A logic-functional approach to the execution of CCS specifications
modulo behavioural equivalences T

S. Gnesi, P. Inverardi, M. Nesi
IEI-CNR
via S. Maria n. 46, I-56100 Pisa

Abstract

This paper reports on a work that proposes a kernel for an execution environment for the
operational semantics and the behavioural equivalences of CCS. The proposed execution
environment distinguishes itself by being formal, by dealing with the behavioural equivalences as
schemes of axioms, differently from other approaches based on automata, and by giving the
possibility to define several strategies of verification in a modular and flexible way. The
environment, obtained by techniques of logic-functional programming, treats basic CCS with
bounded recursion. A particular strategy of verification is presented.

1. Introduction

Aim of the work reported in this paper is the implementation of an environment for the
verification of properties of concurrent systems. '

We consider the specification language CCS, without value-passing, regarded as set of
operators to describe concurrent processes and set of equivalences to decide when two processes
have an equivalent behaviour. The aim is to execute processes according to the operational
semantics (from now on OPSEM [Mil80]) by interacting with the equivalences, where execution of
processes means analysis of their behaviour and verification of their properties. Hence, an
environment has to provide for the execution of OPSEM modulo the behavioural equivalences of
CCS.

QOur approach is to implement such environment by using techniques of logic-functional
programming. In fact the rules of OPSEM can be seen as rules of a (conditional) term rewriting
system, by which it is possible to infer the operational behaviour of each process; this immediately
suggests the use of logic programming. On the other hand, behavioural equivalences, in their
axiomatic formulation, are an equational theory thus suggesting the use of functional
programming.

The environment is obtained in a formal way : the correctness and completeness of every
transformation on OPSEM and on the equivalences are proved formally.

The paper first presents how to deal with the execution of OPSEM and equivalences for finite
CCS and then shows how to build a particular proof strategy. Actually, the described approach has
been, formally, extended to CCS with recursion ; the form of recursion we have considered is
called bounded : given a term rec X.E, all the process variables (possibly) in E are only
occurrences of the variable X and X is guarded. Such extension is based on [Mil86] where a
correct and complete set of axioms is presented for, so called, finite-state behaviours, which in
other words correspond to that subset of CCS processes that can be given a finite representation.

In this paper we will present results only on finite CCS without considering recursion, the strategy
we finally present deals, anyhow, with recursive CCS processes and resembles, in essence, the

way in which the extension of our environment to CCS with bounded ricorsion, following
[Mil86], has been performed.

The execution of OPSEM is obtained by translating the rules of OPSEM into Horn clauses. A
problem related to the termination of the process execution is solved by metaprogramming
techniques, obtaining a logic program executor. Hence, we prove that the translation of OPSEM
into executor is correct and complete wrt the action-tree semantics.

Then, we examine the equivalences. We study in particular the observational equivalence
(OBS.EQ.) and consider it as scheme of axioms, [HM85] and [Mil84a]. This approach
distinguishes itself from others in literature, where processes are modelled by finite state automata
and the observational equivalence or congruence is decided by algorithms on automata.

By techniques of logic-functional programming OBS.EQ. is translated into Horn clauses,
solving the problems of completion of the observational theory, cyclic reductions (caused by the
commutative axiom for summation) and process representation.

Our solution divides the observational theory OBS.EQ. in two subtheories: the equivalences of
the former subtheory are applied to the process symbolic representation in order to rewrite some
CCS operators in terms of other CCS operators, while the equivalences of the latter subtheory are
applied to the action-tree of the process, output of the former phase of reduction, thus abstracting
from the subterms order.

We prove that the subtheories don’t need completion (a canonical rewriting system is obtained
by directing equivalences in an appropriate way [HOS80]); equivalences are translated into Horn
clauses via flartening (flattening allows SLD resolution to simulate narrowing and to ensure that
every reducible subterm is reduced [BGMS87]) and finally we prove the correctness and
completeness of the translation of OBS.EQ.

At this point, in order to decide the congruence of two finite CCS processes it is possible to
reduce both in normal form and then compare the normal forms. In the same way it is possible to
execute a process: the existence of unique normal forms (according to OBS.EQ.) modulo subterms
order, allows a sequential strategy in executing a process to be adopted. First the process is
reduced according to OBS.EQ., then its normal form is executed according to OPSEM.

One of the main motivations of our approach is that of allowing “user” defined verification
strategies to be implemented. As a practical example we present how it is possible to define a
particular proof method for proving the equivalence of two CCS expressions, based on a strategy
described in [Mil80], which, given two expressions E1 and E2, tries to rewrite E1 into E2 by
alternating some steps of execution according to OPSEM with some steps of reduction according to
OBS.EQ. or with some steps of (backward) replacement of subexpressions with a process variable
bound by a rec operator.

This proof method may not terminate, but if it terminates, it has been shown correct, because
every rewriting step preserves equivalence.

We apply this method to the scheduling problem proposed in [Mil80] in order to prove that the
scheduler is a correct implementation of the requested specification.

The kernel environment presented in this paper, has been implemented in Quintus Prolog 2.0

on a Sun 3/50M machine under Unix 4.2 BSD. Three general reasons for preferring Quintus
Prolog, and generally Prolog, can be given. The first one is the availibility of efficient
implementations; the second one is a very natural translation algorithm of rewrite rules into Horn
clauses and the availability of techniques, like flattening, allowing equivalences to be executed and
the third reason is metaprogramming that allows the interaction between operational semantics and
behavioural equivalences according to different user-defined proof strategies to be easily managed.

2. Basic definitions

In this section we report a set of basic definitions that will be extensively used throughout in the
paper.

We deal with basic CCS (without value passing).

Let A={ B, 7,...} be a fixed set of names, A" = { o | e A} the set of conames, A=A

U A (ranged over by A) the set of observable actions, T the unobservable action and A U {1}
(ranged over by L) the set of atomic actions. S is a relabelling of A which respects complement.
Let V be a set of process variables, ranged over by X, Y, ... We define below (using a BNF-like
style) the class of CCS expressions E, ranged over by E, E1, ...; then we take P to be the class
of finite CCS processes (without recursion and variables).

Syntax
E = X | wE| Eq+Ey | BBy | EIS1 | By | NIL | rec XE

Operational semantics

Prefix wE -u— E
E1 -u— E E2 -u— E
Summation = seeeeeeeeeeccecececeeee S ——
E1+ E2 -u— E E1+ E2 -u— E
E1 -u— E E2 -u—» E
Parallel composition
E1IE2 U= EIE2 EIIE2 U EIIE
E, A E’ E, A - E,'

E1!E2 -T—> El'!Ez'

E -u— E1
Relabelling
E[S] -S(u)— E4IS]
E -u—Ey
Restriction pe {o, o}
Ev -u— E\a

Efrec XE/X] -u— El

Recursion

rec X.E -u— Eq

OPSEM is given by a set of inference rules, which can be seen as “defining” a (conditional) term
rewriting system. It is the inference component of CCS : all the behaviours af any process can be
inferred by following the rules of OPSEM.

Among the different behavioural equivalences defined for CCS in literature, we refer to
observational equivalence ([Mil80]) and testing equivalence ([DeN85]) and in this paper we
present the first one. (A correct and complete proof system has been given for both the
equivalences).

The laws for observational equivalence (OBS.EQ.), which is indeed a congruence =, are the
following :

El. X++Z)=X+¥YV)+2Z E5. X+1.X=1X
E2. X+Y¥=Y+X E6. prX=pX
E3. X+X=X E7. L+t Y)=p.X+1Y)+u.Y

E4. X+ NIL=X

E8. NIL[S]=NIL E1l. NIL\o = NIL
E9. X+ Y)[S]=XI[S]+YI[S] E12. X+ Y)o =X\ + Y\o
E10. .X)[S1=S (u).X[S] LX) pe {o,o)
E13. @.X)\o = {
NIL otherwise

El4. If X=2 u;X; and Y=Zvj.Yj then
X1Y =3 ppXily) + 25 viX 1Y) + 2 XYy

L&Y J

These axioms have been shown to be correct and complete for basic CCS without recursion
([Mil84a], [HMS80]) and they represent the equational component of CCS : they form an
equational theory, by which we can decide the observational equivalence of two finite processes.
Often proving observational equivalence it happens that the same sequences of axioms are applied
over and over again. Such sequences can be collected into theorems, which can be applied in one
step. An example is the expansion theorem ([Mil80]).

Def.2.1
A guarded sum is a process of the form 2 u;.Pj . Each ;.Pj is called summand.

