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Abstract: The opportunities related to the adoption of synthetic gaseous fuels derived from solid
biomass are limited by the issues caused by the peculiarities of the syngas. The aim of this paper is
to analyze several possible layouts of hybrid energy systems, in which the main thermal source is
the organic fraction of municipal solid wastes. The case of a small community of about 1000 persons
is analyzed in this paper. The examined layouts coupled an externally fired micro gas turbine with
a waste heat recovery system based on both an Organic Rankine Cycle and supercritical CO2 gas
turbines. A thermodynamic analysis has been carried out through the use of the commercial software
Thermoflex 31, considering the losses of each component and the non-ideal behavior of the fluids.
The results of the numerical analysis highlight that the introduction of a waste heat recovery system
leads to an increase of at least 16% in the available net power, while a cascade hybrid energy grid can
lead to a power enhancement of about 29%, with a considerable increase also in the energetic and
exergetic global efficiencies.

Keywords: waste heat recovery; sCO2 gas turbine; externally fired micro gas turbine; integrated
energy system

1. Introduction

Biomass is a renewable source which can contribute to diversifying energetic sources,
reducing the dependency on fossil fuels, and also controlling greenhouse emissions [1].

In the early years of the XXI s., the research community’s interest in the use of
biomass as an energy source grew, and in recent years, it has increased again [2]. While
energy-dedicated crops involve several ethical issues, byproducts of the agricultural in-
dustries or pruning and, more generally, organic waste residuals allow us to overcome
these issues and to consider biomass a valid energy source [1,3]. Based on the International
Energy Agency’s considerations, the world is using just a minimal fraction of the potential
to produce gas from organic waste, while this could cover around 20% of the current global
demand for gas [4].

Biomass gasification can reduce the issues related to its direct combustion, since
the combustion of syngas results in cleaner and more efficient gas production, even if
it provides other issues related to the cost and efficiency of the process. In addition, a
critical aspect is the difficulty of achieving satisfactory compatibility between syngas and
the conversion systems based on engines [5].

In this context, externally fired (or indirect fired) gas turbines (EFGTs) can represent
a suitable solution to operate with biomass as fuel, since the thermal source heats the
working fluid through a heat exchanger and, consequently, the combustion products do
not directly participate in the thermodynamic cycle. Thus, the requirements related to fuel
cleaning and composition can be lowered [6].
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EFGTs can burn solid fuels or critical liquid or gaseous fuels whose use in gas turbines
involves several issues because the problems related to exhaust composition are shifted
from gas turbine components to the heat exchanger, which assumes a fundamental role.
It has to ensure an efficient heat exchange at high temperature in order to guarantee a
satisfactory turbine inlet temperature, even in the presence of an aggressive working fluid
rich in particulates [7,8]. However, at the same time, the opportunities related to gasification
in small-scale power plants have been analyzed in the literature for both internally and
externally fired gas turbines [9,10].

Several layouts based on externally fired micro gas turbines (EFMGTs) have been
studied in the literature through the adoption of various numerical approaches, as
shown in [11,12].

Traverso et al. analyzed the use of EFMGTs in the case of the combustion of solid
biomass. In their proposed layout, the traditional internal combustor of a regenerative
micro gas turbine (MGT) is replaced by a heat exchanger and an external combustion
chamber, located at the exit of the turbine [13]. In the dual-fuel configuration, both in-
ternal combustion and external furnace/combustion chambers coexist, as proposed by
Pantaleo et al. [14] and Riccio and Chiaramonti [15]. In these cases, fresh air is first heated
by the high-temperature exhausts of the biomass burned in a furnace, and then, it partici-
pates in combustion in a traditional combustor. These layouts allow for the flexible use of
both solid and gaseous fuels.

A limit of the externally fired gas turbine is the low efficiency but the high temperature
of the exhausts allows us to consider waste heat recovery (WHR) a viable solution to
increase the performance and overall efficiency of the hybrid energy system.

The subcritical Organic Rankine Cycle (ORC) is the reference technology for converting
waste heat to electricity [16]. In particular, based on the temperature levels typical of the
exhaust gases (the heat source), an Organic Rankine Cycle (ORC) is often considered the
bottoming cycle to be coupled with micro gas turbines [17–19]. The integration of an
MGT with a bottoming ORC allows us to increase the combined cycle efficiency by up
to 15% [20].

