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Abstract
We address the development of innovative algorithms designed to solve the strong-constraint
Four Dimensional Variational Data Assimilation (4DVar DA) problems in large scale appli-
cations. We present a space-time decomposition approach which employs the whole domain
decomposition, i.e. both along the spacial and temporal direction in the overlapping case,
and the partitioning of both the solution and the operator. Starting from the global functional
defined on the entire domain, we get to a sort of regularized local functionals on the set of
sub domains providing the order reduction of both the predictive and the Data Assimilation
models. The algorithm convergence is developed. Performance in terms of reduction of time
complexity and algorithmic scalability is discussed on the Shallow Water Equations on the
sphere. The number of state variables in the model, the number of observations in an assim-
ilation cycle, as well as numerical parameters as the discretization step in time and in space
domain are defined on the basis of discretization grid used by data available at repository
Ocean Synthesis/Reanalysis Directory of Hamburg University.

Keywords Data assimilation · Space and time decomposition · Scalable algorithm · Inverse
problems · Nonlinear least squares problems

B Luisa D’Amore
luisa.damore@unina.it

Emil Constantinescu
emcosta@mcs.anl.org

Luisa Carracciuolo
luisa.carracciuolo@cnr.it

1 University of Naples Federico II, Naples, Italy

2 Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA

3 Istituto per i Polimeri, Compositi e Biomateriali of the CNR (IPCB-CNR), Naples, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-022-01826-7&domain=pdf
http://orcid.org/0000-0002-3379-0569


   59 Page 2 of 31 Journal of Scientific Computing            (2022) 91:59 

1 Introduction andMotivations

Assimilation of observations into models is a well-established practice in the meteorological
community. In view of the numbers (on the order of 107 or 108) ofmodel variables and (on the
order of 106) of observations in use for operational models, a variety of approaches have been
proposed for reducing the complexity of an assimilation method to a computationally afford-
able version while retaining its advantages. Ensemble approaches and reduced order models
are the most significant approximations. Other approaches take full advantage of existing
Partial Differential Equations(PDEs)-based solvers, based on spatial Domain Decomposi-
tion (DD) methods, where the DD-solver is suitably modified to also handle the adjoint
system. A different approach is the combination of DD-methods in space and DA, where
spatial domain-decomposed uncertainty quantification approach performs DA at the local
level by using Monte Carlo sampling [1, 2, 27, 54]. The Parallel Data Assimilation Frame-
work [41] implements parallel ensemble-based Kalman Filters algorithms coupled within
the PDE-model solver.

The above mentioned methods reduce the spacial dimensionality of the predictive model
and the resulting reduced order model is then resolved in time via numerical integration,
typically with the same time integrator and time step employed for the high-fidelity model
leading to high time synchronization. In last decades, parallel-in-time methods have been
investigated for reducing the temporal dimensionality of evolutionary problems. Since Niev-
ergelt, in 1964, which proposed the first time decomposition algorithm for finding the parallel
solutions of evolutionary ordinary differential equations, and Hackbusch in 1984, who noted
that relaxation operators in multigrid can be employed onmultiple time steps simultaneously,
the methods of time-parallel time integration have been extensively expanded and several
relevant works can be found in the literature. An extensive and updated literature list can
be found at the website [47] collecting information about people, methods and software
in the field of parallel-in-time integration methods. Among them, we mention the Parallel
Full Approximation Scheme in Space and Time (PFASST), introduced in [14]. PFASST is
based on a simultaneous approach reducing the optimization overhead by integrating the
PDE-based model directly into the optimization process, thus solving the PDE, the adjoint
equations and the optimization problem simultaneously. Recently, a non-intrusive framework
for integrating existing unsteady partial differential equation (PDE) solvers into a parallel-
in-time simultaneous optimization algorithm, using PFASST, is provided in [22]. Finally, we
cite the parallel PDE solvers based on Schwarz preconditioner in space-time, proposed in
[19, 29, 53].

We propose the design of an innovative mathematical model, and the development and
analysis of the related numerical algorithms, based on the simultaneous introduction of
space-time decomposition in the overlapping case on the PDEs equations governing the
physical model and on the DA model. The core of our approach is that the DA model acts as
coarse/predictor operator solving the local PDE model, by providing the background values
as initial conditions of the local PDEmodels.Moreover, in contrast to the other decomposition
in time approaches, in our approach local solvers (i.e. both the coarse and the fine solvers)
run concurrently from the beginning. As a consequence, the resulting algorithm only requires
exchange of boundary conditions between adjacent sub-domains. It is worth to mention that
the proposed method belongs to the so-called reduced-space optimization techniques, in
contrast to the full-space approaches such as the PFASST method, reducing the runtime of
the forward and the backward integration time loops. As a consequence, we could combine
the proposed approach with the PFASST algorithm. Indeed, PFASST could be concurrently
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employed as local solver of each reduced-space PDE-constrained optimization subproblem,
exposing even more temporal parallelism.

The article will describe the more general DA problem setup for describing the domain
decomposition approach, then it will focus on parallel algorithm solving the reduced order
model analysing the impact of the space and time decomposition on the performance of
the algorithm and finally we provide the analysis of the algorithm’s scalability. Results
presented here are should be intended as the starting point for the software development
to make decisions about computer architecture, future estimates of the problem size (e.g., the
resolution of themodel and the number of observations to be assimilated) and the performance
and parallel scalability of the algorithms.

In conclusion, specific contributions of this work include:

– a novel decomposition approach in space-time leading to a reduced order model of the
coupled PDE-based 4DVar DA problem.

– strategies for computing the ‘kernels’ of the resultingRegularizedNonlinear Least Square
computational problem.

– a priori performance analysis that enables a suitable implementation of the algorithm in
advanced computing environments.

The article is organized as follows. Sect. 2 gives a brief introduction to the Data Assimi-
lation framework, where we follow the discretize-then-optimize approach. Main result is the
4DVar functional decomposition, which is given in Sect. 3. In Sect. 4 we review the whole
parallel algorithmwhile its performance analysis is discussed in Sect. 5 on the ShallowWater
Equations on the sphere. The number of state variables in the model, the number of obser-
vations in an assimilation cycle, as well as numerical parameters as the discretization step in
time and in space domain are defined on the basis of discretization grid used by data avail-
able, at repository Ocean Synthesis/Reanalysis Directory of Hamburg University (see [15]).
Scalability prediction of the case study based on the Shallow Water Equations is performed
in Sect. 6. Finally, conclusions are provided in Sect. 7.

2 The Data Assimilation framework

We start with the more general DA problem setup and then, for simplicity, for describing the
domain decomposition approach, we will consider a more convenient setup.

Let MΔ×Ω denote a forecast model described by nonlinear Navier-Stokes equations1

where Δ ⊂ � is the time interval, and Ω ⊂ �N is the spatial domain. If t ∈ Δ denotes the
time variable and x ∈ Ω the spatial variable, let2

ub(t, x) : Δ × Ω �→ �
be the function, which we assume belonging to the Hilbert space K(Δ × Ω) equipped with
the standard euclidean norm, representing the solution ofMΔ×Ω . Following [8], we assume
that MΔ×Ω is symbolically described as the following initial value problem:{

ub(t, x) = MΔ×Ω [ub(t0, x)], ∀ (t, x) ∈ Δ × Ω,

ub(t0, x) = ub0(x), t0 ∈ Δ, x ∈ Ω .
(1)

1 Such as the primitive equations of oceanic circulation models which are based on Boussinesq, hydrostatic
momentum, mass balances, material tracer conservation, seawater’s equation of state, and parameterized
subgrid-scale transports [32–35, 42].
2 Although typical prognostic variables are temperature, salinity, horizontal velocity, and sea surface displace-
ment, here, for simplicity of notations, we assume that ub(t, x) ∈ �.
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Function ub(t, x) is said background state inΔ×Ω . Function ub0(x) is the initial condition
of MΔ×Ω and this is the value of the background state in t0 × Ω . Let:

v(τ, y) = H(u(t, x)), (t, x) ∈ Δ × Ω, (τ, y) ∈ Δ′ × Ω ′ (2)

where Δ′ ⊂ Δ be the observations time interval and Ω ′ ⊂ �nobs , with Ω ′ ⊂ Ω be the
observation spatial domain. Finally,

H : K(Δ × Ω) �→ K(Δ′ × Ω ′)

denotes the observations mapping, where H is a nonlinear operator which includes trans-
formations and grid interpolations. According to the practical applications of model-based
assimilation of observations, wewill use the following definition of a Data Assimilation (DA)
problem associated to MΔ×Ω .