Notation : if A = {a1, 0y, ... , Ay}, P \A denotes P\ap\ay .. \oy, -

Expansion theorem
Let P denote (P I P2 | ... IPp)\A , where each Pj is a guarded sum. Then

P=Y { u((P11 Pyl IPNA) 1Py is a summand of Py, i, i~ € A)
+ 2 {T(P P IPy I Pp)) | Py is a summand of Py,

K 'j 1s a summand of Py, i#] }.
3. Executing the operational semantics of finite CCS
3.1. The translation algorithm for OPSEM

The inference rules of OPSEM can be straightforwardly translated into Horn clauses by the
following translation algorithm. The transition relation P -u— P' or equivalently — (P, u, P")

with — < P x Au {1} X P is translated into the predicate trans (P, u, P").
Each inference rule of OPSEM

Py, ..., Py
“““““““““““ Cond
C
is translated into a Horn clause, whose head is the conclusion C and whose body is composed by
the premises P1, ... , P, and the conditions Cond of the rule.

Ex. 1
The rule of the restriction operator given in section 2 is translated into the following clause :
trans (restr (P, o), W, restr (P', &) - trans (P, 1, P), W \==0, it \==compl (®), name (0) .

Note that, some rules of OPSEM have conditions on the arguments of CCS operators. In the
translation algorithm this would mean the introduction of other predicates checking for these
conditions. Since tests like relabelling(S) for a term P[S] and name (o) for a term P\a are
syntactic, in an execution environment provided of a parser (like in our case), these conditions
can be thought to be checked before the execution of P[S] and P\a., thus deleting the corresponding
tests from the clauses.

Moreover, the translation of OPSEM is able to verify the dynamic test on the observability of

the action A in the third rule of parallel composition, with no introduction of another predicate.

Only the unobservable action T has no complement and the translation of OPSEM into Horn clauses
ensures that the observability test is implicitly satisfied.

This simple translation is not enough to obtain a logic program that when executed properly
simulates the rewriting system associated with OPSEM.

Thus, let us enrich the program obtained translating OPSEM in such a way to be able to
compute not only a single transition of a process, but a sequence of transitions (a behaviour) thus
obtaining an interpreter for finite CCS processes.

On the other hand OPSEM can be seen as a (conditional) rewriting system, whose rules allow to
rewrite every process until actions the process can do exist. The rewriting according to OPSEM
stops when a process P has been reduced to a process P', which cannot do any action .

The logic program should be an implementation of the rewriting system associated with
OPSEM, thus we expect that when executing a process P, via the logic program, resolution
succeeds and the behaviour of P is returned. Since OPSEM provides no rules for the process
termination in order to properly simulate rewriting we have to force, at metalevel, a successful

termination of the logic program whenever P cannot execute more actions (i.e. no rewriting is
possible).
Hence, the logic program executor executing the finite CCS OPSEM is the following :

:- dynamic trans /3 .

trans (prefix (Act, Pr), Act, Pr) .

trans (prefix (Act, Pr), Actl, Pr) :- Act == compl (compl (Actl)) .

trans (prefix (Act, Pr), Actl, Pr) :- Actl == compl (compl (Act)) .

trans {(sum (Pr, _), Act, Prl) :- trans (Pr, Act, Prl) .

trans (sum (_, Pr), Act, Prl) :- trans (Pr, Act, Prl).

trans (par (Prl, Pr2), Act, par (Pr3, Pr2)) :- trans (Prl, Act, Pr3).

trans (par (Prl, Pr2), Act, par (Prl, Pr3)) :- trans (Pr2, Act, Pr3) .

trans (par {(Prl, Pr2), tau, par (Pr3, Prd)) :- trans (Prl, Act, Pr3), trans (P12, compl (Act), Prd) .

trans (relab (Pr, [X | S1), Act, relab (Prl, [X 1 8])) :- trans (Pr, Actl, Prl), apply (X | S], Actl, Act) .
trans (restr (Pr, Actl), Act, restr (Prl, Actl)) :- trans (Pr, Act, Prl), Act\== Actl , Act\==compl (Actl).

:- dynamic apply /3 .

apply ([1, Act, Act) .

apply ([Act/ Actl | _], Actl, Act) .

apply ([Act/ Actl 1 _], compl (Actl), compl (Act)) .

apply ([_/ Act2 18], Actl, Act) :- Actl == Act2, Actl \==compl (Act2), apply (S, Actl, Act) .

execute (Pr, [Act | Behl]) :- solve (trans (Pr, Act, Prl)), execute (Prl, Behl).
execute Pr, [} :- & solve (trans (Pr, _,) .

solve (true) - 1.

solve ((Goall, Goal2)) :- !, solve (Goall), solve (Goal2) .

solve (Goal):- Goal \== true, functor (Goal, F, _), F\s="==', F\e= ==, F\=="," ,clause (Goal, Body), solve (Body).
solve (Goal) :- system (Goal), !, Goal.

system (Goal) :- functor (Goal, F,), F=="==".

system (Goal) :- functor (Goal, F,), F=="\=='.

The predicate zrans translates the rules of OPSEM : we note that for the prefix operator, which
has only one inference rule in OPSEM, it is necessary to add two more clauses translating the

semantics of the complement function, u~ P -u— P and p.P -4~ ~— P, thus obtaining three
mutually exclusive clauses for the prefix operator.

The predicate apply translates the application of the relabelling function, where such function
is implemented by an appropriate data structure, i.e. a list. We can verify ([Nes88]) that the above
definition of apply is correct wrt the relabelling definition given in [Mil80].

The metapredicate solve is our metainterpreter (based on [Ste85] and [FGIMS87]), where
clause is a system predicate which is true if there exists a clause, whose head unifies with the goal
Goal and whose body is Body, and system is a (not predefined) predicate which is true if Goal is
a system predicate.

The metapredicate execute computes all the behaviours of a process catching the failures due to
the normal forms (according to OPSEM) : a process Pr executes a sequence of actions [Act | Beh] if
Pr evolves in Prl by executing Act and Prl executes a sequence of actions Beh1 or Pr terminates
since it can execute no more action.

The Quintus Prolog operator \+ applies SLD-NF resolution, by which we catch failures taking
place when Pr is a normal form according to OPSEM and it has no further transition. SLD-NF
resolution gives no problem, because its use is controlled in such a way to preserve completeness.

In order to compute the behaviour Beh of a finite process P the goal :- execute (P, Beh) is
solved in the program executor.

3.2. Correctness and completeness of the translation

In the previous section we have described the translation of the operational semantics of finite
CCS into a logic program. Aim of this section is to provide a formal justification that such
translation “preserves” semantics consistency between OPSEM and the corresponding logic
program.

Every CCS process can be modelled by an action-tree, a tree representing the process
behaviour, i.e. all the actions the process can execute and the order in which it can execute them.

Moreover, let P be a logic program and G a goal, an SLD-tree representing all the resolutions
of G in P is associated to P and G. Hence, given the logic program in which OPSEM has been
translated and a process P (whose behaviour is asked for) as a goal, we have, besides an action-
tree, an SLD-tree associated to P, too.

Now we prove that the translation of finite CCS OPSEM into the logic program executor is
correct and complete wrt the action-tree semantics. In other words, we show that there exists a
correspondence between the action-tree of a process P and the SLD-NF-tree associated to the
resolution of the initial goal :- execute (P, Beh) in the logic program executor (i.e. the resolution
of executor U { :- execute (P, Beh)}, [L1o84]).

To verify completeness we prove that for every path [11, Wy, ..., Ly, in the action-tree of P there
exists a successful path in the SLD-NF-tree with an answer substitution {[K{, lp, ..., 1] /Beh};

the opposite for correctness.
In the following theorems, we use the notion of total path in a tree, meaning a path starting
from the root and reaching a leaf of the tree.

Def.3.2.1
Let executor be the given program, P a process and G the goal :- execute (P, Beh).

A computed answer substitution © for G is the substitution obtained by restricting the
composition 81....6, to the variable Beh of G, where 61,, 0, is the sequence of mgu’s used
in an SLD-NF-refutation of G.

Theorem 3.2.1 (correctness)
Let executor be the given program, P a process and G the goal :- execute (P, Beh).

For every computed answer substitution 0 = {[\{, ..., ;] /Beh} for G, there exists a (total) path

U1> -» Uy in the action-tree of P.