Regarding the adoption of biomass-derived fuels in MGT-ORC layouts, in a previous
article, the authors proposed an integrated energy system based on MGT, ORC and a
gasifier in which the fuel was a mix of the syngas and biogas obtained via gasification and
anaerobic digestion, respectively. The results of both thermodynamic and CFD simulations
highlighted that syngas/biogas blends can contribute to increasing the allowability of
these fuels in an energy system designed for natural gas and also to extending the limits
related to their adoption, without any redesign of the combustion chamber and/or fuel
feeding system [21].

EFMGTs integrated with waste heat recovery systems can be a solution to overcome
both the issues related to the use of biofuels in micro gas turbines and the low efficiency
typical of EFMGTs. The integration of ORC systems with EFMGTs can lead to a further,
different critical issue: the temperature levels of the heat source. In fact, ORC systems are
a valid technical solution for waste heat recovery when the heat source temperature is
between 100 ◦C and 400 ◦C and the upper limit is imposed by the flammability, low chemical
stability and risk of decomposition of the organic fluids at high temperature [22,23].

For higher heat source temperature levels, supercritical carbon dioxide (sCO2) closed
Brayton cycles can be considered a solution, also taking in account that some of the most
suitable organic fluids in terms of global warming potential (GWP) and ozone depletion
potential (ODP) perform better at medium–low temperature levels. The peculiarities of
CO2 in transcritical and supercritical conditions allow for its use also in cases of heat pumps
for domestic hot water or room heating [24].

The sCO2 Brayton cycle presents many advantages with respect to conventional steam
Rankine cycles or Brayton cycles due to its simplicity, compactness and higher efficiency,
and it is actually considered a valid solution in nuclear, geothermal, solar thermal and
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waste heat recovery applications. Several layout schemes are considered to obtain the best
performance levels: recompression, regenerative, intercooled and so on [25,26].

Furthermore, the sCO2 closed Brayton cycle allows for further cascade waste heat
recovery, through the integration of sCO2 gas turbines and ORC, to recuperate the residual
thermal power and to further increase the overall power [27].

Regarding any economic evaluation, it is important to consider that the market of
EFMGTs is currently very limited and that the sCO2 gas turbine is a novel technology.
Nevertheless, various studies can help us to better define this point. The utilization of
biomass-derived fuels in EFGTs is economically sustainable when biomass is available as a
product or byproduct in abundance without transport costs [6]. However, the collaboration
between gasification and an internal combustion engine appears to be less expensive
with respect to EFGT systems, although increasing interest in this technology can lead
to a reduction in costs [6,28]. The heat exchanger represents one of the most expensive
components and the cost increases with the maximum temperature allowed [6,29].

Ancona et al. [30] compared bottoming cycles based on sCO2 GTs and the ORC,
analyzing the investment costs, starting from given correlations and references [31,32].
They concluded that the plant investment cost is higher in the case of sCO2 GTs compared
to the use of an ORC. This is primarily due to the cost of sCO2 heat exchangers.

The aim of this paper is to identify a small-scale hybrid energy system able to use the or-
ganic fraction of municipal solid waste as fuel with satisfactory performance levels. To this
end, several hybrid energy systems based on an externally fired micro gas turbine with a
dual-fuel option have been examined and compared, considering both traditional fossil fuel
(i.e., natural gas) and syngas. The quantity and composition of syngas are derived from [33],
with the understanding that the solid biomass flow is limited to approximately 100 kg/h,
a value estimated based on the waste production of a community of approximately
1000 individuals.

The externally fired solution allows us to overcome the constraints related to the use of
syngas, as highlighted in [21], also considering the presence of impurities that may damage
the turbine blades. The lower overall efficiency, which is typical of externally fired gas
turbines, can be enhanced through the utilization of the dual-fuel option and the waste
heat recovery system.

From this perspective, the higher temperatures of the exhausts are useful to increase
the quality of the wasted heat. Nine different configurations have been analyzed in terms
of energetic and exergetic performance indices: the dual-fuel EFMGT and eight inte-
grated layouts with an ORC and/or sCO2 gas turbines. A comparative analysis allows
for the identification of the positive effects of integrating these energy systems into a
novel one. This analysis helps us to determine the optimal layout in terms of energetic
and exergetic efficiency and net power, also considering the number of components and
heat exchangers.

2. Hybrid Energy System Layout

The aim of this study is to examine different hybrid energy systems based on an exter-
nally fired micro gas turbine derived from a commercial MGT, model Turbec T100 (currently
manufactured by Ansaldo Energia (Genoa, Italy) as AE T100), which is a regenerative
single-shaft plant able to achieve an overall efficiency close to 30% at full load and in design
ambient conditions [27].