Definition 1 (The DA problem set-up) Let 3

– {tk}k=0,M−1, where tk = t0 + kΔt , be a discretization of Δ, such that ΔM := [t0, tM−1]
⊆ Δ.

– DK (Ω) := {x j } j=1,K ∈ �K , be a discretization of Ω , such that DK (Ω) ⊆ Ω .

– ΔM × ΩK = {z j i := (t j , xi )}i=1,K ; j=1,M ;

– ub0 := {u j
0}bj=1,K ≡ {u(t0, x j )b} j=1,K ∈ �K be the discretization of initial value in (1);

– ubk := {ub(tk, x j )} j=1,K ∈ �K be the numerical solution of (1) at tk ;
– ub = {ubk }k=0,M−1;
– nobs << K ;
– Δ′

M = [τ0, τM−1] ⊆ ΔM ;
– D′

nobs(Ω
′) := {x j } j=1,nobs ∈ �nobs , be a discretization of Ω ′, such that

Dnobs(Ω
′) ⊆ Ω ′ .

– vk := {v(τk, x j )} j=1,nobs ∈ �nobs be the values of the observations on x j at τk ;
– v = {vk}k=0,M−1 ∈ �K ;
– {H(k)}k=0,M−1, the Tangent Linear Model (TLM) of H(u(tk, x)) at time tk ;
– MΔM×ΩK be a discretization of MΔ×Ω .
– M0,M−1, is the TLM of MΔ×Ω , i.e. it is the first order linearization 4 of MΔ×Ω in

ΔM × ΩK [24];
– MT is the Adjoint Model (ADM)5 ofM0,M−1 [20]6.

♠
3 In the following and throughout the paper, for simplicity, we use the notation j = 1, K to indicate j =
1, . . . , K .
4 For nonlinear Navier Stokes equations which we are considering here, first order linearization ofMΔ×Ω is
formed by truncating at the first order the Taylor series expansion ofMΔM×ΩK about ub over the intervalΔM .
In some cases this approach performs equally to the approach based on first linearization of the continuous
modelMΔ×Ω and then discretization [24].
5 Let A : x → y = Ax be a linear operator on �N equipped with the standard euclidean norm. The operator
AT : y → x = AT y such that

< y,Ax >=< AT y, x >, ∀x, ∀y (3)

where < ·, · > denotes the scalar product in �N , is the adjoint of A.
6 IfMi−1,i is the TLM ofMΔ×Ω , in [ti−1, ti ] × ΩK , then it holds that:

(M0,M−1)T = (M0,1 · M1,2 · · ·MM−2,M−1)T = (MM−2,M−1)T · · · (M1,2)T (M0,1)T . (4)
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The aim of DA is seeking to produce the optimal combination of the background and
observations throughout the assimilation windowΔ′

M i.e. to find an optimal tradeoff between
the estimate of the system state ub and v. The best estimate that optimally fuses all these
information is called the analysis, and it is denoted as uDA. It is then used as an initial
condition for the next forecast.

Definition 2 (The 4DVar DA problem: a regularized nonlinear least square problem (RNL-
LS)) Given the DA problem set-up, the 4DVar DA problem consists in computing the vector
uDA ∈ �K such that

uDA = arg min
u∈�K

J (u) (5)

with

J (u) = ‖u − ub0‖2B−1 + λ

M−1∑
k=0

‖H(k)(MΔM×ΩK (u)) − vk‖2R−1
k

(6)

where λ > 0 is the regularization parameter, B and Rk (∀k = 0, M − 1) are the covariance
matrices of the errors on the background and the observations respectively, while ‖ · ‖B−1

and ‖ · ‖R−1
k

denote the weighted euclidean norm.

♠

The first term of the (6) quantifies the departure of the solution uDA from the background
state ub. The second term measures the sum of the mismatches between the new trajectory
and observations vk , for each time tk in the assimilation window. The weighting matrices
B and Rk need to be predefined, and their quality influences the accuracy of the resulting
analysis [3].

As K exceeds 106 in general this problem can be considered as a Large Scale Nonlinear
Lest Square problem. We provide a mathematical formulation of a domain decomposition
approach, which starts from decomposition of the whole domain Δ × Ω , namely both the
spatial and temporal domain; it uses a partitioning of the solution and a modified functional
describing the RNL-LS problem on the subdomain of the decomposition. Solution continuity
equations across interval boundaries are added as constraints of the assimilation functional.
We will first introduce domain decomposition of Δ × Ω then, restriction and extension
operators will be defined on functions given on Δ × Ω . These definitions will subsequently
generalized to ΔM × ΩK .

3 The Space-Time Decomposition of the Continuous 4DVar DAModel

In this section we give a precise mathematical setting for space and function decomposition
then we state some notations used later. In particular, we first introduce the function and
domain decomposition, then by using restriction and extension operators, we associate to the
domain decomposition a functional decomposition. So, we prove the following result: the
minimumof the global functional, defined on the entire domain, can be obtained by collecting
the minimum of each local functional.

For simplicity we assume that the spacial and temporal domains of the observations are
the same of the background state, i.e. Δ′ = Δ and Ω ′ = Ω; furthermore we assume that
tk = τk .
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Definition 3 (Domain Decomposition) Let P ∈ N and Q ∈ N be fixed. The set of bounded
Lipschitz domains Ωi , overlapping sub-domains of Ω:

DD(Ω) = {Ωi }i=1,P (7)

is called a decomposition of Ω , if

P⋃
i=1

Ωi = Ω (8)

with

Ω jh := Ω j ∩ Ωh �= ∅
when two subdomains are adjacent. Similarly, the set of overlapping sub-domains of Δ:

DD(Δ) = {Δ j
}
j=1,Q (9)

is a decomposition of Δ, if

Q⋃
j=1

Δ j = Δ (10)

with

Δik := Δi ∩ Δk =�= ∅
when two subdomains are adjacent. We call domain decomposition of Δ×Ω and we denote
it as DD(Δ × Ω), the set of P × Q overlapping subdomains of Δ × Ω:

DD(Δ × Ω) = {Δ j × Ωi
}
j=1,Q; i=1,P . (11)

♠
From (11) it follows that

Δ × Ω = ∪Δ j × ∪Ωi = ∪(Δ j × Ωi ).

Associated to the decomposition (11) we define the Restriction Operator of functions
belonging to K(Δ × Ω):

Definition 4 (Restriction of a function) Let

RO ji : f ∈ K(Δ × Ω) �→ RO ji [ f ] ∈ K(Δ j × Ωi )

be the Restriction Operator (RO) of f in DD(Δ × Ω) as in (11) be such that:

RO ji [ f (t, x)] ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (t, x), ∀ (t, x) ∈ Δ j × Ωi
1
2 f (t, x), ∀ (t, x) s.t . x ∈ Ωi , ∃ k̄ �= j : t ∈ Δ j ∩ Δk̄,

1
2 f (t, x), ∀ (t, x) t ∈ Δ j , ∃ h̄ �= i : x ∈ Ωi ∩ Ωh̄,

1
4 f (t, x), ∃ (h̄, k̄) �= ( j, i) : (t, x) ∈ (Δ j ∪ Δh̄) × (Ωi ∪ Ωk̄),
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We pose:

f ROji (t, x) ≡ RO ji [ f (t, x)].
♠

For simplicity, if i ≡ j , we denote ROii = ROi .
In line with this, given a set of Q × P functions g ji , j = 1, Q, i = 1, P each belonging

to K(Δ j × Ωi ), we define the Extension Operator of g ji :

Definition 5 (Extension of a function) Let

EO : g ji ∈ K(Δ j × Ωi ) �→ EO[g ji ] ∈ K(Δ × Ω)

be the Extension Operator (EO) of g ji in DD(Δ × Ω) as in (11)be such that:

EO[(g ji (t, x)] =
{
g ji (t, x) ∀ (t, x) ∈ Δ j × Ωi

0 elsewhere

We pose:

gEO
ji (t, x) ≡ EO[g ji (t, x)].

♠
For any function u ∈ K(Δ × Ω), associated to the decomposition (8), it holds that

u(t, x) =
∑

i=1,P; j=1,Q

EO
[
uRO
ji (t, x)

]
. (12)

Given P × Q functions u ji (t, x) ∈ K(Δi × Ω j ), the summation∑
i=1,P; j=1,Q

uEO
ji (t, x) (13)

defines a function u ∈ K(Δ × Ω) such that:

RO ji [u(t, x)] = RO ji

⎡
⎣ ∑
i=1,P; j=1,Q

uEO
ji (t, x)

⎤
⎦ = u ji (t, x). (14)

Main outcome of this framework is the definition of the operator RO ji for the 4DVar
functional defined in (6). This definition originates from the definition of the restriction
operator of MΔ×Ω in (1), given as follows.