Proof
Let 9= {[tty, s Hyl /Beh} be the computed answer substitution of an SLD-NF-refutation of G. We have to show
that the actions list Beh 6 = [itq, ..., k]is a (total) path in the action-tree of P. The result is proved by induction
on the length n of the actions list.
i) n=0.
8 = {[]1/Beh} means that SLD-NF-resolution of the goal :- execute (P, Beh) implies the failure of the predicate
solve (trans (P, Act, Pr1)) in the body of the 15t clause of execute and therefore its negation in the body of the ond
clause of execute succeeds. This fact implies that the process P is a term in normal form according to OPSEM, P
has no transitions and its action-tree is the only root = every path is empty.
ii) The inductive hypothesis is the following : for every computed answer substitution 6 = {[1q, ..., L 11/Beh}
returning an actions list of length n-1 as behaviour of P, there exists a (total) path labelled W, ..., i1 in the
action-tree of P.
Let’s prove this result also for SLD-NF-refutations computing actions lists of length n.
Let6 = {[lq, v Kyl /Beh} be the computed answer substitution of an SLD-NF-refutation of G. Let’s sec how is
this refutation.
Given the goal :- execute (P, Beh) , it is unified with the head of the two clauses of execute. By the 15t clause we
obtain Pr=P, Beh = [Act|Behl] and the new goal is

:- solve (trans (P, Act, Pr1)), execute (Prl, Behl).
By the 20d ¢lause we obtain Pr = P, Beh =[] and the new goal is

-\ solve (trans (P, _, _)).
Resolution of solve (trans (P, Act, Pr1)) doesn’t cause a finitely failed tree, therefore ™ solve (trans (P, _,) fails,
while by the 15t clause resolution binds the variable Act to the action W1, istantiates ground the variable Prl and
Beh=[u; | Behl]. The current goal is G' = :- execute (Prl, Behl). For hypothesis a computed answer substitution
for Gis © = {[iy, ..., 1,)/Beh} and Beh = [y | Behl], an SLD-NF-refutation of G' computes the answer
substitution 8¢ = {[Lyp, ..., Lyl /Behl1}, binding the variable Behl of G' to an actions list of length n-1. For
inductive hypothesis, in correspondence to 8 ; there exists a path labelled |15, ..., 1, in the action-tree of Prl. But
Prl is bound to P by the relation trans (P, Ly, Pr1), so that the action-tree of P has the action-tree of Prl as subtree,
linked to the root of the action-tree of P by an arc labelled 11 ;.

K1
action-tree of P
2
action-tree
f Prl
of Pr y,
Ho \
It follows that it exists a (total) path labelled [4, ..., 1, in the action-tree of P.

Theorem 3.2.2 (completeness)
Let executor be the given program, P a process and G the goal :- execute (P, Beh).

For every (total) path Wy, .., i, in the action-tree of P there exists a computed answer

substitution 6 = {[ly, ..., Ly] /Beh} for G.

Proof
Let t be the action-tree of P. We can write t= 23 p,.t; , where t; is the action-tree of the process P; such that the
predicate trans(P, W;, Py) is true. The result is proved by induction on the length n of any path in the action-tree.

i) n=1.

Let’s consider a (total) path of length 1 of t, like p'.t", where t' is the action-tree (consisting of the only root)
corresponding to a process in normal form. There exists an SLD-NF-refutation computing the answer substitution 0
= {[1'] /Beh} and it is exactly the refutation corresponding to the application of the 15t clause of execute, by which
we obtain Act=p', Beh=[i' | Beh'], and then the application of the 20d clause of execute, where Prl is a process
in normal form.We obtain Beh' = [] and therefore Beh = [p1'].

ii) The inductive hypothesis is the following : for every (total) path i, ..., w1 of the action-tree of a process
P of length n-1 there exists a computed answer substitution 6 = {[l{, ..., i;_1]1/Beh} for the goal

G = :- execute (P, Beh). Let’s prove this result also for paths of length n.

We consider a (total) path of length n in the action-tree t of P labelled ukl 5 eees W k'

uk/ tx
N\ M

The subtree iy is the action-tree of a process Pk1 such that trans (P, 1y X Pkl) is true. Therefore in the SLD-NF-

tree corresponding to the goal G = :- execute (P, Beh) there exists a path, where the 15t clause of execute is applied
obtaining the following bindings by resolving solve (trans (P, Act, Pr1)):

Act= Hkl Prl = Pk1 Beh = [uk1 ! Behkl] ™)

and the new goal G' = :- execute (Pkl’ Behkl) with Pk1 istantiated ground. For hypothesis the action-tree tkl of

Py, contains a path [0 ukn of length n-1 and for inductive hypothesis in correspondence to this path there

1
exists a computed answer substitution 8 1 of an SLD-NF-refutation of G' such that € = {[1) g7 e p,kn] /Behkl},
so that we obtain Beh = [ukl, ukz, e ukn] in (¥*).

It follows that there exists an SLD-NF-refutation for G = :- execute (P, Beh) computing an answer substitution

8 = (i, - My] /Beh).

Let us add some comments on the correspondence between action-tree and SLD-tree.
1. Since we are considering finite CCS, it follows that the action-tree of any process P is a finite
tree. That is also true for the SLD-tree corresponding to the resolution of executor U { :- execute
(P, Beh)} : its paths are either successful or failure, there are no infinite paths, because, according
to the definition of the predicate trans, a process P always evolves into a process P' # P.

Therefore, it never happens that the same rules (transitions) are applied more than once for the
same process.

2. The correspondence shown in the previous theorems is defined between action-trees and SLD-
trees modulo failures, i.e. it is a correspondence between (total) paths in the action-tree and
successful paths in the SLD-tree.

3. Non-determinism in the action-tree t of a process P is entitery preserved in the corresponding
SLD-tree. Choice points in t correspond to occurrences of the operators + and | in P (in the action-
tree | is expressed in terms of +). To these choice points there correspond nodes in the SLD-tree
labelled by goal like :- solve (trans (sum (.., ..), .., ..)) or :- solve (trans (par (.., ..), .., ..)),
whose resolution, by using clauses for summation and parallel composition, implies, in
correspondence to the (partial) paths of t leaving from such choice points, successful SLD-paths.

4 . Executing observational equivalences

Let us consider behavioural equivalences and let us examine what can be obtained by their
execution. In this report we deal only with OBS.EQ., but the approach followed and the strategies
developed can be immediately extended to other behavioural equivalences (notably testing
equivalence).

Our approach in proving the congruence or equivalence of processes distinguishes itself from
other approaches in literature by dealing with equivalences as schemes of axioms. In other
approaches ([BS87], [KS83], [Ver86]) CCS processes are modelled by means of finite state
automata and the behavioural congruence is decided by algorithms on automata.

In [KS83] and [BS87] the behavioural congruence of two processes P1, P2 is decided by
reducing it to a partitioning problem on the states of the automata modelling P1 and P2. A similar
algorithm is proposed in [Ver86], where the author considers a notion of reduction of an automata
modulo behavioural equivalences (particularly OBS.EQ.), but the behavioural congruence of two
processes P1, P2 is decided by using an algorithm based on the construction of a relation, called
equipollence, according to which the states of the two automata for P1 and P2 are again
partitioned in classes. P1 and P2 are congruent if at the end the initial states of the two automata
belong to the same class.

In [Ver86] it is claimed that the implementation of several strategies of verification of process
behaviour is easier by using algorithms on automata than by using equational theory. On the
contrary our aim is to show that by means of an equational approach it is possible to define several
strategies in a modular and flexible way.

Executing OBS.EQ. consists in computing a reduced form of a process according to these
equivalences and deciding the observational congruence of two finite CCS processes. The

10

congruence can be decided by reducing both processes according to OBS.EQ. and then by
comparing the reduced forms. It is useful to point out that, while the inference rules of OPSEM are
directly translated into Horn clauses (section 3.1), the translation of equivalences into rewrite rules
and then into Horn clauses must be performed preserving the completeness of equational
deduction.

4.1. From equivalences to rewrite rules

We refer to the theory of observational congruence of finite CCS given in section 2, where E1.-

E4 are the algebraic laws of summation, E5.- E7. are the T laws and E8.- E14 define relabelling,
restriction and parallel composition in terms of the other operators NIL, prefix and summation.

In the following, we assume a restriction on the structure of the processes composed in parallel
in E14. This is done in order to make the resulting executable logic program more intellegible. This

restriction is in practice easily recovered in [Nes88]. Therefore, if X, Y € Tzl, where

21 = {prefix, NIL} is a signature on the sort of atomic actions, we have terms X | Y where
X=u1.X1,Y=v1.Y], U, vy € Au {1t} and X1, Y€ Tzl.

The OBS.EQ. theory is equational-conditional and therefore an algorithm based on narrowing,
called CNA ([Hus85]), can be applied to the rewriting system equivalent to the OBS.EQ. theory, not
only for solving equations modulo OBS.EQ., but in particular for reducing a term to normal form
according to OBS.EQ. On the other hand, flattening ((BGM87]) allows SLD resolution to simulate
narrowing, if the rewriting system, which flattening is applied to, is canonical. The application of
the completion algorithm ([HO80]) to OBS.EQ. fails because of the commutative property for
summation. Instead of using extensions of the completion algorithm in order to treat permutative
theories, we divide the OBS.EQ. theory in two subtheories : the subtheory Eqrewrite formed by
ES8.- E14. and the subtheory Eqgymt = Eqgum+ Eqy, where Eqgyyy, is formed by E1.- E4. and Eq,
by the t laws E5.- E7.