The proposed EFMGT follows a dual-fuel scheme already shown in the literature [9,10]
and is shown in Figure 1 (layout 0). The gasification system is not depicted for the sake
of simplicity. The introduction of the dual-fuel strategy allows us to increase both the
overall energetic efficiency and fuel flexibility. Indeed, the proposed layout can operate in
three different modes: pure natural gas, pure biomass, and dual-fuel mode. The use of a
traditional fuel, i.e., methane, permits us to compensate for any variation in the availability
or composition, and consequently, the lower heating value, of biomass. In this way, the
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nominal load can be guaranteed in cases of a scarcity of biomass. It is clear that as the
percentage of methane increases, the electrical efficiency also rises.
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Figure 1. Layout 0: dual-fuel externally fired micro gas turbine (EFMGT).

The first two waste heat recovery (WHR) bottoming systems are a recuperated Organic
Rankine Cycle (ORC) (layout 1) and a simple sCO2 closed Brayton cycle (SCBC) (layout 2),
both represented in Figure 2. In all layouts which will be depicted, air/gas flows are
represented by black lines, while sCO2 and the organic fluid are reported in red and
orange, respectively.

Energies 2024, 17, x FOR PEER REVIEW 4 of 16 
 

 

nominal load can be guaranteed in cases of a scarcity of biomass. It is clear that as the 

percentage of methane increases, the electrical efficiency also rises. 

 

Figure 1. Layout 0: dual-fuel externally fired micro gas turbine (EFMGT). 

The first two waste heat recovery (WHR) bottoming systems are a recuperated Or-

ganic Rankine Cycle (ORC) (layout 1) and a simple sCO2 closed Brayton cycle (SCBC) 

(layout 2), both represented in Figure 2. In all layouts which will be depicted, air/gas flows 

are represented by black lines, while sCO2 and the organic fluid are reported in red and 

orange, respectively.  

In these schemes, the thermal power available at the exhausts of the EFMGT repre-

sents the input of a waste heat recovery system. Layout 1 is derived from the MGT-ORC–

gasifier hybrid system proposed in [21].  

  

Figure 2. EFMGT plus ORC (left, layout 1) and EFMGT plus simple CO2 GT (right, layout 2). 

The further layouts present an increasing complexity of WHR with respect to the 

simple Brayton cycle (layout 1), where heat exchangers, valves or turbines are added.  

Figure 3 shows the schemes with a recuperated SCBC (layout 3) and a preheated and 

recuperated supercritical CO2 gas turbine (sCO2 GT) (layout 4), while layout 5 is a partially 

preheated and recuperated sCO2 GT (Figure 4, left). The latter cases (layouts 6, 7 and 8) 

combine an sCO2 GT and ORC in a cascade cycle: the sCO2 GT receives heat from the 

topping EFMGT, and in turn, it gives off heat to the latter energy system. The ORC system 

is a simple one, without any further internal heat exchanger, as shown in Figure 2, due to 

the need to keep the temperature at the sCO2 compressor inlet higher than the critical 

temperature but as close as possible to that value. The three cascade layouts differ among 

them as regards the middle cycle: the first is a simple sCO2 gas turbine (layout 6, Figure 

4), while the others are a recuperated one (layout 7) and a preheated and recuperated one 

(layout 8), and they are depicted in Figure 5.  

STACK

~

CC

Methane

REC

Syngas

C1
EFMGT

TURBINECOMPRESSOR

Layout 0

STACK

~

Methane

REC

Syngas
EFMGT

TURBINECOMPRESSOR

~TURBINE

ORC

HX

water

Air/gas
HFO - R1336mzz(Z) 

Water

Layout 1

REC1

CONDENSER

CC

C1

TURBINE~

sCO2 GT

water Layout 2

STACK

~

Methane

REC

Syngas
EFMGT

TURBINECOMPRESSOR

HX

CC

C1

COMPRESSOR

HX

Air/gas
Supercritical CO2

Water

Figure 2. EFMGT plus ORC (left, layout 1) and EFMGT plus simple CO2 GT (right, layout 2).

In these schemes, the thermal power available at the exhausts of the EFMGT represents
the input of a waste heat recovery system. Layout 1 is derived from the MGT-ORC–gasifier
hybrid system proposed in [21].

The further layouts present an increasing complexity of WHR with respect to the
simple Brayton cycle (layout 1), where heat exchangers, valves or turbines are added.