Definition 6 (Reduction of MΔ×Ω ) If MΔ×Ω is defined in (1), we introduce the model
MΔ j×Ωi to be the Reduction of MΔ×Ω :

RO ji : MΔ×Ω(t, x)[u(t0, x)] �→ RO ji [MΔ×Ω [u(t0, x)]]
defined in Δ j × Ωi , such that:{

uR(t, x) = MΔ j×Ωi [ub(t j , x)] ∀ (t, x) ∈ Δ j × Ωi

ub(t j , x) = ubj (x) t j ∈ Δ j , x ∈ Ωi
(15)

♠
It is worth noting that initial condition ubj (x) is the value in t j of the solution of

MΔ×Ω [u(t0, x)] defined in (1).
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3.1 Space-Time Decomposition of the Discrete Model

Let assume that ΔM × ΩK can be decomposed into a sequence of P × Q overlapping
subdomains Δ j × Ωi such that

ΔM × ΩK =
⋃

i=1,P; j=1,Q

Δ j × Ωi

where Ωi ⊂ �ri with ri ≤ K and Δ j ⊂ �s j with s j ≤ M . Finally, let us assume that

Δ j := [t j , t j+s j ] .

Hence

u j i := RO ji (u) ≡ uROji ≡ (u(z ji ))z ji∈Δ j×Ωi , u j i ∈ �s j×ri .

In this respect, we define the Extension Operator (EO) also. If u = (u(z ji ))z ji∈Δ j×Ωi , it is

EO(u) =
{
u(zkh) zkh ∈ Δk × Ωh

0 elsewhere

and EO(u) ≡ uEO ∈ �M×K .

Definition 7 (Restriction of the Covariance Matrix) Let C(w) ∈ �K×K be the covariance
matrix of a random vector w = (w1, w2, . . . , wK ) ∈ �K , that is coefficient ci, j of C is
ci, j = σi j ≡ Cov(wi , w j ). Let s < K , we define the Restriction Operator ROst onto C(w)

as follows:

ROst : C(w) ∈ �K×K �→ ROst [C(w)]
de f︷︸︸︷= C(wROst ) ∈ �s×s

i.e., it is the covariance matrix defined on wROst .
♠

Hereafter, we refer to C(wROs) using the notation Cst.

Definition 8 (Restriction of the operator H(k)) We define the Restriction Operator RO ji

of H(k) in DD(Δ × Ω) as in (11) as the TLM at time tk of the restriction of H on
Δ j × Ωi .

♠
Definition 9 (Restriction of MΔM×ΩK ) We let MΔ j×Ωi be the Restriction Operator RO ji

ofMΔM×ΩK in Δ j × Ωi where:

RO ji : MΔM×ΩK (ub0) �→ MΔ j×Ωi (ub0) = ubji

defined in Δ j × Ωi .
♠

Definition 10 (Restriction of the operator M0,M−1) We defineM j, j+1
i to be the Restriction

Operator RO ji of M0,M−1 in DD(Δ × Ω), as in (11). It is the TLM of the Restriction of
MΔM×ΩK on Δ j × Ωi .

♠
Finally, we are now able to give the following definition.
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Definition 11 (Restriction of 4DVar DA) Let

RO ji [J ] : u j i �→ RO ji [J ](u j i )

denotes the Restriction operator of the 4DVar DA functional defined in (6). It is defined as

RO ji [J ](u j i ) = ‖ RO ji (u)︸ ︷︷ ︸
u j i

− RO ji [MΔM×ΩK (ub0)]︸ ︷︷ ︸
ubji

‖(B−1) j i

+λ
∑

k:tk∈Δ j
‖ RO ji [H(k)]RO ji [MΔM×ΩK (u)︸ ︷︷ ︸

(H(k)) j i RO ji [(MΔM×ΩK )(u j i )]

− RO ji [vk]︸ ︷︷ ︸
v j i

‖2
(R−1) j i

.
(16)

♠

Local 4DVar DA functional J ji (u j i ) in (16) becomes:

J ji (u j i ) = ‖u j i − ubji‖(B−1) j i︸ ︷︷ ︸
local state tra jectory

+ (17a)

λ
∑

k:tk∈Δ j

‖(H(k)) j i [Mk,k+1
i (u j i )] − v j i‖(R−1) j i︸ ︷︷ ︸

local observations

. (17b)

Thismeans that the approachwe are following is to firstly decompose the 4DVar functional
J then to locally linearize and solve each local functional J ji . For simplicity of notations we
let

RO ji [J ] ≡ JΔ j×Ωi .

We observe that RO ji [J ](u j i ) is made of a first term which quantifies the departure of the
state u j i from the background state ubji at time t j and space xi . The second term measures
the mismatch between the state u j i and the observation v j i .

Definition 12 (Extension of 4DVar DA) Given DD(Δ × Ω) as in (11) let

EO[J ] : JΔ j×Ωi �→ J EO
Δ j×Ωi

,

be the Extension Operator (EO) of the 4DVar functional defined in (6), where

EO[J ](JΔ j×Ωi ) =
{
JΔ j×Ωi (t, x) ∈ Δ j × Ωi

0 elsewhere
(18)

♠

From (19), it follows the decomposition of J as follows.

J ≡
∑

i=1,P; j=1,Q

J EO
Δ j×Ωi

. (19)

Main outcome of (19) is the capability of defining local 4D Var problems which contribute
all together to the 4DVar problem as detailed in the following.
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3.2 Local 4DVar DA Problem: The Local RNL-LS Problem

Starting from Local 4DVar functional in (17) which is obtained applying the Restriction
Operator to the 4DVar functional defined in (6), we add a local constraint to such restriction.
This is a sort of regularization of the local 4DVar functional introduced in order to enforce
the continuity of each solution of the local problem onto the overlap region between adjacent
subdomains. Local constraint consists of the overlapping operator O( jh)(ik) defined as

O( jh)(ik) := O jh ◦ Oik (20)

where the symbol ◦ denotes the operators composition. Each operator in the (20) tackles
the overlapping of the solution in the spatial dimension and in the temporal dimension,
respectively. More precisely, for j = 1 . . . Q; i = 1 . . . P , operator O( jh)(ik) represents the
overlap of temporal subdomains j and h and spatial subdomains i and k, where h and k are
given as in Definition 4 and

Oik : u j i ∈ Δ j × Ωi �→ u( j)(ik) ∈ Δ j × (Ωi ∩ Ωk) (21)

and

O jh : u( j)(ik)) �→ u( jh)(ik) ∈ (Δ j ∩ Δh) × (Ωi ∩ Ωk) (22)

Remark 1 Weobserve that, in the overlapping domainΔ jh×Ωik weget two vectors:u( jh)(ik),
which is obtained as the restriction of u( j i) = argmin J ji (u j i ) to that region, and u(hj)(ki),
which is the restriction of u(hk) = argmin Jhk(uhk) to the same region. The order of the
indexes plays a significant rule from the computing perspectives.

From (20), three cases derive

1. decomposition in space, i.e. j = Q = 1 and P > 1. Here we get j = Q = 1, i.e.
time interval is not decomposed, and P > 1, i.e. the spatial domain Ω is decomposed
according to the domain decomposition in (11). The overlapping operator is defined as in
(21). In particular we assume that

Oik(u j i ) := ‖ RO ji (u jk)︸ ︷︷ ︸
u j(ki)

− RO jk(u j i )︸ ︷︷ ︸
u( j)(ik)

‖(B−1)ik

2. decomposition in time, i.e. Q > 1 and P = 1. We get that i = P = 1, i.e. the spatial
domain is not decomposed, and Q > 1, i.e. the time interval is decomposed according
to the domain decomposition in (11). The overlapping operator is defined as in (22). In
particular we assume that

O jh(u j i ) := ‖ RO ji (uhi )︸ ︷︷ ︸
u(hj)i

− ROhi (u j i )︸ ︷︷ ︸
u( jh)i

‖(B−1) jh

3. decomposition in space-time, i.e. Q > 1 and P > 1. We assume that Q > 1 and P > 1
i.e. both the time interval and the spatial domain are decomposed according to the domain
decomposition in (11). The overlapping operator is defined as in (20). In particular we
assume that

O( jh)(ik)(u j i ) := ‖u(hj)(ki) − ROhi (RO jk(u j i ))︸ ︷︷ ︸
u( jh)(ik)

‖(B−1)( jh)(ik)

We now give the new definition of the local 4DVar DA functional
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Definition 13 (Local 4DVar DA) Given DD(Δ × Ω) as in (11), let:

J ji (u j i ) = RO ji [J ](u j i ) + μ j i O( jh)(ik)(u j i ) (23)

where RO ji [J ](u j i ) is given in (16),O( jh)(ik) will be suitably defined on Δ jh ×Ωik , be the
local 4DVar functional. Parameter μ j i is a regularization parameter. Finally, let

uDA
ji = argmin

u j i
J ji (u j i ) (24)

be the global minimum of J ji in Δ j × Ωi .
♠

More precisely, the local 4DVar DA functional J ji (u j i ) in (23) becomes:

J ji (u j i ) =‖u j i − ubji‖(B−1) j i︸ ︷︷ ︸
local state tra jectory

+ (25a)

λ
∑

k:tk∈Δ j

‖(H(k)) j i [Mk,k+1
i (u j i )] − v j i‖(R−1) j i︸ ︷︷ ︸

local observations

+ (25b)

μ ‖u(hj)(ki) − u( jh)(ik)‖(B−1)( jk)(ih)︸ ︷︷ ︸
overlap

(25c)

where the three terms contributing to the definition of the local DA functional clearly come
out. We note that in (17) the operatorMk,k+1

i which is defined in (4) replaces MΔ j×Ωi .
Finally, we have to guarantee that the global minimum of the operator J , can be searched

among the global minima of local functionals.