The equivalences in Eqgewrite are applied to the symbolic term representation as rewriting rules
directed from left to right in order to rewrite a CCS term t into an equivalent term t', with no

occurrence of relabelling, restriction and parallel composition, i.e. t' € Ty where X = {sum,
prefix, NIL} is a signature on the sort A U {t}.
On the contrary the equivalences in Eqgym4r can’t be applied to the symbolic term

representation, but a new representation easy to work out and abstracting from subterms order is
needed.

Splitting the OBS.EQ. theory implies splitting term reduction in two phases : a 15t phase in

which every term is reduced according to Eqgeyrite and a 27 phase in which the term output of the
18t is reduced according to Eqgymr-
Note that defining T - laws in a separate theory is a step towards modularity in our environment, in
fact in order to introduce testing equivalence it is enough to define the corresponding T - laws
theory. We recall that testing equivalence axioms differ from observational exactly with respect to
T - laws.

11

4.2. The 15t phase of reduction : application of the equivalences EqRrewrite
4.2.1. Completeness of the 1St phase

The rewriting system obtained by directing the equivalences E8.- E14. of Eqrewrite from left to
right is confluent and noetherian. This fact can be verified by applying the completion algorithm
to the subtheory EqRrewrite- HOWever this system doesn’t ensure that, given a term t, the normal
form t' of t according to EqQRrewrite 18 Such that t' e Ty.

Ex. 3

Given the term P = aNIL | a~.NIL , by applying the rule obtained by directing E14. we have the following
rewriting step: P — (a.(NIL { a= .NIL) + a—.(a.NIL I NIL)) + t.(NIL I NIL) = P".
P' is a normal form according t0 EqQrewrite. Decause neither E14. (the conditions on the structure of the terms in
parallel are not satisfied) nor any other rule is applicable, but P' ¢ Ty.

Given a term t containing occurrences of relabelling and restriction operators, the rules ES.-
E10. for relabelling and E11.- E13. for restriction ensure that rewriting t according t0 Eqrewrite
results in a term with no occurrence of such operators. This result is false as regards the parallel
composition, because E14. is applicable if X and Y are summations of prefixed processes and it
isn’t explicitly stated how a term X | NIL or NIL | X can be reduced. In order to ensure that the
rewriting of a term t according to Eqrewrite results in a term t' with no occurrence of parallel

composition, and therefore t' € Ty, it is necessary to insert some equivalences corresponding to

the rerminal cases of parallel composition, as for relabelling and restriction. Assuming the
simplification hypothesis on the structure of the arguments of the parallel composition operator and
considering that the commutative property is not available as a rewriting rule, the new added
equivalences are :

El4, wXINL=p.X
El4.s NIL|p.X=p.X
El4.q NILINIL = NIL

Going back to Ex.3 and by applying the rules obtained by directing these last equivalences
from left to right, P' is reduced to the normal form of P according to EqRrewrite

(aa” NIL +a~.aNIL) + TNIL € Ty .

E13. and E14. can be written as follows :

E13.,4 (o.X N0 = NIL

E13.o (o™ XN = NIL

El3.3 WX N = (X)) if w0, L#0o

El4,4 WX " Y =@ lpm Y+ p . @X Y + Xy 1Y)

Eld.y WX Y =@ . K Y+ X YD) + (X1 1Y)

El4.; WXy lv.Y =Xy v.Y) +v.uXy 1Y) ifusv., veu

12

Hence, the equivalences defining relabelling, restriction and parallel composition in terms of
NIL, prefix and summation are E8.- E12., E13,; i=1,2,3 and E14.J' i = 1,.,,6, still called
Eqrewrite- We have the following result :

Prop.4.2.1
The rewriting system Rgewrite Obtained by directing the equivalences Eqrewrite from left to rigth is
canonical.

We can prove this proposition by applying the completion algorithm to Eqgeyrite and this result
permits to assert that rewriting according to the rules of Ryewrite 1S complere wrt equational
deduction in Eqgrewrite-

4.2.2. Translation of Rpewrite into Horn clauses

Let us consider the translation into Horn clauses of the canonical rewriting system Rgewrite
equivalent to the subtheory Eqrewrite-

4.2.2.1. The flattening procedure

In this section we shortly introduce flattening.

Given an equational theory E and an equivalent (canonical) rewriting system R, an E-
unification algorithm based on narrowing allows to compute the complete set of E-unifiers of two
terms t1, tp ([HO8O0], [Hul80]). Since the narrowing relation includes the rewriting relation, the
algorithm based on narrowing can be also used for rewriting a term into its normal form according
to R. On the other hand, flattening allows SL.D-resolution to simulate narrowing ((BGM871), thus
allowing a term to be reduced to normal form according to R by using Horn clauses.

Flattening is applied to a canonical rewriting system R describing an equational theory E, thus
deriving a logic program Ry, and to every equational goal t1 = tp. In [BGMS87] it has been
shown that SLD-resolution of the flattened version of t] = tp in Rfjat U {Xx = x} is correct and
complete wrt the E-unification algorithm based on narrowing.

The version of the flattening procedure we use is that one in [BGM87] with a further test
distinguishing terms formed only by data constructors, for which we don’t introduce new
variables. Below it is its procedural presentation.

flat (y — &) = if § is a variable {also occurring in) or & is a data constructors term

then y=20
else y=1z :- flatterm (3, z) /* z is a new variable */

flatgoal M = N) = flatterm (M, z), flatterm (N, z)
flatterm (£ (M1, ..., Mp), z) = flatterm (Mil’ X1), ..., flatterm (Miq’ xq), f(z1, wnzp =2

where Mil’

and z;=M; ifM; is a variable

, Miq are non-variable arguments of f

zj = X if Mj is Mik .

13

4.2.2.2. Translation of Rrewrite

Let P be a term to rewrite and eq_rewr (X, Y) a binary predicate meaning “X rewrites as Y”, by
which we translate the rewriting rules. In order to obtain the normal form F, € Ty of P
(according to Ryewrite)» the rules of Rpewrie must be applied to every reducible subterm of P.
Thus a flattening procedure must be applied to Rgeyrite and P.

Flattening is applied to Rgeyrite Once and for all; below the flat version of the rules according
to the Quintus Prolog syntax is reported. The term P to rewrite must, instead, be flattened
dynamically, i.e. each time a process has to be reduced. We implement the subprocedure flazterm
in the flattening procedure with a binary predicate rewrite, which is defined by cases on the
outermost term operator; it works as flatterm and has the same arguments.

Goals are like :- rewrite (P, Fp) .

The logic program first_phase (reported below) implementing the 15t phase of the reduction of
a finite CCS process is obtained by the definitions of eq_rewr, apply and rewrite.

eq_rewr (relab (nil, _), nil) .
eq_rewr (relab (sum (X, Y), S), Z) :- eq_rewr (relab (X, S), Z1), eq_rewr (relab (Y, S), Z2),
eq_rewr (sum (Z1,722),7Z) .
eq_rewr (relab (prefix (Act, X), S), Z) :- apply (S, Act, Actl), eq_rewr (relab (X, S), Z1),
eq_rewr (prefix (Actl, Z1), Z) .
eq_rewr (restr (nil, _), nil) .
eq_rewr {restr (sum (X, Y), Act), Z) :- eq_rewr (restr (X, Act), Z1), eq_rewr (restr (Y, Act), Z2),
eq_rewr (sum (Z1,72),Z) .
eq_rewr (restr (prefix (Act, _), Act), nil) .
eq_rewr (restr (prefix (compl (Act), _), Act), nil) .
eq_rewr (restr (prefix (Act, X), Actl), Z) :- Act\== Actl, Act\==compl (Actl),
eq_rewr (restr (X, Actl), Z1) , eq_rewr (prefix (Act, Z1), Z) .
eq_rewr (par (prefix (Act, X), prefix (compl (Act), Y)), Z) :-
eq_rewr (par (X, prefix (compi (Act), Y)), Z1), eq_rewr (par (prefix (Act, X), Y),Z2),
eq_rewr (sum (prefix (Act, Z1), prefix (compl (Act), Z2)), Z3),
eq_rewr (par (X, Y), Z4) , eq_rewr (sum (Z3, prefix (tau, Z4)),2) .
eq_rewr (par (prefix (compl (Act), X), prefix (Act, Y)), Z) :-
eq_rewr (par (X, prefix (Act, Y)), Z1) , eq_rewr (par (prefix (compl (Act), X), Y), Z2),
eq_rewr (sum (prefix (compl (Act), Z1), prefix (Act, Z2)), Z3),
eq_rewr (par (X, Y), Z4) , eq_rewr (sum (Z3, prefix (tau, Z4)),Z) .
eq_rewr (par (prefix (Actl, X), prefix (Act2, Y)), Z) :-
Actl == compl (Act2), Act2\==compl (Actl),
eq_rewr (par (X, prefix (Act2,Y)),Z1), eq_rewr (par (prefix (Actl, X), Y), Z2),
eq_rewr (sum (prefix (Actl, Z1), prefix (Act2,722)), 7).
eq_rewr (par (nil, prefix (Act, X)), prefix (Act, X)) .
eq_rewr (par (prefix (Act, X), nil), prefix (Act, X)) .
eq_rewr (par (nil, nil), nil) .
eq_rewr (X, X).