Figure 3 shows the schemes with a recuperated SCBC (layout 3) and a preheated and
recuperated supercritical CO2 gas turbine (sCO2 GT) (layout 4), while layout 5 is a partially
preheated and recuperated sCO2 GT (Figure 4, left). The latter cases (layouts 6, 7 and 8)
combine an sCO2 GT and ORC in a cascade cycle: the sCO2 GT receives heat from the
topping EFMGT, and in turn, it gives off heat to the latter energy system. The ORC system
is a simple one, without any further internal heat exchanger, as shown in Figure 2, due
to the need to keep the temperature at the sCO2 compressor inlet higher than the critical
temperature but as close as possible to that value. The three cascade layouts differ among
them as regards the middle cycle: the first is a simple sCO2 gas turbine (layout 6, Figure 4),
while the others are a recuperated one (layout 7) and a preheated and recuperated one
(layout 8), and they are depicted in Figure 5.

The increasing complexity of the cycles is obviously translated into a greater com-
plexity in terms of the number and type of components and the costs. Table 1 reports
the number of heat exchangers that each layout needs to operate. The heat exchanger
is one of the most important and critical components of this type of plant and the most
impactful component in terms of weight, volume and cost. The number of heat exchangers
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therefore becomes one of the factors that have to be analyzed coupled with the energetic
and exergetic performance parameters to identify the most suitable layout configuration.
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Figure 3. EFMGT plus recuperated sCO2 GT (left, layout 3); EFMGT plus recuperated and preheated
sCO2 GT (right, layout 4).
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Figure 4. EFMGT plus partially recuperated and preheated sCO2 GT (left, layout 5); EFMGT plus
simple sCO2 GT and simple ORC (right, layout 6).
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Figure 5. EFMGT plus recuperated sCO2 GT +ORC (left, layout 7); EFMGT plus preheated and
recuperated sCO2 GT + ORC (right, layout 8).

Table 1. Layouts and components.

Layout Brief Description Heat Exchangers

0 EFMGT 1
1 EFMGT + ORC 4
2 EFMGT+ sCO2 GT 3
3 EFMGT+ recuperated sCO2 GT 4
4 EFMGT + preheated recuperated sCO2 GT 5
5 EFMGT + partially preheated and rec. sCO2 GT 5
6 EFMGT + sCO2 GT + ORC 5
7 EFMGT + recuperated sCO2 GT + ORC 6
8 EFMGT + preheated and recuperated sCO2 GT + ORC 6

3. Hybrid Energy System Modeling

The thermodynamic analysis of the hybrid energy system is carried out through the
use of the commercial software Thermoflex, provided by Thermoflow Inc. (Southborough,
MA, USA) [34]. This software allows for 0D steady-state analysis based on mass and
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energy balancing, considering also maps, equations and corrective factors to simulate the
off-design conditions. Thermoflex enables the REFPROP—NIST property function for the
gas stream to be used as required [35], which has great importance to correctly simulate
the physical properties of CO2 in supercritical conditions, especially close to the critical
point [36,37]. In fact, the use of the REFPROP database, which is based on the Span–Wagner
Equation of State [38], seems to be one of the most accurate approaches to simulate indirect
or direct fired supercritical CO2 Brayton cycles [39].

The dual-fuel externally fired micro gas turbine is modeled starting from a previous
validated numerical model of a commercial MGT, model Turbec T100, actually provided by
Ansaldo Energia as AE T100 [40]. The compressor and turbine are modeled using charac-
teristic maps taken from the literature [41] and already used in numerical–experimental
comparisons [42]. The internal combustion chamber and the heat exchanger efficiencies are
also considered, as well as the pressure and thermal losses of each component.

In the absence of experimental data, it is important to highlight that numerical models
built in Thermoflex have been validated for micro gas turbines derived from AE T100 [43,44],
as well as for sCO2 gas turbines [45].

The simulations are carried out considering some constraints. For the sake of simplicity,
the turbine inlet temperature is fixed at 1200 K, according to the design value reported by
the manufacturer, as shown in [42,43]. Indeed, radial turbines of small-scale gas turbines
cannot operate with the higher temperatures typical of larger plants. With this constraint,
the thermodynamic model calculates the fuel mass flow to reach this temperature level.

The maximum temperature of the exhaust gases at the inlet of the recuperator is fixed
at 1173 K, considering the state of the art of high-temperature heat exchangers for externally
fired gas turbines and the advantages of ceramic HTHX technology [6]. Table 2 reports the
design parameters of the EFMGT.

Table 2. EFMGT’s main characteristic data.