3.3 Local 4DVar DAMinimization

Let

ũji := (uDA
ji )EO ∈ �M×K , ∀ j = 1, Q; i = 1, P (26)

where uDA
ji is defined in (24), be (the extension of) the minimum of the (global) minimums

of the local functionals J ji as in (24). Let

ũDA := arg min
j=1,Q;i=1,P

{
J
(̃
uji
)}

(27)

be its minimum.

Theorem 1 If DD(Δ × Ω) is a decomposition of Δ × Ω as defined in (11). It follows that:

J (EO(uDA)) ≤ J (̃uDA), (28)

with uDA defined in (5). Moreover, the equality in (28) holds if J is convex.

Proof Let uDA
ji be defined in (24), it is

∇ J ji [uDA
ji ] = 0 ∈ �N P , ∀( j, i) : Δ j × Ωi ∈ DD(Δ × Ω). (29)

From the (29) follows

∇EO
[
J ji
(
uDA
ji

)]
= 0 , (30)
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which gives from the (19):

∇ J
[
(uDA

ji )EO
]

= 0 (31)

then (uDA
ji )EO is a stationary point for J in �M×K . As uDA in (5) is the global minimum of

J in �K , it follows that:

J (EO(uDA)) ≤ J
(
(uDA

ji )EO
)

, ∀ j = 1, Q; i = 1, P (32)

then, from the (27) it follows that

J (EO(uDA)) ≤ J
(̃
uDA

)
, . (33)

Now we prove that if J is convex, then

J (EO(uDA)) = J (̃uDA)

by reduction to the absurd. Assume that

J (EO(uDA)) < J (̃uDA). (34)

In particular,

J (EO(uDA)) < J (RO ji (̃uDA)) .

This means that

RO ji

[
J (EO(uDA))

]
< RO ji

[
J (̃uDA)

]
. (35)

From the (35) and the (27), it is:

RO ji

[
J (EO(uDA))

]
< RO ji

[
mini (J

(
uDA
ji )EO

)]

then, from the (14):

J ji
(
RO ji [uDA]EO

)
< J ji

(
RO ji

[
uDA
ji

]EO
)

= J ji (uDA
ji ) . (36)

The (36) is an absurd as the values of uDA
ji is the global minimum for J ji . So the (28) is

proved. ♣
��

4 The Space-Time RNLLS Parallel Algorithm

We introduce the algorithm solving the RNL-LS problem by using the space-time decom-
position, i.e. solving the QP = q × p local problems in Δ j × Ωi , where j = 1, Q and
i = 1, P (see Fig. 1 to see an example of domain decomposition where Q = 4 and P = 2.).

Definition 14 (DD-RNLLSAlgorithm) LetAloc
RN LLS(Δ j ×Ωi ) denote the algorithm solving

the local 4DVar DA problem defined in Δ j × Ωi . The space-time DD-RNLLS parallel
algorithm solving the RNL-LS problem in DD(Δ × Ω), is symbolically denoted as

ADD
RNNLS(ΔM × ΩK ),
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Fig. 1 Configurations of the
decomposition DD(ΔM × ΩK ),
if Ω ⊂ �, and Q = 4, P = 2

and it is defined as the merging of the QP = Q × P local algorithms Aloc
RN LLS(Δ j × Ωi ),

i.e.:

ADD
RNLLS(ΔM × ΩN P ) :=

⋃
j=1,Q;i=1,P

Aloc
RN LLS(Δ j × Ωi ). (37)

♠
The DD-RNLLS algorithm can be sketched as described by Algorithm 1. Similarly, the

Local RNLLS algorithm Aloc
RN LLS is described by Algorithm 2.

Algorithm 1;ADD
RNLLS : solves the RNL-LS problem on ΔM × ΩN P

1: % Domain Decomposition Step
2: ComputeMΔM×ΩK fromMΔ×Ω

3: procedure DD- 4DVar(in : MΔM×ΩK , ub0,R,B,H, v, ΔM , ΩK ; out : uDA)
4: % RunMΔM×ΩK in (1) with initial condition ub0
5: ub = MΔM×ΩK (ub0)
6: % Local Model Linearization Step
7: for j = 1, q; i = 1, p do
8: l := 0, u0j i = ubji
9: repeat
10: l := l + 1
11: Call Loc-4DVar (in : M0,M−1,R,B,H, v,ub, Δ j , Ωi ; out : ulj i )
12: Exchange ukji between adjacent subdomains

13: until ‖ulj i − ul−1
j i ‖ < eps

14: endfor
15: % End the Domain Decomposition Step
16: Gather of ulj i : uDA =∑ j i u

l
j i

Algorithm 2;Aloc
RNLLS : solves the Local RNL-LS problem on Δ j × Ωi

1: procedure Loc- RNLLS(in : M0,M−1,R,B,H, v, ub, Δ j , Ωi ; out : ulj i )
2: Compute J j i on Δ j × Ωi
3: Compute u j i = argmin J j i
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Remark 2 We observe that ADD
RNNLS(ΔM × ΩK ) algorithm is based on two main steps, i.e.

the domain decomposition step (see line 1) and the model linearization step (see line 6). This
means that this algorithm uses a convex approximation of the objective DA functional so that
Theorem 1 holds.

The common approach for solving RNL-LS problems consists in defining a sequence
of local approximations of Ji j where each member of the sequence is minimized by
employingNewton’smethod or one its variants (such asGauss-Newton, L-BFGS,Levenberg-
Marquardt). Approximations of Ji j are obtained by expanding Ji j in a truncated Taylor’s
series, while the minimum is obtained by using second-order sufficient conditions [13, 44].
Let’s consider Algorithm 3 solving the RNL-LS problem on Δ j × Ωi .

Algorithm 3;Aloc
RNLLS : solves a RNL-LS problem on Δ j × Ωi

1: procedure Loc- RNLLS(in : M0,M−1,R,B,H, v, ub, Δ j , Ωi ; out : ulj i )
2: Initialize u0i j := ubi j ;
3: Initialize l := 0;
4: repeat % at each step l, a local approximation of J̃ i j is minimized

5: Compute δuli j = argmin J̃ j i

6: Update ulj i = ulj i + δulj i
7: Update l = l + 1
8: until (convergence is reached)

Main computational task occurs at step 5 of Algorithm 3 concerning the minimization
of ˜J j i , which is the local approximation of Ji j . Two approaches could be employed in
Algorithm 3:

(a) by truncating Taylor’s series expansion of Ji j at the second order, we get

JQD
i j (ul+1

j i ) = Ji j (ulj i ) + ∇Ji j (ulj i )
T δulj i +

(
δulj i

)T ∇2Ji j (ulj i )δu
l
j i (38)

giving a quadratic approximation of J j i at ulj i . Newton’methods (including LBFGS and

Levenberg-Marquardt) use J̃ j i = JQD
i j .

(b) by truncating Taylor’s series expansion of Ji j at the first order we get the following linear
approximation of Ji j at ukji :

JT L
i j (ul+1

j i ) = Ji j (ulj i ) + ∇Ji j (ulj i )
T δulj i = 1

2
‖∇F j i (ulj i )δu

l
j i + F j i (ulj i )‖22 (39)

where we let7 Ji j := ‖F j i‖22 which gives a linear approximation of J j i at ulj i . Gauss-
Newton’s methods (including Truncated or Approximated Gauss-Newton [21]) use
JT L
ji = J̃ j i .