14

apply ([1, Act, Act) .

apply ([Act/ Actl | _], Actl, Act) .

apply ([Act/ Actl | _], compl (Actl), compl (Act)) .

apply ([_/ Act2 | S], Actl, Act) :- Actl\== Act2, Actl \==compl (Act2), apply (S, Actl, Act) .

rewrite (nil, nil) .

rewrite (prefix (Act, Prl), Pr) :- rewrite (Prl, X), eq_rewr (prefix (Act, X), Pr) .

rewrite (sum (Prl, Pr2), Pr) :- rewrite (Pr1, X1), rewrite (Pr2, X2), eq_rewr (sum (X1, X2), Pr) .
rewrite (relab (Prl, S), Pr) :- rewrite (Prl, X1), eq_rewr (relab (X1, S), Pr) .

rewrite (restr (Prl, Act), Pr) :- rewrite (Pr1, X1), eq_rewr (restr (X1, Act), Pr) .

rewrite (par (Prl, Pr2), Pr) :- rewrite (Prl, X1), rewrite (Pr2, X2), eq_rewr (par (X1, X2), Pr) .

Prop.4.2.2

Given the logic program first_phase, let P be a process and G a goal :- rewrite (P, Fn).

The process P', returned in Fn by the answer substitution corresponding to the leftmost path of the
SLD-tree of first_phase U { :- rewrite (P, Fn) }, is the normal form of P according to Eqreywrite
(correctness).

Vice versa, if the process P has normal form P' according to Eqreyrises P' is Teturned in Fn by the
answer substitution corresponding to the leftmost path of the SLD-tree of first_phase U { :- rewrite
(P, Fn) } (completeness).

Proof

We assume the standard Prolog computation rule (selecting the leftmost atom of goal) and depth-first strategy.

The transformation due to flattening is correct and complete ((BGM87]) and the predicate rewrite (P, Fp) is equivalent
to flatgoal (P = Fp).

Because of flattening each time the rules of RR ey rite are applied to solve a predicate eq_rewr (op (X1, X9), Xy), the
arguments X1, Xy are in reduced form and, since the clauses of eq_rewr are mutually exclusive (except with identity
eq_rewr (X, X)), at most only one rule of RRewrite 18 applicable (besides identity, always applicable).

Since identity is the last clause of the definition of eq_rewr, the SLD-tree built and visited according to the fixed
strategy corresponding to the goal :- rewrite (P, Fy), has at most two branches leaving from each node
(corresponding to a goal like :- eq_rewr (op (X1, X2), Xi) , ---» gq), where the branch on the left corresponds to
the application of the only applicable rule of Rpeyrite (f it exists) and the one on the right corresponds to the
application of identity (it always exists).

SLD-resolution and therefore rewriting terminates when :

i) the goal is like :- eq_rewr (P', Fy))

if) the only applicable clause is identity.

It follows, by construction, that the process P', returned in F;) by the answer substitution corresponding to the
leftmost path of the SLD-tree of first_phase U { :- rewrite (P, Fy) }, is the normal form of P (correctness).
Analogously, by construction, it holds that for every process P with normal form P’ (according to EqRrewrite): P' is
returned in Fy; by the answer substitution corresponding to the leftmost path of the SLD-tree of

first_phase U { :- rewrite (P, Fp,) } (completeness).

15

4.3.The 27d phase of reduction : application of the equivalences Edgum+1

Let us consider the 27 phase of term reduction, in which the equivalences Eqgym.r are applied
to the process P' e Ty, returned by the 15t phase. Because of the problems arising in applying
Eqsum+r to the symbolic term representation, we adopt another kind of representation for a CCS
term of Ty. We choose to use the action-tree of a process, because it is characterized by lack of

parenthesis and order : a different order of summands of a term means a different order of the
subtrees corresponding to these summands, but no particular meaning is given to subtrees order
and therefore no problem of order arises in applying the rules obtained by directing Eqsumsr- For
applying a rule r we have to visit the action-tree and verify the existence of the subtrees
corresponding to the subterms of the left side of r, indipendently from their position both in the
action-tree (as regards subtrees) and in the left side of r (as regards subterms). If this verification
succeeds, we can apply the reduction defined by r by deleting a subtree or a branch according to r.
Hence, the equivalences Eqgym4q become equivalences between action-trees, called Eqyree,
allowing to reduce an action-tree t' to another equivalent tg,.

The 27d phase of reduction to normal form of a term P divides into the following 3 steps :
1. given the process P' output of the 18t phase of reduction, P' is represented by means of its
action-tree t';
2. t isreduced according to the equivalences Eqy, Obtaining a reduced action-tree tg, ;
3. by the opposite transformation, the process Pg, , @ normal form of P according to the full
observational theory OBS.EQ., is derived from tg,.

4.3.1. Implementation of step 1. of the 2nd phase

Given a process P' = 2, 1;-Pj , we implement its action-tree, having n subtrees, by means of a
list of n records {L;, Lj} with 2 fields :
— the I8t field is the action ; prefixed to the term P;;
— the 27d field is the /isz L; implementing the subtree t;, action-tree of p;.
impl () = [{K1, L1}, .oy {1y Lids oo {p, L}
The transformation of a process P'e€ Ty, from its symbolic representation into its action-tree

is defined by an appropriate bynary predicate tree which, given a term in Ty, builds the list
implementing the action-tree of the process.

4.3.2. Implementation of step 2. of the 2nd phase
Note that the application of the commutative property on an action-tree simply changes the

order of its subtrees, while the application of the associative property leaves the action-tree
unchanged. Hence, Eqy,., becomes:

EQuee = {(X+ X=X, X+1X=1X,LtX=pX, L.X+.Y) = u.X + T.Y) + uY }.

The associative property and the existence of a neuter element for summation are deleted because:

16

— the application of the associative property has no effect on an action-tree ;
— X+NIL =X is implicitly applied during step 1. of the 20d phase.

The commutative property isn’t in Eqye, (in the clauses translating the reduction according to
Eqyree there will be no clause for the commutative property), but its application is simulated by
means of a test of equality modulo the summands order.

The equality of terms modulo the summands order introduces the notion of sumcongruence. It
has been proved in [Mil84a] and [HMS85] that every finite CCS term has a normal form according
to the observational theory OBS.EQ., normal form unique modulo the summands order. Different
normal forms of the same term are called sumcongruent.

Since we are using action-trees to represent processes, we define the notion of sumcon gruence
for action-trees : note that the sumcongruence between action-trees is defined only in terms of the

commutative property because the application of the associative property has no effect on action-
trees.

Def.4.3.1 (sumcongruence of action-trees)

Two action-trees t1, t) are sumcongruent, t] ~g tp , if it is possible to derive t] =ty by
applying the commutative property, i.e. by performing appropriate exchanges of subtrees in t1 and
.

Sumcongruence, i.e. equality of trees modulo their subtrees order, is obtained by verifying
that the subtrees of an action-tree are also subtrees of the other one and vice versa, independently
from the order; this is done using a predicate sumcongr.

By applying the completion algorithm to Eq¢ree, we can show that an equivalent rewriting
system R is the following :

R={X+X->X,X+1tX 21X, utX 5 X, LX+ 1Y) + .Y - X +1.Y)}.

The clauses translating the rules of R are, thus, the following :

equiv ([X IL], [X1L1]) :- member_el (X1,L), sumcongr ([X], [X1]), delete_el (X1,L,L1).
equiv (L, L1) :- member_list (Lx, L) , member_el ({tau, Lx1},L), sumcongr (Lx, Lx1), delete_list (Lx, L, L1) .
equiv ([{Act, [{tau, L}1}1, [{Act,L}]) .
equiv (L, L1) :- member_el ({Act, Lxy}, L), member_el ({Act, Lyl}, L), member_list (Lx, Lxy),
member_el ({tau, Ly}, Lxy) , sumcongr (Ly,Lyl), delete_list (Lx, Lxy, L2),
delete_el ({tau, Ly}, L2, [1), delete_el ({Act,Ly1},L,L1).
equiv (L,L).

reduce (1,ID.
reduce ([{Act, L}],X) :- reduce (L,L1), equiv ([{Act,L1}],X).
reduce ([X1L],L2) :- D\==[1, reduce ([X], [X1]), reduce (L,L1), equiv ((X11L1],L2).