Description Value

Compressor and turbine performance Maps
Combustor efficiency 97%
Recuperator efficiency 90%

Turbine inlet temperature, K 1200
HX inlet temperature, K 1173

The introduction of the ORC implies the selection of the working fluid, which is one of
the most critical issues related to the design of Organic Rankine Cycles. In fact, following
the Montreal Protocol and its amendments [46,47], hydrochlorofluorocarbons (HCFCs) are
scheduled to be phased out by 2020 in developed countries and by 2030 in developing
countries, while hydrofluorocarbons (HFCs) will be reduced by 85% by 2036 in developed
countries and by 80% by 2045 in developing countries.

Thus, the research focus on ORCs is currently mainly aimed at the individuation of
novel working fluids. Hydrofluorolefins (HFOs) and hydrochlorofluoroolefins (HCFOs)
can represent promising alternatives due to their very low global warming potential
(GWP) and ozone depletion potential (ODP). The HCFOs R1233d(E) and R1224yd(Z)
can be considered good alternatives to R245fa, one of the main used organic working
fluids in existing ORC plants, because of their similar thermophysical properties with a
significantly lower GWP [48–51]. HFOs such as R1336mzz(Z) can be considered for the
same reasons [48–50,52,53].

The use of R1336mzz(Z) was experimentally investigated as a low-GWP working fluid
in an ORC in the case of heat source temperatures between 140 ◦C and 160 ◦C and heat
sink temperatures between 25 ◦C and 40 ◦C in [52]. In that paper, the authors stated that
similar values of the overall expander–generator efficiency are obtained by comparing
the two working fluids, and the electrical efficiency obtained with the HFO-1336mzzz-
Z is higher than the value obtained with the HFC-245fa. For these reasons, an HFO,
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cis-1,1,1,4,4,4-hexaflouro-2-butene R1336mzz(Z), is chosen as the working fluid of the ORC
plant because of its low values of ODP and GWP, its low toxicity and flammability, and its
behavior [42,52]. On the other hand, the temperature levels of the heat source at which this
organic fluid operates are lower than the exhaust gas temperatures.

Table 3 reports the thermophysical properties of R1336mzz(Z) [52,53].

Table 3. R1336mzz(Z)’s thermophysical properties.

Description Value

Chemical formula CF3CHCHCF3
ODP 0

GWP 100 years 2
ASHRAE Standard 34 Safety Class [54] A1

OEL, ppm 500
Atmospheric life time, year 0.060274

Molar weight, kg/kmol 164

A1 denotes that R1336mzz(Z) is low toxicity (A) and presents no flame propagation
(1) when tested as per the standard.

The efficiency of the ORC strongly depends on the pressure ratio: the higher the
pressure ratio, the higher the performance of the ORC. In this study, the pressure ratio is
fixed at 5.6, considering experimental values already published in the literature [55].

The expander efficiency has been fixed at 60% considering that scroll expander isen-
tropic efficiencies can also reach 65% in the case of R245fa as the working fluid [56] and
that the mechanical isentropic efficiency is lower when R1336mzz(Z) replaces R245fa [57].

The ORC design parameters are shown in Table 4.

Table 4. ORC’s main characteristic data.

Description Value

Pump inlet pressure, bar 0.8
Turbine inlet pressure, bar 5.6

Expander efficiency, 60%
HX efficiency 90%

The identification of the design parameters of the supercritical CO2 micro gas turbine
can be achieved considering the scarcity of significant experimental data and the abundance
of results of numerical simulations available in the literature.

The experiments are mainly conducted on prototypes with very low rotating com-
ponent efficiencies, while the numerical/theoretical design parameters are considerably
greater [27]. For these reasons, 80% can be considered a conservative and usable value for
the efficiencies of the rotating components.

The modeling of the recuperator represents one of the main issues, since the significant
variations in the thermodynamic properties of sCO2 are close to the critical point: in both
temperature lines, the fluid is in supercritical conditions and the different heat capacities
of sCO2 could lead to internal pinch points near to zero. This problem mainly affects the
low-temperature recuperators, while at high temperatures and pressures, the difference
in the specific heat is not significant [12]. This aspect can be overcome by modeling the
recuperator as two or multiple heat exchangers in a series, when needed, following the
solution proposed by Scaccabarozzi et al. [58]. In that specific case, the HX model does not
present temperature levels that can lead to these issues.

The pressure at the inlet of the turbine is close to 200 bar, with a compressor ratio close
to 2.6, since the compressor inlet pressure is fixed at 75 bar. Table 5 reports the sCO2 GT
design parameters.
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Table 5. sCO2 GT’s main characteristic data.