7 IfC j i = diag((B−1) j i , (R−1) j i ), and d̃
l
j i = (ulj i−ub0,H

0
j i (u

l
j i )−vkji , . . . , (H

M−1) j i [(Mk
M−2,M−1) j i

(ukji )] − vlj i ) then Ji j := 1
2 ((C−1/2) j i d̃

l
j i )

T ((C−1/2) j i d̃
l
j i ) = = ‖F j i‖22 where F j i = (C−1/2) j i d̃

l
j i .
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Observe that from (38) it follows

JQD
i j (ul+1

j i ) = JT L
i j (ulj i ) + 1

2

(
δulj i

)T ∇2Ji j (ulj i )δu
l
j i . (40)

Algorithm 3 becomes Algorithm 4, described below.

Algorithm 4;Aloc
RNLLS : solves a RNL-LS problem on Δ j × Ωi

1: procedure Loc- RNLLS(in : M0,M−1,R,B,H, v, ub, ΔM , ΩK ; out : ulj i )
2: Initialize u0i j := ubi j ;
3: Initialize l := 0;
4: repeat
5: % Compute δuli j = argmin J j i by usingAloc

QN orAloc
LLS

6: If (QN) then
7: Call Loc-QN (in : M0,M−1,R,B,H, v, ub, ΔM , ΩK ; out : ulj i )
8: ElseIf (LLS) then
9: Call Loc-LLS (in : M0,M−1,R,B,H, v, ub, ΔM , ΩK ; out : ulj i )
10: EndIf
11: Update ulj i = ulj i + δulj i
12: Update l = l + 1
13: until (convergence is reached)

(a) Aloc
QN : computes a local minimum of JQN

ji following the Newton’s descend direction. The

minimum is computed solving the linear system involving the Hessian matrix∇2Ji j , and
the negative gradient−∇Ji j atulj i , for each value of l (seeAlgorithm5 described below);

(b) Aloc
LLS : computes a local minimum of JT L

ji following the steepest descend direction. The
minimum is computed solving the normal equations arising from the local Linear Least
Squares (LLS) problem (see Algorithm 6 described below).

Algorithm 5;Aloc
QLS : solves a Q-LS problem on Δ j × Ωi

1: procedure Loc- QN(M0,M−1,R,B,H, v, ub,ΔM , ΩK ; out : ulj i )
2: Initialize u0j i := ubji ;
3: Initialize l := 0;
4: repeat
5: %Compute δuli j = argmin JQD

ji , by Newton’s method

6: 1.1 Compute ∇J j i (u
l
i j ) = ∇FTji (u

l
j i )∇F j i (u

l
j i )

7: 1.2 Compute ∇2J j i (u
l
i j ) = ∇FTji (u

l
j i )∇F j i (u

l
j i ) + Q((uli j ))

8: 1.3 Solve ∇2J j i (u
l
i j )δu

l
i j = −∇J j i (u

l
i j )

9: Update ulj i = ulj i + δulj i
10: Update l = l + 1
11: until (convergence is reached)
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Algorithm 6;Aloc
LLS : solves LLS problems in Δ j × Ωi

1: procedure Loc- LLS(M0,M−1,R,B,H, v, ub, ΔM , ΩK ; out : ulj i )
2: Initialize u0i j := ubi j ;
3: Initialize l := 0;
4: repeat
5: Compute ∇J j i = ∇FTji (u

l
j i )∇F j i (u

l
j i )

6: %Compute δuli j = argmin JT L
ji by solving the normal equations system:

7: Solve ∇FTji (u
l
j i )∇F j i (u j i )δu

l
j i = −∇FTji (u

l
j i )F j i (u

l
j i )

8: Update ulj i = ulj i + δulj i
9: Update l = l + 1
10: until (convergence is reached)

Remark 3 : We observe that if, inAloc
QN algorithm, matrixQ(uli j ) (see line 6 of Algorithm 5)

is neglected we get the Gauss-Newtonmethod described byAloc
LLS algorithm.More generally,

term Q(uli j )

1. in case of Gauss Newton, Q(uli j ) is neglected;

2. in case of Levenberg-Marquardt,Q(uli j ) equals to λI , where the damping term, λ > 0, is
updated at each iteration and I is the identity matrix [26, 30];

3. in case of the L-BFGS, the Hessian matrix is Rank-1 updated at every iteration [45].

According to the most common implementation of the 4DVar DA [15, 50], we focus the
attention on Gauss-Newton(G-N) method described in Aloc

LLS in Algorithm 6.
For each l, let Gl

j i = RO ji [Gl ], where Gl ∈ �(M×nobs)×(N P×M), be the block diagonal
matrix such that

Gl =
{
diag [H0,H1Ml

0,1, . . . ,HM−1Ml
M−2,M−1] M > 1;

H0 M = 1.
(41)

while (GT
ji )

l = RO ji [(GT )k] is the restriction of the transpose of Gl , and

Ml
0,1, . . . ,M

l
M−2,M−1

are the TLMs ofMk,k+1, for s = 0, M − 1, around ulj i , respectively. Finally, let

dlj i = v j i − H j iulj i

be the restriction of the misfit vector. In line 7 of Algorithm 6, it is

∇FT
ji (u

l
j i )∇F j i (ulj i ) = B−1

j i + (GT
ji )

lR j iGl
j i , (42)

and,

− ∇FT
ji (u

l
j i )F j i (ulj i ) = (GT

ji )
lR−1

j i d j i . (43)

Most popular 4DVar DA software implement the so called B-preconditioned Krylov sub-
space iterative method [21, 23, 50] arising by using the background error covariance matrix
as preconditioner of a Krylov subspace iterative method.

Let B j i = V j iVT
ji be expressed in terms of the deviance matrix V j i , and wi such that

wl
j i = V+

j i (u
l
j i − ubji ) (44)
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with V+
i generalised inverse of Vi , the (42) becomes

B−1
j i + (GT

ji )
lR j iGl

j i = I j i + (Gl
j iV j i )

T (R−1) j iGl
j iV j i , (45)

while the (43) becomes

(GT
ji )

l(R−1) j id j i = (G j iV j i )
T )k(R−1) j id j i . (46)

The normal equation system (see line 7 of Aloc
LLS), i.e. the linear system

((B−1) j i + (GT
ji )

lR j iGl
j i )δu

l
j i = (GT

ji )
l(R−1) j id j i

becomes

(I j i + (Gl
j iV j i )

T (R−1) j iGl
j iV j i )δulj i = (Gl

j iV j i )
T (R−1) j id j i .

Definition 15 [DD-4DVar Algorithm] Let Aloc
4DVar (Δ j × Ωi ) denote the algorithm solving

the local 4DVarDAproblemdefined inΔ j×Ωi . The space-time 4DVarDAparallel algorithm
solving the 4DVarDAproblem in DD(ΔM×ΩK ), is symbolically denoted asADD

4DVar (ΔM×
ΩK ), and it is defined as the union of the QP = q × p local algorithmsAloc

4DVar (Δ j × Ωi ),
i.e.:

ADD
4DVar (ΔM × ΩK ) :=

⋃
j=1,q;i=1,p

Aloc
4DVar (Δ j × Ωi ). (47)

♠
Algorithm Aloc

4DVar is algorithm Aloc
LLS (see Algorithm 6) specialized for the 4D Var DA

problem and it is described by Algorithm 7 and Algorithm 8 described below [23].

Algorithm 7;Aloc
4DVar : solves Local 4DVAR DA problem in Δ j × Ωi

1: procedure Loc- 4DVar(MΔM×ΩN P ,R,B,H, v, ub, ΔM , ΩK ; out : ulj i )
2: Initialize u0j i := ubji ;
3: Initialize l := 0;
4: repeat
5: Compute dlj i = v j i − H j i (u

l
j i )

6: Call TLM(in : MΔ×Ω , ulj i ; out : Ml
0,M−1)

7: Call ADJ(in : Mk
0,M−1; out : (MT

0,M−1)
l )

8: Compute G j i , V j i

9: Call Aloc
BLanczos (G

k
ji ,V j i ,R j i ,B j i ,d j i ,u

b
ji ,Δ j , Ωi ; out : δukji )

10: Update ulj i = ulj i + δulj i
11: Update l = l + 1
12: until (convergence is reached)
13: endprocedure
14: procedure TLM(in : MΔ×Ω , ulj i ; out : Ml

0,M−1)

15: %Linearize MΔM×ΩN P about ulj i
16: endprocedure
17: procedure ADJ(in : Mk

0,M−1; out : (MT
0,M−1)

l )
18: %Compute the adjoint of M0,M−1

19: endprocedure

In the next section we will show that this formulation leads to local numerical solutions
convergent to the numerical solution of the global problem.
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Algorithm 8;Aloc
BLanczos : BLanczos for 4DVAR DA problem in Δ j × Ωi

1: procedure BLanczos- 4DVar(G j i ,V j i ,R j i ,B j i , d j i , u
b
ji , Δ j ,Ωi ; out : δulj i )

2: % Solve (I j i + (G j iV j i )
T (R−1) j iG j iV j i )δu

l
j i = (G j iV j i )

T (R−1) j id j i
3: % by using BLanczos algorithm (see [23])

5 Convergence Analysis

In the following we pose ‖ · ‖ = ‖ · ‖∞.