The identity clause equiv (L, L) is applied when there are no more reductions; member and
delete are auxiliary predicates for elements and for lists. The predicate reduce implements

17

flattening on the action-tree ensuring the application of reductions to every reducible subtree.

Obs.1

Except for the clause translating the rule p.7.X — [L.X , in the previous logic program we can’t
take advantage of the power of unification between goal and clause head. That is due to the
representation which abstracts from subterms order, therefore in order to apply reductions we
don’t search for an exact pattern to unify, but we must examine the components of such pattern in
the action-tree by means of tests in the clause body . That also explains why we don’t apply
flattening to the rules of R.

Obs.2
Flattening applied to the action-tree t', which has to be reduced, implies a bottom-up visit of the
tree, 1.e. reductions are executed starting from the leaves up to the root and from left to rigtht.

4.3.3. Implementation of step 3. of the 20d phase

Step 3. consists of the opposite transformation : the action-tree tg,, obtained by means of
reductions at step 2., is transformed into the process it represents by a binary predicate rerm,
whose first argument is a list, while the second one is a term of Ty,

Going back to the symbolic term representation with summation defined as binary operator, it
is necessary to establish its associativity, i.e. parenthesis position. By following Prolog list
definition, we assume the associativity to right and therefore we choose a determinate
representation of normal forms modulo the associative property.

4.3.4. Normal form of a process

The three steps of the 274 phase, previously examined, are packed together in the following
clause that defines the predicate fn :
fn (P, Pfn) :- wee (P, P_wree) , reduce (P_tree, Tmin) , term (Tmin, Pf) . (¥%)

Thus issuing the goal :- fn (P', Pfn) allows a reduced form of the process P', according to the 20d
phase of reduction, to be returned in Pfn.

We call second_phase all logic programs implementing the 274 phase of process reduction.

As usual we assume an SLD-tree according to standard Prolog computation rule and depth-first
strategy.

Prop. 4.3.1
Let P' € Ty be a process. The answer substitution related to the leftmost path of the SLD-tree

corresponding to second_phase U {(**)} U { :- fn (P', Pfn)} returns in the variable Pfn a
normal form of P' according t0 Eqee-

Proof

Resolution of the goal :- fn (P, Pfn) implies, for (**), the resolution of the predicates tree, reduce and term. Tree
and term are deterministic, therefore the result of their resolution is unique (only one successful path). Reduce

18

implements flattening as rewrite (which is correct and complete, section 4.2.2) and applies reductions by means of
the predicate equiv. Because of flattening the subtrees corresponding to the subterms argy, argy of op (argy, argy),
whose action-tree is currently reduced, are always in normal form.

The four rules of R are mutually exclusive, therefore on the action-tree corresponding to op (argy, argy) at most one
is applicable, besides identity equiv (L, L), last clause of equiv and always applicable. It follows that along the
leftmost path in the SLD-tree of second_phase U {(**)} U { :- fn (P, Pfn)} the applicable reductions are applied,
otherwise identity is applied.

When there exists no more rule to apply (the action-tree is in normal form), the leftmost path is closed by applying
identity, thus returning in Tmin an action-tree in normal form according to Eqypeq; the other paths, where identity is
applied when it is still possible to reduce, return action-trees not reduced in normal form.

Therefore, given a process P, a normal form Pfn is computed by solving the goal
- normal_form (P, Pfn)
where normal_form is the predicate applying in sequence the two phases of reduction on P
according to the following definition :
normal_form (P, Pfn) :- rewrite (P, P, fn (P, Pfn) .

4.3.5. Observational congruence of processes

In order to decide the observational congruence of two processes P1, Pp we can apply
reduction to both of them and, after having obtained the action-trees tg,1, tgpp in normal form
according to Eqypee, We can verify their equality modulo subtrees order, i.e. their sumcongruence,
according to the following definition :

Def.4.3.2 (observational congruence of action-trees)
Two action-trees t1, ty corresponding to the terms P1, Py € Ty are observationally congruent,

t] =c tp, if there existaction-trees tgmj, tgyp such that:

1)t

E3 Ed
> tfnl and tp ----—) tno
Eq tree Eq tree
i) tgp and tgyp are in normal form according t0 Eqree

i) tpy =s U2 -

Hence, step 3. of the 21d phase of reduction is replaced by a test on sumcongruence of the two
action-trees obtained. Step 3. becomes :
3", verification of sumcongruence of tg,; and tgg -

Step 3'. is translated into clauses by the predicate osscongr, which, given two processes P1
and Py as inputs, returns “yes” if the processes are observationally congruent according to the
following definition :

osscongr (P1, P2) :- rewrite (P1, X1), rewrite (P2, X2) , tree (X1, T1), tree (X2,T2),
reduce (T1, Tfnl) , reduce (T2, Tfn2), sumcongr (Tfnl, Tin2) .

19

The definitions of osscongr and normal_form can be put together in order to create a logic
program reduction which, together with the other programs first_phase and second_phase, starts
reduction by solving goals

:- osscongr (P1, P2)
or

- normal_form (P, Pfn)
if we want to verify the observational congruence of two processes or compute a normal form of a
process according to OBS.EQ.

5. Observational equivalences of finite CCS and recursion : a verification method
for observational equivalence of processes

In this section we show how it is possible to use the so far defined theories to build a specific

verification method. Such a method will, then, be applied to an interesting case, the scheduling
problem.
The method is based on a proof technique introduced in [Mil80] and it allows recursion in CCS
processes to be managed. To a certain extent the method is an example of the way a user can build
his own strategy also in the direction of providing functionalities not supported by the kernel
system. In this case it introduces the ability to manage recursive processes, without having
provided any rule for recursion either in OPSEM and in OBS.EQ. As a matter of fact, the strategy we
present realizes at user level something very similar, in the essence, to what has been done to
extend the kernel theories of finite CCS to CCS with (bounded) recursion.

5.1. The verification method

Let E1, E2 be two expressions. The verification method verifies the observational
congruence E1 = E2 trying to derive E2 from E1 : it applies, preserving the congruence at each
step, steps of reduction modulo OBS.EQ. and steps of replacement of subexpressions with
identifiers, by which it tries to manage recursion in order to prevent infinite rewritings.

The strategy adopted in [Mil80] is the following : E1 is rewritten by replacing each identifier
X with the expression E bound to X by the rec operator (one step unfolding) and then E1 is
reduced according to the 15t subtheory (notably using the expansion theorem, section 2) and the
2nd gybtheory. After each step of reduction it is checked if the intermediate expression, into which
E1 is rewritten, contains subexpressions bound to identifiers or already computed in previous
steps. If it is the case, each of such subexpressions is replaced with the corresponding identifier
(backward replacement). If E2 is derived, then E1 and E2 are observationally congruent; otherwise
a new step of recursion is applied by replacing identifiers with bound expressions.

The verification method based on this strategy is correct.

5.2. Implementation of the verification method by Horn clauses

The verification method is realized by using OPSEM and finite CCS OBS.EQ. We rely on the
following implementation assumptions:

20

— Every recursive expression rec X.E is equivalently defined by a declaration X = E and every
occurrence of rec X.E in other expressions is replaced by X. Therefore the rec operator is replaced
by the id operator. The binding between X and E is now established by the declaration X = E : it
introduces a notion of environment, containing only couples <identifiers X, expressions E>
denoting rec X.E.

— Because the implementation of the equivalences corresponding to parallel composition in the
case of general structure of processes in parallel is heavy, our implementation replaces reduction
according to the 15t subtheory, notably the application of the expansion theorem, by the execution
of OPSEM, whose logic program is independent of process structure, thus performing an
interaction between OPSEM and OBS.EQ. What we loose is the ability to treat process termination:
OPSEM is incomplete wrt process termination (section 3.1), thus making incomplete our
implementation. This incompleteness can be simply recovered implementing the expansion
theorem.

The strategy we implement resembles Milner’s strategy :
step 1. E1 is rewritten as a summation, Esum, of the expressions obtained by prefixing the first
actions E1 can execute, to the expressions into which it evolves under such actions, thus
simulating a step of its execution.
step 2. We verify if Esum contains subexpressions bound to an identifier in the environment. If
there exist such subexpressions, each of them is replaced by the bound identifier (backward
replacement) obtaining an expression Eint, which is bound to the identifier E1 in the environment.
step 3. Eint is reduced modulo the equivalences of the 274 subtheory of finite CCS Eq, - If Eint
and E2 are congruent, verification succeeds, otherwise the method proceeds by repeating the
previous steps from Eint, until there exist executable actions without replacing an identifier already
replaced.
step 4. Having obtained an expression Eint] not congruent to E2 and from which further actions
are not executable, a new step of recursion is applied by repeating the previous steps from Eint1.