Description Value

Compressor p. efficiency 80%
Turbine p. efficiency 80%

Compressor inlet pressure, bar 75
Turbine inlet pressure, bar 200

HX efficiency 90%

The sizing of the hybrid energy grid follows some steps: First of all, the input thermal
power has been defined. By fixing this constraint, the distribution between biomass and
methane is calculated considering the limits of the turbine inlet combustor (1200 K) and
that methane has to be considered a boost to obtain that value. In addition, the temperature
of the cold source has to be fixed. Once the hot and cold sources are fixed, a parametrical
analysis is carried out in order to identify the working fluids’ mass flow able to guarantee
the best performance levels.

The simulations must consider a further constraint: the carbon dioxide temperature at
the compressor inlet has to be greater than its critical temperature and as close as possible
to that value. The ORC details have to be chosen taking into account this aspect.

Finally, the gasifier has been modeled using a zero-dimensional approach. The model,
which is embedded in Thermoflex, uses the reaction reported in (1), achieving thermochem-
ical equilibrium between the species involved in this reaction.

CHxOyNz + wH2O + m(O2 + 3.76 N2)→ nH2 H2 + nCOCO + nH2O H2O + nCH4 CH4 +
( z

2
+ 3.76 m

)
N2 (1)

Further details on the gasification system can be found in [27]. A key parameter in
defining syngas quality and composition is the Equivalence Ratio (Equation (2)):

ER =

.
mair

.
mbiomass

/( .
mair

.
mbiomass

)
stoich

(2)

Its value should be neither too low (<0.2) due to technological issues nor too high
(>0.4), which can lead to combustion rather than gasification. Therefore, the Equivalence
Ratio has been set at 0.30, an optimal value as shown in [59]. Consequently, the actual
air/fuel ratio has been fixed at 1.96.

The composition of the solid fuel is listed in Table 6, while the syngas composition
and characteristics are depicted in Table 7.

Table 6. Solid fuel (organic fraction of municipal solid wastes) analysis.

Description Value

Weight percent of ash 14.18 %
Weight percent of moisture 20 %
Weight percent of carbon 34.84 %

Weight percent of hydrogen 3.93 %
Weight percent of oxygen 24.45 %

Weight percent of nitrogen 1.46 %
Weight percent of sulfur 1.14 %

LHV 12,483 kJ/kg
HHV 13,829 kJ/kg
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Table 7. Syngas composition and characteristics.

Description Value

Hydrogen H2 14.81 %
Water vapor H2O 12.78 %

Nitrogen N2 46.15 %
Carbon monoxide CO 14.82 %

Carbon dioxide CO2 10.58 %
Methane CH4 0.0004 %

Hydrogen sulfide H2S 0.3027 %
Carbonyl sulfide COS 0.0097 %

Argon Ar 0.5504 %
LHV 3221.7 kJ/kg
HHV 3718 kJ/kg

4. Energetic and Exergetic Performance Analysis of the Hybrid Energy Systems

The electric efficiency of the hybrid energy system (HES) is defined as the ratio between
the sum of net powers of each component and the primary thermal power in the input:

ηhes =
PEFMGT + PsCO2 GT + PORC

.
Qbio +

.
QCH4

(3)

The net power is defined as the difference between the power provided by the turbine
and the value absorbed by the compressors or pumps. These values also consider the
presence of the generator, with the generator efficiency fixed, for simplicity, at 94%. In
addition, PEFMGT is calculated considering both fuel compressors’ (natural gas and syngas)
power consumption: the nominal power of the gaseous fuel compressor is 3 kW [35]. The
thermal power in the input is evaluated considering the contribution of methane (

.
QCH4)

and the thermal power of the solid biomass in the input to the gasification system (
.

Qbio).
The gasification efficiency is close to 72%.

Another performance parameter of interest regards the net efficiency of the hybrid
energy system calculated without considering the presence of the gasification system, thus
neglecting the losses related to the gasification process and directly considering the thermal
power of the syngas fuel at the fuel compressor inlet (

.
Qsyngas). This hybrid energy system’

(HES) net efficiency is defined as follows:

ηhes_net =
PEFMGT + PsCO2 GT + PORC

.
Qsyngas +

.
QCH4

(4)

The waste heat recovery efficiency ηWHR is defined in Equation (5) and is equal to the
ratio between the power obtained by the bottoming cycles and the total amount of available
thermal power at the exhaust. For the sake of simplicity, ∆HHXMGT is the difference between
the enthalpy of exhaust gases at the inlet of the heat exchanger and at the stack, with the
stack temperature fixed at 373 K. This fixed value is chosen to allow for the comparison
between waste heat recovery solutions that can lead to different exhaust temperatures,
considering the maximum available thermal power.