Proposition 1 Let uASM,r
j,i be the approximation of the increment δu j i to the solution u j i

obtained at step r of ASM-based inner loop on Ω j × Δi . Let unj,i be the approximation
of u j,i obtained at step n of the outer loop i.e. the space-time decomposition approach

on Ω j × Δi . Let us assume that the numerical scheme discretizing the model M j, j+1
i is

convergent. Then, given i and j fixed, it holds that:

∀ε > 0 ∃M(ε) > 0 : n > M(ε) ⇒ En
j,i := ‖u j,i − unj,i‖ ≤ ε. (48)

Proof let u
M j, j+1

i ,n+1
j,i be the numerical solution ofM j, j+1

i at step n; taking into account that,
according to the incremental update of the solution of the 4DVar DA functional (for instance,
see line 10 of the Algorithm 7), the approximation unj,i is computed as

unj,i = u
M j, j+1

i ,n+1
j,i + [uASM,r

j,i − u
M j, j+1

i ,n
j,i ]

then, it is

En
j,i := ‖u j,i − unj,i‖ = ‖u j,i − u

M j, j+1
i ,n+1

j,i − [uASM,r
j,i − u

M j, j+1
i ,n

j,i ]‖
≤ ‖u j,i − uASM,r

j,i ‖ + ‖uM
j, j+1
i ,n

j,i − u
M j, j+1

i ,n+1
j,i ‖

(49)

from the hypothesis, we have

∀εM
j, j+1
i > 0 ∃M1(εM

j, j+1
i ) > 0 : n > M1(εM

j, j+1
i )

⇒ En
j,i := ‖uM

j, j+1
i ,n+1

j,i − uM
j ,n

j,i ‖ ≤ εM
j, j+1
i (50)

and (49) can be rewritten as follows

‖u j,i − unj,i‖ ≤ ‖u j,i − uASM,r
j,i ‖ + εM

j, j+1
i . (51)

Convergence of ASM is proved in [5], similarly, applying ASM to 4D Var DA problem, it
holds that

∀εASM > 0 ∃M2(εASM ) > 0 : n > M2(εASM ) ⇒ ‖u j,i − uASM,r
j,i ‖ ≤ εASM , (52)

and for n > M2(εASM ), we get

‖u j,i − uASM,n
j,i ‖ ≤ εASM + εM

j, j+1
i . (53)

Hence, by using ε := εASM + εM
j, j+1
i and M(ε) := max{M1(εASM ), M2(εM

j, j+1
i )}, we get

the thesis in (52). ��

123



Journal of Scientific Computing            (2022) 91:59 Page 19 of 31    59 

6 Performance Analysis

Performance metrics we will employ are time complexity and scalability. Our aim is to
highlight the benefits arising from using the decomposition approach instead of solving the
problem on the whole domain. As we shall discuss later, the performance gain that we get
from using the space and time decomposition approach is two fold:

1. Instead of solving one larger problem we can solve several smaller problems which are
better conditioned than the former problem. This result leads to a reduction of each local
algorithm’s time complexity.

2. Subproblems reproduce the whole problem at smaller dimensions and they are solved in
parallel. This result leads to a reduction of software execution time.

We give the following

Definition 16 An uniform bi-directional decomposition of the space and time domainΔM ×
ΩK , is such that if we let

si ze(ΔM × ΩK ) = M × K ,

be the size of the whole domain, then each subdomain Δ j × Ωi is such that

si ze(Δ j × Ωi ) = Dt × Ds, j = 1, . . . , q; i = 1, . . . , p

where Dt = M
q ≥ 1, and Ds = K

p ≥ 1.
♠

In the following we let

N := M × K ; Nloc := Dt × Ds; QP := q × p .

Let T (ADD
4DVar (ΔM × ΩK )) denote time complexity of ADD

4DVar (ΔM × ΩK ).
We now provide an estimate of the time complexity of each local algorithm, denoted as

T (ALoc
4DVar (Δ j × Ωi )). This algorithm consists of two loops. The outer-loop, over l-index,

for computing local approximations of J j i , and the inner-loop over m-index, for performing
Newton’s or Lanczos’ steps. The major computational tasks to be performed at each step of
the outer-loop is the computation of J j i . The major computational tasks to be performed at
each step l of the inner-loop, in case of G-N method (see algorithm ALoc

4DVar ), involving the
predictive model is8

1. the computation of the tangent linear model RO ji [Mk,k+1] (the time complexity of such
operation scales as the problem size squared) ,

2. the computation of the adjoint model RO ji [MT
k,k+1] ( which is at least 4 times more

expensive than the computation of RO ji [Mk,k+1],
3. the solution of the normal equations, involving at each iteration, two matrix-vector prod-

uctswith RO ji [MT
k,k+1] and RO ji [Mk,k+1] (whose time complexity scales as the problem

size squared).

As the most time consuming operation involving the predictive model is the computation
of the tangent linear model, we prove that

8 These assumptions hold true for the so-called local discretization schemes, i.e. those schemes where each
grid point receives contribution from a neighborhood (for instance, using finite difference and finite volume
discretization schemes as in [51]).
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Proposition 2 Let

P(Nloc) = ad N
d
loc + ad−1N

d−1
loc + . . . + a0, ad �= 0

be the polynomial of degree d = 2 denoting the time-complexity of the tangent linear model
RO ji [Ms,s+1]. Let m ji and l ji be the number of steps of the outer/inner-loop, of ALoc

4DV AR,
respectively. We get

T (ALoc
4DV AR(Δ j × Ωi ))) = O

(
m ji l ji P(Nloc)

)
Proof It is:

T (ALoc
4DV AR(Δ j × Ωi )) =

l j i ×
[
T (RO ji [Mk,k+1]) + m ji × O

(
T (RO ji [Mk,k+1]) + T (RO ji [MT

k,k+1])
)]

=
l j i ×

[
T (RO ji [Mk,k+1]) + m ji × O

(
T (RO ji [Mk,k+1]) + T (MT

ji )
)]

=
= O

(
m ji l ji P(Nloc)

)
(54)

♣
Let

mmax := max
j i

m ji ; lmax := max
j i

l j i .

Observe that mmax and lmax actually are the number of steps of the outer and inner loops of
ADD(ΔM × ΩK ), respectively. Let mG and lG denote the number of iterations of inner and
outer loop of AG(ΔM × ΩK ) algorithm, we give the following:

Definition 17 Let

ρG := mG × lG ; ρ j i := m ji × l j i ; ρDD := mmax × lmax

denote the total number of iterations of AG
4DV AR(ΔM × ΩK ), of ALoc

4DV AR(Δ j × Ωi ) and of
ADD

4DV AR(ΔM × ΩK ), respectively.

If we denote by μ(J ) the condition number of the DA operator , as it holds that [3]

∀ i, j μ(J Loc
4DV AR) < μ(J4DV AR)

then it is

ρ j i < ρG ,

and

ρDD < ρG .

This result says that the number of iterations of ADD
4DVar (ΔM × ΩK ) algorithm is always

smaller than the number of iterations of AG
4DVar (ΔM × ΩK ) algorithm. This is one of the

benefits of using the space and time decomposition.
Algorithm scalability is measured in terms of the strong scaling (which is the measure of

the algorithm’s capability to exploit performance of high performance computing architec-
tures in order tominimise the time to solution for a given problemwith a fixed dimension) and
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of theweak scaling (which is the measure of the algorithm’s capability to use additional com-
putational resources effectively to solve increasingly larger problems). A variety of metrics
have been developed to assist in evaluating the scalability of a parallel algorithm, speedup,
model throughput, scale up, efficiency are the most used. Each one highlights specific needs
and limits to be answered by the parallel algorithm. In our case, as we intend to mainly focus
on the benefits arising from the use of hybrid computing architectures we consider the so
called scale-up factor firstly introduced in [7].