The implemented strategy is correct.

Prop. (correctness)
Let E1, E2 be two expressions. If the steps 1.- 4. above (applied to E1 and E2) succeed, then E1
and E2 are observationally congruent.

In fact, each step of the method rewrites an expression E into an expression E' preserving congruence between E and
E', whether E is rewritten by simulating a step of its execution, or some of its subexpressions are replaced by the

identifiers bound in the environment or E is reduced modulo the equivalences of the ond subtheory.

A data structure (a list of records) is used for representing the environment, in which
observational congruence has to be proved, while the related operations are implemented by
appropriate predicates.

The clauses translating OPSEM are slightly modified in order to deal with the environment, by
introducing it as input and as output parameter of the new predicate trans, thus obtaining a new
logic program called o.s._env.

21

Note that, to preserve modularity we could also decide not to modify the clauses which translate
OPSEM, operating at meta-level, that is writing a metaprogram which takes into account the
environment and then calls the original predicate trans in the object theory. We have seen an
example of this technique in sec. 3.1, and it is extensively used in [Ste85]. For simplicity of
presentation we preferred to remain at object level; the final environment, anyhow, will work at
metalevel.

Here we report only the clauses implementing the strategy :

oss_eq (El, E2, Env) :- deriv (E1, I, Env), verify (El, I, Env, Eint, Envl) , equival (Eint, E2, E1, I, Envl) .
deriv (E, I, Env) :- bagof ({Actl, E1, Envl}, trans (E, Actl, E1, Env, Envl), I).
deriv (E, I, Env) :- ™ trans (E, _, _, Env, _), re_init (Env, Envl), deriv (E, I, Envl).
verify (E1, I, Env, Eint, Envl) :- costr_sum (I, Esum) , pattern (Esum, Eint, Env) , bind (E1, Eint, Env, Envl) .
equival (E1, E2, _, _,) :- tree (El, T1), tree(E2, T2), reduce (T1, Tlmin), reduce (T2, T2min), sumcongr
(Timin, T2min) .
equival (_, E2, E1, I, Env) :- esec (El, I, L, Env), verify (E1, L, Env, Eint, Env1), equival (Eint, E2, E1, L, Env1l).
esec (E, [{Actl, [{Act2, 12, Env2]} | L2], Envl]} IL1], [{Actl, Lres, Envl} | Lres1], Env) :-

esec (E, [{Act2, 12, Env2} | L2], Lres, Env), esec (E, L1, Lresl, Env) .
esec (B, [{Actl,E1, Envl} IL1], [{Actl, I1, Envl) I L2], Env) :- deriv (El, I1, Envl), esec (E,L1,L2, Env).
esec (L, [1[D.

Let Dec be a sequence of declarations, E1 an identifier and E2 an expression : we want to verify the
observational congruence of E1 and E2 in the environment defined by Dec. The goal is :

:- input (Dec, E1, E2)
and it is solved by the following clause for input, that builds the initial environment defined by
Dec and starts verification :
input (Dec, E1, E2) :- env (Dec, Env) , oss_eq (El, E2, Env).

Comments
stepl :

oss_eq (E1, E2, Env) is solved by computing transitions from E1 by means of the Quintus
Prolog predicate deriv and E1 is rewritten as summation of the executable actions Act; prefixed to
the reachable expressions Ej.
step2 :

The predicate verify verifies if the expression obtained by rewriting E1 as summation of
Act;.Ej can be rewritten by replacing some of its subexpressions by identifiers bound to them in
Env.
step3 :

The predicate equival verifies if Eint is observational congruent to E2 by transforming both
expressions into their action-trees and then reducing them modulo subtheory Eqe. In order to
execute this reduction the program second_phase is used. If the expressions aren’t congruent, the
15t clause of equival fails and the previous steps are repeated from Eint by using the 27d clause.
step4 :

When there are no more transitions, the 15t clause of deriv fails and a new step of recursion is

22

applied by using the 27d clause, starting again to compute new transitions by means of deriv in the
initial environment.

We call verification the program formed by the clauses implementing the strategy and the clauses
for operations on environment.

5.3. An example: the scheduling problem

Let us consider an example of application of the verification method, the scheduling problem
proposed in [Mil80].

Let P1 and Pp be two processes performing a certain task repeatedly. We want to design a
scheduler to ensure that P1 and P perform the task in rotation, starting with P1. We assume that
P1 and Py begin the execution of task in rotation, without constraining their performances to
exclude each other in time, while each process cannot initiate its task before completing its previous
execution.

Let us suppose that P; requests initiation by executing the action aj € A and signals completion
with the action bje A,i=1, 2. Let A be {a1, ap} and B {by, bp} . The scheduler Sch

communicates with P1 and P> by means of channels of sort aj, bj, therefore Sch has sort A= U B~

={a17, a7, b1, b7}

The scheduler is obtained linking 2 elementary identical components (because we consider 2
processes), called cyclers, and a component starter starting the scheduler.

A generic cycler C and the starter S can be represented graphically as it follows :

Our scheduler Sch for processes P1 and Py is represented as it follows :

where cyclers C1 and Cy are obtained by relabelling generic cycler C in an appropriate way :
C1 =CJay/a, by/b, g1/g.g2/d]

Co = Clap/a, bp/b, go/g, g17/d]
and Sch is given by
Sch=(SI1C11CoNg1\e2
i.e. starter and cyclers are composed in parallel, communicate by using channels of sort g1, g2,

23

which are then hidden by restriction (this last operation hides the actions g1, g1, g2, g2~ in the
graph of Sch).

Let us describe the behaviour of the components of Sch :
— the starter S starts the scheduler by enabling the 15t cycler C; by the action g1~ and then

terminates. Therefore S =gj~.NIL.

— each cycler C works repeatedly :

1. itis enabled by the predecessor cycler by means of syncronization on the channel of sort g (at
the beginning it is the starter to enable the successor cycler, but always using the same channel of
sort g);

2. itreceives initiation request from P by executing a™;

3. itreceives termination signal from P by executing b~ and then it enables the successor cycler by

the action d or executes these two actions in the reverse order; then goto step 1.
Hence, a generic cycler C is defined as :

C=ga . (b7.dC+db".C).

We want to prove that P1 and P) begin their task in rotation from Pj. We express this
constraint by working on sequences of actions a, b, by which processes request initiation and
signal completion to the scheduler. This constraint on rotation is satisfied if, given any sequence of

actions in (A U B)*, deleting all occurrences of by, by (signaling task completion) the sequence
becomes (aj.ap)*, where a1 before aj expresses rotation from Pj. In other words we can also say
that, given Sch and absorbing all syncronizations of sort b, the result is observationally equivalent
to the sequence (a]~.ap7)*.

Let s be a non-empty sequence of A*, s* is the behaviour given by s* = s.(s*) .

Let t be a term with sort L and a € L, the action a is absorbed by obtaining the new term (ta*)\a.

If we consider Sch and absorbe all actions bj™, bp™ by syncronizations of sort b, all the
observable actions are aj—, ap” in sequence. We prove that this sequence is observational

equivalent to (a1~.ap™)*, where the latter expresses the fact that P1 initiates rotation. Hence, we
prove :

(Sch | (b1* Iby®)\bp\by = (ag—.ap~)*.

In this case we are interested in proving observational equivalence and not congruence, therefore

we add the equivalence 1.X = X, distinguishing observational equivalence from congruence, to the
theory Eqee, Obtaining a new theory Oss_eq and a new program oss_eq by adding the following
clause to second_phase :

equiv ([{tau, L}, 1)
where the list L implements the action-tree of the process X.

Let us introduce a new identifier Sch' and the declaration

24

Sch'= (Sch I (b1* | b2*)N\b1\by .
We prove that Sch’ satisfies the definition equation of (a;"ay™)*, i.e.