ηWHR =
PsCO2 GT + PORC
.

mgas × ∆HHXMGT

(5)

The global electrical efficiency of each component can be obtained once we have
defined the thermal power in the input of each thermal cycle (Equations (3)–(5)).

ηEFMGT =
PEFMGT

.
Qbio +

.
QCH4

(6)

ηsCO2GT =
PsCO2 GT

.
mgas × ∆HHXMGT

(7)
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ηORC =
PORC

.
msCO2 × ∆HHXsCO2GT

(8)

The exergy in the input to the waste heat recovery system is the exergy transferred
to the supercritical carbon dioxide from the exhausts of the EFMGT and is equal to
∆ξHX =

.
mgas × (∆H HXMGT

− T0 × ∆sHXMGT ), considering the ambient temperature as the
reference condition (T0 = 293.5 K). The exergetic efficiency of waste heat recovery is reported
in Equation (9):

ηexWHR =
PsCO2 GT + PORC

∆ξHX
(9)

5. Results

The best layout can be identified through a comparison of both the net power and
global efficiency of the eight hybrid layouts, when compared with the reference case (layout
0—dual-fuel EFMGT), also considering the exergetic efficiency. The comparison has been
performed in identical conditions in terms of the turbine inlet temperature (1200 K) and
heat exchanger inlet temperature (1173 K) of the EFMGT and in ambient conditions. The
simulations have been carried out considering identical values of heat exchanger efficiencies
and losses. Solid biomass availability has been calculated considering approximately
100 kg/h, a value estimated based on the waste production of a community of around
1000 individuals. For the organic fraction of urban solid waste, whose composition is listed
in Table 6, this corresponds to about 0.078 kg/s of syngas fuel.

For each layout, the mass flow of the WHR working fluid, which gives the best
power level, is identified through a parametric analysis. The resulting values are reported
in Figure 6.
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Figure 6. Working fluid mass flow of WHR energy system.

Regarding the HFO mass flow, layout 1 features a regenerative ORC as the bottoming
system, whereas the ORCs embedded in layouts 6, 7 and 8 follow a simple Rankine cycle,
without the internal recuperator. In the first case, the organic fluid mass flow is calculated
to maximize the new power. In the other cases, the mass flow is evaluated both to optimize
the net power and to allow the upper cycle to operate with a compressor inlet temperature
close to or greater than the CO2 critical temperature.

Regarding the sCO2 mass flow, the increasing complexity of the layout leads to a
greater value of the optimal mass flow.

The performance of the proposed plant arrangements in terms of electric powers
and efficiencies is depicted in Figures 7 and 8, respectively. The first column of Figure 7
shows (in blue) that the EFMGT is barely capable of delivering about 80 kW. The dual-fuel
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externally fired configuration allows us to limit fuel compressor power consumption, which
is a severe constraint for the syngas-fueled micro gas turbines, as shown in [21]. In addition,
the net power can be enhanced up to 98 kW if a WHR (SCBC, in orange, or ORC, in gray) is
coupled with the dual-fuel EFMGT and up to 103 kW when both WHR systems are adopted
in a cascade system. The introduction of a WHR system leads to an increase of 16–24%
in the available net power, depending on the chosen layout, while the integration of both
WHR systems can lead to an increase of about 29% with respect to the reference case. For
all cases, the power output of the gas turbine is almost the same, with slight differences
related to the back pressure induced by the number of heat exchangers at the turbine exit.
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The chart in Figure 8 shows the plant’s efficiency, as defined by Equation (3), with
gray bars, the waste heat recovery efficiency with a blue line and the waste heat recovery
exergy efficiency with an orange line; the WHR efficiency and the WHR exergy efficiency
have been defined as in Equations (5) and (9), respectively. The number enclosed within
the rectangle is a complexity index of the layout in terms of the number of required heat
exchangers. The plant’s efficiency for the EFMGT is 18.4% and is the lowest of all of the
proposed layouts; when a single WHR system is used, the efficiency reaches 23%, while
using both sCO2 and ORC-bottomed plants, the efficiency achieves its maximum value
of 24%. The WHR energetic and exergetic efficiencies increase with the increase in layout
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complexity. The three layouts with both WHR systems in cascade present the highest
performance, almost 15% and 37% of the energy and exergy WHR efficiency.

