required for training the algorithm. However, labelling 
data can be a time-consuming task. The advantage of SSL is that it can achieve competitive 
results with less labelled data, reducing the overall cost of diagnosis. The authors found 
that SSL algorithms yielded very similar accuracies to SL algorithms, ranging from 91 to 
98%.

These findings indicate that SSL is a promising and competitive solution for tumor type 
diagnosis, particularly when dealing with a small sample of labelled data and limited com-
putational resources. SSL algorithms can provide accurate results while optimising the use 
of labelled data, making them an efficient approach for tumor type classification.

Our results agree to the ones of a recent review concentrated on the most widely used 
ML approaches (SVM, DT, Nearest Neighbour, Naive Bayesian Networks, ANN, and Con-
volutional Neural Networks) that highlighted the need of using labelled images throughout 
the training of SL methods application [92].

5 � Conclusion

The analysis of the reviewed literature enables us to draw conclusions regarding the fac-
tors that influence the performance of the selected models. One notable finding is that the 
feature selection process has a greater impact on model performance compared to the size 
of the dataset. This highlights the importance of selecting relevant and informative features 
and the need to have large quantities of diagnostic labelled images available to achieve 
accurate predictions.

Fig. 11   Mean results for analysed papers, grouped by ML model
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This review confirms previous findings: Semi-Supervised Learning is a promising 
approach, with respect to Supervised Learning, since by exploiting a smaller set of labelled 
data it is able to achieve similar results, in terms of accuracy [93]. This makes the diagnosis 
process for breast cancer screening faster and cheaper. The future research challenge is to 
enhance ML algorithm efficiency and accuracy for fueling precision medicine, in a holistic 
patient-centric approach that integrates personal, clinical, genetic and environmental data 
in order to improve both diagnosis (faster, more accurate, cheaper) and therapy (reducing 
side effects and improving efficacy) [94]. In this perspective, ML is the base for fueling 
progress over time. However ethical, social, and legal implications of using Artificial Intel-
ligence in healthcare need to be investigated in depth [95].

To further enhance the accuracy of predictive models in BC risk assessment, future 
work should focus on standardising image acquisition scanners, lighting and enlargement 
factors configurations, sizes, as well as incorporating large volumes of personal and behav-
ioural health data. This additional data can provide valuable insights and improve the mod-
el’s ability to accurately predict an individual’s risk of developing BC. Continued research 
and advancements in this area can contribute to more effective and personalised BC risk 
prediction models in the future.
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