Sch' = aj~.ap™.Sch' *)

Before applying the verification method, following [Mil80], we rewrite Sch' by means of some
properties of CCS operators :
Sch' = (Sch | (b1* 1 by*)Nb1\by

=((S1C1I1CN\g1\g2 1 (b1* I b2*)\b1\by

= ((S1C11CY) 1 (b1* I by*Ng1\eo)\by\by

= (S 1(Cq Ib1*) 1(Cp I bp*)N\g1\ga)\b1 by

= (S 1(C1 151%) 1 (Cy 1 by*)\g g b\by

= (S 1(Cq1 I'b;*)1(Cy 1 by*)NbNbo\g e

=(S1(Cy Ibp*N\bp 1(Co I by*NboN\g1\2n
and by introducing two new identifiers Ci' with declarations Ci' = (Cj | bi*\b; (i=1, 2)
(where the expression (Cj | bj*)\b; represents the cycler C; with b;~ absorbed) we obtain

Sch'= (S 1 C1"' I CaNg1\gr -

Verification of (*) is developed in two steps : the 15t one proves that C;' is observational
equivalent to an expression containig Cj'itself, while the 20d step, by considering the result of the
18t one, proves (*).

The 15t step :

We prove the observational equivalence Ci' = gj.a;".gi+1~-Ci' , where addition on
subscripts is modulo 2. Let’s prove it fori=1:

C1' = gra17.g27Cr'. **)
The proof starts with an environment with bindings for C1', C1 and for a new identifier X
introduced in order to define the expression b1* according to the declaration X = b1.X..
Therefore, the following goal is solved by using the programs verification, o.s._env and oss_eq :

- input ([C1"= (C1 I XN\Db1), Cy =gj.a17(b17.8". C1 + 22~ b17. C1), X=b1.X], Cy', g1.a17.282~. C1).

The verification method answers “yes” and we can show the intermediate expressions into
which cycler Cq' is rewritten preserving the observational equivalence :

Ci'=g1. (a7 (b17.g2". Cy + g0~ b17. Cp) I XN\by) =g.a17.(b1 7.2~ . C1 + 227 b1 ™. CpIXN\by) =
2181 (g (b7 CLIXNDD + T.((gy™. C1 X0\ b =g1.a17 (g0 7. Cp' + .80 . C1).

The last expression is reduced by T laws and the equivalence (¥*) is proved.

The 214 step :
Let’s prove the equivalence (*) in an environment that contains bindings for the identifiers
Sch', S, Cq1', Cp', where the last two are bound to the expressions obtained by (**). The

25

following goal

;- input ([Sch'= (S 1 C1' 1 Cp)\g1\g2, S = g1~ NIL, C1'=gj.a;—.g07.C1, Co' = gp.ap™.g1~.Cp' 1, Sch,
aj”.ay”.Sch')

is solved by the verification method answering “yes” with the following intermediate expressions :

Sch'=1.((INIL la17.g07.C1' 1 Co' Ng\gp) = T.a;7.(NIL I go~.C1' 1 Co' Ngq\ gp) =

Tay” TANIL 1 Cp'lag™.g17.Co' Ng1\gp) =ta1 ™ Tay .((NIL I C1' I g1 7.Co' Ng1\ go) = T.a1 ™ T.ap™.Sch’
The method applies T laws to the last expression in order to delete both T actions and prove (*).

7. Conclusions and extensions

In this paper we have presented our approach to the implementation of a kernel system to
support execution and verification of CCS processes. The possibility of executing formal
specification has received great attention in the last time. In fact, the execution of a formal
specification can be seen as a first form of verification; when considering concurrent specification
such possibility becomes more and more important being the inherent complexity of the
specification greater. Furthermore no agreement nor experience on the kind of verification or
validation a user would like to perform on his specification has been clearly established.

Thus, in proposing our system, we have followed two main criteria: on the one hand, we
wanted to provide the possibility of executing either the operational semantics as well as
behavioural equivalences of CCS processes, guaranteeing as much as possible the correctness of
our implementation; on the other hand, we wanted to provide a flexible and open-ended system, in
which tools but not policies to perform verification were provided. To this respect the equational
approach to the execution of behavioural equivalences seemed to us the most promising one.

Our aim is, in fact, to provide the user with the possibility of defining and using his own
verification strategies. The division of the observational theory for finite CCS into more
subtheories (but the approach is intended to be extended to other theories like testing equivalence as
well), besides the interaction among such subtheories and OPSEM, is a first step towards an
environment of theories where a user should be able to use them according to different meta-
level-defined strategies, instead of implementing them as an object-level program like in the
program verification.

With respect to facilities, our kernel can be compared with already consolidated systems, like
the Concurrency Workbench Prototype for CCS ([Par86]) and we see that all its facilities can be
also obtained in our kernel, issuing appropriate goals.

Future work consists in : :

- defining a meta-environment and a meta-language allowing the user to define and use his own
verification strategies by applying different theories in a modular and flexible way;

- extending the kernel in order to treat other behavioural equivalences, like resting equivalence,
for which it has been shown a correct and complete system of axioms and possible extension to
general recursive CCS processes;

- providing a sophisticated user interface (eventually graphic) which is of prime importance for a
successful utilization of the environment.

26

References

[BGMS87] Bosco, P.G., Giovannetti, E., Moiso, C. Refined Strategies for Semantic Unification, Proc.
TAPSOFT '87, LNCS 250, Vol.2, Springer-Verlag, (1987), pp.276-290.

[Bol86] Bolognesi, T. Verification of Equivalences between Finite Transition Systems, Theory and
Applications, CNUCE/C.N.R.- Pisa, Internal Report n® C86-16, (December 1986).

[BS87] Bolognesi, T., Smolka, S. A. Fundamental Results for the Verification of Observational Equivalence :
A Survey, Proc. IFIP TC6/WG 6.1, Zurich, North Holland, (May 1987).

[DeN85] De Nicola, R. Testing Equivalences and Fully Abstract Models for Communicating Processes, Ph.D.
Thesis, University of Edinburgh, Internal Report CST-36-85, (1985).

[FGIMS87] Fantechi, A., Gnesi, S., Inverardi, P., Montanari, U. An execution enviroment for the formal
definition of Ada, Proc. ESEC '87, LNCS 289, (September 1987), pp.327-335.

[Gna87] Gnaedig, I. Knuth-Bendix procedure and non deterministic behavior - An example -, Proc. ICALP '87,
Bulletin of the EATCS, No.32, (June 1987), pp.86-92.

[Hen86] Hennessy, M. Proving Systolic Systems Correct, ACM Transactions on Programming Languages and
Systems, Vol.8, No.3, (July 1986), pp.344-387.

[HM85] Hennessy, M., Milner, R. Algebraic Laws for Nondeterminism and Concurrency, Journal of ACM,
Vol.32, No.1, (1985), pp.137-161.

[HO80] Huet, G., Oppen, D.C. Equations and Rewrite Rules : A Survey, In “Formal Language Theory:
Perspectives and Open Problems”, Book R.V.(ed.), Academic Press, New York, (1980), pp.349-405.

[Hul80] Hullot, .M. Canonical Forms and Unification, Proc. 5th CADE, LNCS 87, Springer-Verlag, (1980),
pp.318-334.

[Hus85] Hussman, H. Unification in Conditional-Equational Theories, Proc. EUROCAL '85, LNCS 204,
Vol.2, Springer-Verlag, (1985), pp.543-553.

[KS83] Kanellakis, P.C., Smolka, S.A. CCS Expressions, Finite State Processes and Three Problems of
Equivalence, Dept. of Computer Science, Brown University, Providence, (February 1983).

[Llo84] Lloyd, J.W. Foundations of Logic Programming, Springer-Verlag, (1984).

[Mil80] Milner, R. A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, (1980).

[Mil84a]l Milner, R. Lectures on a Calculus for Communicating Systems, LNCS 197, Springer-Verlag, (1984),
pp.197-220.

[Mil84b] Milner, R. A Complete Inference System for a Class of Regular Behaviours, Journal of Computer and
System Sciences, Vol.28, No.3, (1984), pp.439-466.

[Mil86] Milner, R. A Complete Axiomatisation for Observational Congruence of Finite-State Behaviours, ECS -
LFCS-86-8, (August 1986).

[Nes88] Nesi, M. Un approccio logico-funzionale all’esecuzione di linguaggi di specifica concorrenti (CCS)
modulo equivalenze comportamentali, Tesi di Laurea, University of Pisa, (1988).

[Par86] Parrow, J. Concurrency Workbench Prototype : Operating Instructions, Internal Report, University of
Edinburgh, (November 1986).

[Qui87] Quintus Prolog, User Guide and Reference Manual, Artificial Intelligence Limited, (1987).

[San82] Sannella, D.T. Semantics, Implementation and Pragmatics of Clear, A Program Specification
Language, Ph.D. Thesis, Dept. of Computer Science, University of Edinburgh, (July 1982), pp.172-211.

[Ste85] Sterling, L. Expert System = Knowledge + Meta-Interpreter, Dept. of Applied Mathematics, The
Weizmann Institute of Science, Internal Report CS-84-17, (1985).

[Ver86] Vergamini, D. Verification by means of observational equivalence on automata, Rapports de Recherche,
INRIA n? 501, (1986).

27