A further evaluation can be conducted considering the thermal power which is avail-
able to the EFMGT, neglecting the losses related to the gasification system. In this way,
the thermal power in the input is the sum of the contributions from both syngas and
methane. This allows for the evaluation of the net efficiency of the hybrid energy system
(Equation (4)) compared to the efficiency of the EFMGT. The resulting energetic parameters
are shown in Figure 9: the continuous lines refer to the net efficiency, without considering
the presence of the gasifier, while the dashed–dotted lines represent the overall efficiency
of the HES. It is clear that the overall system’s efficiency is affected by the efficiency of
the gasifier, while the efficiency of the HES alone results in being greater than 30% for
layouts 5, 6, 7 and 8.
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Figure 9. Hybrid energy system efficiencies ((*) the gasification system losses are neglected).

The emission levels of carbon dioxide are strictly connected to the use of methane as a
secondary fuel and do not significantly vary with changes in WHR layouts. In addition, the
organic fraction of municipal waste can be considered a renewable and carbon-neutral (or near-
neutral) energy source, meaning that only a small portion of CO2 emissions can be considered
GHG emissions. Figure 10 shows the emissions of CO2 calculated in kilograms for MWh.
Considering the contribution of the OFSMW, more than 80% of the CO2 emissions are neutral.
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The results have highlighted that the cascade layouts enhance the overall performance
levels in terms of both energetic and exergetic efficiency. At the same time, this choice
requires greater complexity and, consequently, higher costs. The number of heat exchangers
is indicative as the HX represents the heaviest, bulkiest and most expensive component.

6. Conclusions

A small-scale hybrid energy system, which is based on an externally fired gas turbine,
ORC and sCO2 gas turbine, has been defined in order to study the opportunities related to
the use of a syngas derived from the organic fraction of municipal waste. A preliminary
parametric analysis has been carried out to identify the optimal working fluid mass flows
when the quantity of the organic fraction of municipal waste is given and the temperature
constraints have been fixed. In this study, the efficiencies and thermal/pressure losses of
each component have been considered.

A performance analysis in terms of net power, thermal efficiency and exergetic effi-
ciency has been carried out for eight different hybrid energy system layouts to obtain the
best compromise between higher performance levels and enhanced complexity.

The results of the simulations highlight that the dual-fuel configuration of the EFMGT
expects to attain about 80 kW with a thermal efficiency of 18.4%, considering all of the
losses, including those related to the gasification system, while the thermal efficiency of the
EFMGT alone is equal to 23.6%. The introduction of a WHR system leads to an increase
in both the net power and efficiencies. The layout with the ORC increases the efficiency
to 21.6%, with a WHR exergetic efficiency of about 22%. The sCO2 gas turbine-based
layouts improve performance. The cascade layouts, in which both the sCO2 gas turbine
and ORC are present in a series, provide an increase of about 27–29% in the net power with
respect to the reference case, reaching a thermal net efficiency of 24% (30.8% neglecting
the contribution of the gasification system) in the best-case scenario (layout 8). Also,
considering the complexity of the hybrid system in terms of the number of heat exchangers,
the sixth layout seems to be the best compromise.

Author Contributions: Conceptualization, F.R. and P.M.; methodology, F.R.; writing—original draft,
F.R.; writing—review and editing, F.R. and P.M. All authors have read and agreed to the published
version of the manuscript.
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Data Availability Statement: Data are contained within the article.
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Abbreviations

Bio Biomass
EFMGT Externally fired micro gas turbine
ER Equivalence Ratio
GT Gas turbine
GWP Global warming potential
HCFO Hydrochlorofluoroolefin
HES Hybrid energy system
HFC hydrofluorocarbon
HFO Hydrofluorolefin
HHV Higher heating value
HTHX High-temperature heat exchanger
HX Heat exchanger
LHV Low heating value
MGT Micro gas turbine
ODP Ozone depletion potential
OEL Occupational exposure limit
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ORC Organic Rankine Cycle
OFMW Organic fraction of municipal waste
P Power
REC Recuperator
sCO2 Supercritical CO2
SCBC Supercritical CO2 Brayton cycle
TIP Turbine inlet pressure
TIT Turbine inlet temperature
TOP Turbine outlet pressure
TOT Turbine outlet temperature
WHR Waste heat recovery
Subscripts
El Electrical
Greek
η Efficiency
ξ Exergy
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