First result straightforwardly derives from the definition of the scale-up factor:

Proposition 3 (DD-4DVar Scale up factor) The (relative) scale-up factor of ADD
4DVar (ΔM ×

ΩK ) related to Aloc
4DVar (Δ j × Ωi ), denoted as ScQP (ADD

4DVar (ΔM × ΩK )) is:

ScQP (ADD(ΔM × ΩK )) := 1

QP
× T (AG

4DVar (ΔM × ΩK ))

T (Aloc
4DVar (Δ j × Ωi ))

,

where QP := q × p is the number of sub domains. It is:

ScQP (ADD) ≥ ρG

ρDD
α(Nloc, QP) (QP)d−1 (55)

where

α(Nloc, QP) =
ad + ad−1

1
N + . . . + a0

Nd
loc

ad + ad−1
QP
Nloc

+ . . . + a0(QP)d

Nd
loc

,

and

lim
QP→Nloc

α(Nloc, QP) = β ∈]0, 1]

♠

Corollary 1 If ai = 0 ∀i ∈ [0, d − 1], then β = 1, i.e.

lim
QP→Nloc

α(Nloc, QP) = 1

Finally

lim
Nloc→∞ α(Nloc, QP) = 1.

♣

Corollary 2 If Nloc is fixed, it is

lim
QP→Nloc

Sc1,QP (ADD) = β · Nd−1
loc ;

while, if QP is fixed

lim
Nloc→∞ Sc1,QP (ADD) = const �= 0 .

♣
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From (55) it results that, considering one iteration of the whole parallel algorithm, the
growth of the scale up factor essentially is one order less than the time complexity of the
reduced model. In other words, the time complexity of the reduced model mostly impacts
the scalability of the parallel algorithm. In particular, as parameter d equal to 2, it follows
that the asymptotic scaling factor of the parallel algorithm, with respect to QP , is bounded
above by two.ECMWF

Besides the time complexity, scalability is also affected by the communication overhead
of the parallel algorithm. The surface-to-volume ratio is a measure of the amount of data
exchange (proportional to surface area of domain) per unit operation (proportional to volume
of domain). We prove that

Theorem 2 The surface to volume ratio of a uniform bi-dimensional decomposition of space-
time domain ΔM × ΩK , is

S
V = 2

(
1

Dt
+ 1

Ds

)
. (56)

Let S denote the surface of each subdomain, then

S = 2

(
M

q
+ K

p

)

and V denote its volume, then

V = M

q
× K

p
.

It holds that

S
V =

2
(
M
q + K

p

)
M
q × K

p

= 2

(
1

Dt
+ 1

Ds

)

and the (56) follows.

Definition 18 (Measured Software Scale-up) Let

Scmeas
1,QP (ADD) := T f lop(Nloc)

QP · (T f lop(Nloc) + Toh(Nloc))
. (57)

be the measured software scale-up in going from 1 to QP .
♠

Proposition 4 If

0 ≤ S

V
(Aloc

4DVar ) < 1 − 1

slocnproc(Aloc
4DVar )

,

then, it holds that

Scmeas
1,QP (ADD

4DVar ) = α(Nloc, QP)Sc1,QP (ADD
4DVar ) (58)
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with

α(Nloc, QP)meas(ADD
4DVar ) = T f lop(Nloc)

QP T f lop(Nloc)

slocnproc
+ QP Toh(Nloc)

=
slocnproc

T f lop(Nloc)

QP T f lop(Nloc)

1 + slocnprocToh(Nloc)

T f lop(Nloc)

.

(59)

If

α(Nloc, QP) := slocnproc

1 + slocnprocToh(Nloc)

T f lop(Nloc)

= slocnproc

1 + slocnproc
S
V

from (59) it comes the thesis in (58).
♣

In the following we will denote the measured scale up as Scmeas
1,QP (ADD

4DVar ) or as Sc
meas
1,QP (N ),

respectively.
Finally, last proposition allows us to examine the benefit on the measured scale up arising

from the speed up of the local parallel algorithm, mainly in the presence of a multilevel
decomposition, where slocnproc(Aloc

4DVar ) > 1.

Proposition 5 It holds that

slocnproc(Aloc
4DVar ) ∈ [1, QP] ⇒ Scmeas

QP (ADD
4DVar ) ∈]Sc1,QP (ADD

4DVar ), QP Sc1,QP (ADD
4DVar )[.

Proof – if slocnproc(Aloc
4DVar ) = 1 then

α(N , QP) < 1 ⇔ Scmeas
1,QP (ADD

4DVar ) < Sc1,QP (ADD
4DVar )

– if slocnproc(Aloc
4DVar ) > 1 then

α(N , QP) > 1 ⇔ Scmeas
1,QP (ADD

4DVar ) > Sc f
1,QP (ADD

4DVar );

– if slocnproc(Aloc
4DVar ) = QP then

1 < α(N , QP) < QP ⇒ Scmeas
1,QP (ADD

4DVar ) < QP · Sc f
1,QP (ADD

4DVar );
♣

��
We may conclude that

1. strong scaling: if QP increases and M × K is fixed, the scale up factor increases but the
surface-to-volume ratio increases.

2. weak scaling: if QP is fixed and M × K increases, the scale up factor stagnate and the
surface-to-volume ration decreases.

This means that it needs to find the appropriate value of the number of sub domains, QP ,
giving the right trade off between the scale up and the overhead of the algorithm.
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7 Scalability Results

Results presented here are just a starting point towards the assessment of the software
scalability. More precisely, we introduce simplifications and assumptions appropriate for
a proof-of-concept study in order to get values of the measured scale up of the one iteration
of the parallel algorithm.

As themain outcome of the decomposition is that the parallel algorithm is oriented to better
exploit the high performance of new architectures where concurrency is implemented both
at the coarsest and finest levels of granularity, such as a distributed memory multiprocessor
(MIMD) and a Graphic Processing Units (GPUs) [56], we consider a distributed computing
environment located in the University of Naples Federico II campus, connected by local-area
network made of

– PE1 (for the coarsest level of granularity): a Multiple-Instruction, Multiple-Data
(MIMD) architecture made of 8 nodes which consist of distributed memory DELLM600
blades connected by a 10 Gigabit Ethernet technology. Each blade consists of 2 Intel
Xeon@2.33GHz quadcore processors sharing the same local 16 GB RAM memory for
a total of 8 cores per blade and of 64 total cores.

– PE2 (for the finest level of granularity): a Kepler architecture of the GK110 GPU [46],
which consists of a set of 13 programmable Single-Instruction, Multiple-Data (SIMD)
Streaming Multiprocessors (SMXs), connected to a quad-core Intel i7 CPU running at
3.07GHz, 12 GB of RAM. For host(CPU)-to-device(GPU) memory transfers CUDA
enabled graphic cards are connect to a PC motherboard via a PCI-Express (PCIe) BUS
[48]. For this architecture the maximum number of active threads per multiprocessor is
2048, which means that the maximum number of active warps per SMX is 64.

Our implementation uses thematrix and vector functions in the Basic Linear Algebra Subrou-
tines (BLAS) for PE1 and the CUDA Basic Linear Algebra Subroutines (CUBLAS) library
for PE2. The routines used for computing the minimum of J on PE1 and PE2 are described
in [28] and [10] respectively.

The case study is based on the ShallowWater Equations (SWEs) on the sphere. The SWE
have been used extensively as a simple model of the atmosphere or ocean circulation since
they contain the essential wave propagation mechanisms found in general circulation models
[52].

The SWEs in spherical coordinates are:

∂u

∂t
= − 1

a cos θ

(
u

∂u

∂λ
+ v cos θ

∂u

∂θ

)
+
(
f + u tan θ

a

)
v − g

a cos θ

∂h

∂λ
(60)

∂v

∂t
= − 1

a cos θ

(
u

∂v

∂λ
+ v cos θ

∂v

∂θ

)
+
(
f + u tan θ

a

)
u − g

a

∂h

∂θ
(61)

∂h

∂t
= − 1

a cos θ

(
∂ (hu)

∂λ
+ ∂ (hu cos θ)

∂θ

)
(62)

Here f is the Coriolis parameter given by f = 2Ω sin θ , where Ω is the angular speed of
the rotation of the Earth, h is the height of the homogeneous atmosphere (or of the free ocean
surface), u and v are the zonal and meridional wind (or the ocean velocity) components,
respectively, θ and λ are the latitudinal and longitudinal directions, respectively, a is the
radius of the earth and g is the gravitational constant.
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We express the system of equations (60)–(62) using a compact form, i.e.:

∂Z
∂t

= Mt−Δt→t (Z) (63)

where

Z =
⎛
⎝ u

v

h

⎞
⎠ (64)

and

Mt−Δt→t (Z) =

⎛
⎜⎜⎝

− 1
a cos θ

(
u ∂u

∂λ
+ v cos θ ∂u

∂θ

)+ ( f + u tan θ
a

)
v − g

a cos θ
∂h
∂λ

− 1
a cos θ

(
u ∂v

∂λ
+ v cos θ ∂v

∂θ

)+ ( f + u tan θ
a

)
u − g

a
∂h
∂θ

− 1
a cos θ

(
∂(hu)
∂λ

+ ∂(hu cos θ)
∂θ

)

⎞
⎟⎟⎠

=
⎛
⎝ F1

F2
F3

⎞
⎠ (65)

We discretize (63) just in space using an un-staggered Turkel-Zwas scheme [37, 38], and
we obtain:

∂Zdisc

∂t
= Mt−Δt→t

disc (Zdisc) (66)

where

Zdisc =

⎛
⎜⎜⎝
(
ui, j
)
i=0,...,nlon−1; j=0,...,nlat−1(

vi, j
)
i=0,...,nlon−1; j=0,...,nlat−1(

hi, j
)
i=0,...,nlon−1; j=0,...,nlat−1

⎞
⎟⎟⎠ (67)

and

Mt−Δt→t
disc (Zdisc) =

⎛
⎜⎜⎝
(
Ui, j

)
i=0,...,nlon−1; j=0,...,nlat−1(

Vi, j
)
i=0,...,nlon−1; j=0,...,nlat−1(

Hi, j
)
i=0,...,nlon−1; j=0,...,nlat−1

⎞
⎟⎟⎠ (68)

so that

Ui, j = −σlon
ui, j
cos θ j

(
ui+1, j − ui−1, j

)

−σlat vi, j
(
ui, j+1 − ui, j−1

)
−σlon

g

p cos θ j

(
hi+p, j − hi−p, j

)

+2
[
(1 − α)

(
2Ω sin θ j + ui, j

a
tan θ j

)
vi, j

+ α

2

(
2Ω sin θ j + ui+p, j

a
tan θ j

)
vi+p, j

+ α

2

(
2Ω sin θ j + ui−p, j

a
tan θ j

)
vi−p, j

]
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Vi, j = −σlon
ui, j
cos θ j

(
vi+1, j − vi−1, j

)

−σlat vi, j
(
ui, j+1 − ui, j−1

)
−σlat

g

q

(
hi, j+q − hi, j−q

)

−2
[
(1 − α)

(
2Ω sin θ j + ui, j

a
tan θ j

)
ui, j

+ α

2

(
2Ω sin θ j+q + ui, j+q

a
tan θ j+q

)
ui, j+q

+ α

2

(
2Ω sin θ j−q + ui, j−q

a
tan θ j−q

)
ui, j−q

]

Hi, j = −α

{
ui, j
cos θ j

(
hi+1, j − hi−1, j

)

+ vi, j
(
hi, j+1 − hi, j−1

)
+ hi, j
cos θ j

[
(1 − α)

(
ui+p, j − ui−p, j

)

+ α

2

(
ui+p, j+q − ui−p, j+q + ui+p, j−q − ui−p, j−q

)] 1

p

+ [(1 − α)
(
vi, j+q cos θ j+q − vi, j−q cos θ j−q

)
+α

2

(
vi+p, j+q cos θ j+q − vi+p, j−q cos θ j−q

)

+α

2

(
vi−p, j+q cos θ j+q − vi−p, j−q cos θ j−q

)] 1
q

}

Thenumericalmodel dependson a combinationphysical parameters, including thenumber
of state variables in the model, the number of observations in an assimilation cycle, as well as
numerical parameters as the discretization step in time and in space domain are defined on the
basis of discretization grid used by data available, at repository Ocean Synthesis/Reanalysis
Directory of Hamburg University (see [15]).

To begin our data assimilation, an initial value of the model state is created by choosing
snapshots from the run prior to the start of the assimilation experiment and treating it as
realization valid at the nominal time. Then, the model state is advanced to the next time using
the forecastmodel, and the observations are combinedwith the forecasts (i.e., the background)
to produce the analysis. This process is iterated. As it proceeds, the process fills gaps in
sparsely observed regions, converts observations to improved estimates of model variables,
and filters observation noise. All this is done in a manner that is physically consistent with
the dynamics of the ocean as represented by the model. In our experiments, the simulated
observations are created by sampling the model states and adding random errors to those
values. A detailed description of the simulation, together with the results and the software
implemented, is presented in [11]. In the following, we are mainly interested to focus on
performance results.

The reference domain decomposition strategy uses the following correspondence between
QP and nproc:

QP ↔ nproc,

which means that the number of subdomains coincides with the number of available
processors.
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According to the characteristics of the physical domain in SWEs, the total number of grid
points in space is

M = nlon × nlat × nz .

Let assume that

nlon = nlat = n

while nz = 3. Since the unknown vectors are the fluid height or depth, and the two-
dimensional fluid velocity fields, the problem size in space is

M = n2 × 3 .

We assume a 2D uniform domain decomposition along the latitude-longitude directions, such
that

Ds := M

p
= nlocx × nlocy × 3 (69)

with

nlocx := n

p1
+ 2ox , nlocy := n

p2
+ 2oy , nz := 3 , (70)

where p1 × p2 = p.
Since the GPU (PE2) can only process the data in its global memory [55], in a generic

parallel algorithm execution, the host acquires these input data and sends them to the device
memory, which concurrently calculates the minimization of the 4DVar functional. To avoid
continuous relatively slow data transfer from the host to the device and in order to reduce the
overhead, it was decided to store the device with the entire work data prior to any processing.
Namely, the maximum value of Ds in (69) is chosen such that the amount of data related each
subdomain (we denote it with Datamem(Mbyte)) can be completely stored in the memory.

If we assume that nlocx = nlocy and we let nloc = nlocx = nlocy , as the global GPU
memory is of 5Gbyte, we have the values of usable nloc described in Table 1, Values of the
speed-up slocnproc in terms of gain obtained by using the GPU versus the CPU are reported in
Table 2. We note that CUBLAS routines allow to reduce in average by 18 times the execution
time necessary to a single CPU for the minimization part (Table 3).

The outcome we get from these experiments is that the algorithm scales up according
to the performance analysis (see Fig. 2). Indeed, as expected, as QP increases, the scale

Table 1 The amount of memory required to store data related to each subdomain on PE2 expressed in Mbyte

nloc 32 40 48 56 64 72 80 88

Datamem (Mbyte) 177 286 485 812 1313 2041 3057 4427

Table 2 Values of the speed-up
slocnproc in terms of gain obtained
by using the GPU versus the CPU

nloc 32 40 48 56 64 72 80 88

Tblas
Tcublas

15.3 17.5 18.08 19.0 19.8 20.2 22.5 20.54

The CUBLAS routines allow to reduce in average by 18 times the exe-
cution time necessary to a single CPU for the minimization part
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Table 3 Weak scalability of one iteration of the parallel algorithm ADD
4DVar with nloc = 32 computed using

the measured software Scale-up Scmeas
1,QP defined in (57)

QP 2 4 8 16 32 64

Problem size 6.1 · 103 1.2 × 104 2.4 · 104 4.9 · 104 9.8 · 104 1.9 × 105

Scmeas
1,QP 3.3 · 100 1.54 · 101 5.41 · 101 1.23 · 102 2.30 · 102 3.2 × 102

Fig. 2 Weak scalability of one
iteration of the parallel algorithm
ADD
4DVar with nloc = 32

computed using the measured
software Scale-up Scmeas

1,QP
defined in (57)

up factor increases and the surface-to-volume ratio increases, too, so that performance gain
tends to become stationary. This the inherent tradeoff between speed up and efficiency of any
software architecture.

8 Conclusions

We provided the whole computational framework of a space-time decomposition approach,
including the mathematical framework, the numerical algorithm and, finally, its performance
validation. We measure performance of the algorithm using a simulation case study based
on the SWEs on the sphere. Results presented here are just a starting point towards the
assessment of the software scalability. More precisely, we introduce simplifications and
assumptions appropriate for a proof-of-concept study in order to get values of the measured
scale up of the one iteration of the parallel algorithm. Anyway, the overall insight we get from
these experiments is that the algorithm scales up according to the performance analysis. We
are currently working on the development of a flexible framework ensuring efficiency and
code readability, exploiting future technologies and equipped with a quantitative assessment
of scalability [57]. In this regard, we could combine the proposed approach with the PFASST
algorithm. Indeed, PFASST could be concurrently employed as local solver of each reduced-
space PDE-constrained optimization subproblem, exposingeven more temporal parallelism.

This framework will allow designing, planning and running simulations to identify and
overcome the limits of this approach.
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