
r
t
o
p
d
f
p
c
o
a
t
a
t
m
t
t
t
o
a
w
l

PREPRINT VERSION
PUBLISHED VERSION AT https://doi.org/10.1016/j.rcim.2021.102131

Robotics and Computer–Integrated Manufacturing 71 (2021) 102131
0736-5845/© 2021 Elsevier Ltd. All rights reserved

Full length article

Towards optimal task positioning in multi-robot cells, using nested meta-heuristic
swarm algorithms
S. Mutti a,∗, G. Nicola a,b, M. Beschi a,c, N. Pedrocchi a, L. Molinari Tosatti a
a Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, 20133, Milan, Italy b Università di Padova, Department of
Information Engineering (DEI), via Gradenigo 6/A, Padua, Italy
c Università di Brescia, Dipartimento di Ingegneria Meccanica ed Industriale, via Branze 38, Brescia, Italy

A B S T R A C T

While multi-robot cells are being used more often in industry, the problem of work-piece position optimization is still solved using heuristics and the human
experience and, in most industrial cases, even a feasible solution takes a considerable amount of trials to be found. Indeed, the optimization of a generic
performance index along a path is complex, due to the dimension of the feasible-configuration space. This work faces this challenge by proposing an iterative
layered-optimization method that integrates a Whale Optimization and an Ant Colony Optimization algorithm, the method allows the optimization of a user-
defined objective function, along a working path, in order to achieve a quasi-optimal, collision free solution in the feasible-configuration space.
1. Introduction

Working cells composed of multiple robots are being used more
often for a huge variety of industrial tasks (e.g., welding, laser cutting,
painting, additive manufacturing etc.) [1–4], for their dexterity and
e-configurability (see for example Fig. 1). In such a configuration,
he position where the robot holds the work-piece strongly affects the
peration feasibility (e.g., respect of the joints limits) as well as the
erformance in term of path tracking as the direct consequence of the
ifferent robot kinematics (e.g., different joints speed, accelerations,
riction, etc.). The identification of a good position is a time consuming
rocedure even for skilled operators. The operator, indeed, has to find
ollision free trajectories for the robots, that is far to be easy for many
peration, especially when the tool has to be re-oriented. In such a case,
ccording to the tool dimension, a small Cartesian movement of the
ool center point (TCP) often forces the robot to span a large movement
t the joint level,1 and the identification of a configuration for which
he operation is feasible is challenging due to the limited range of
otion of many axes, and the likely collision between the links during

he movement. Many off-the-shelves software tools (e.g., [5,6]) allow
he operator to relax the constraints along the paths (see Fig. 2), and
hanks to local gradient-based optimization, they slightly modify the
rientation of the tool to avoid collisions and to limit the joints motion
s much as possible. However, these tools are not able to find solutions
hen the cell is complex or in case of a multi-robotic arm setup. In

iterature, considering a single-arm workcell, this problem is generally

∗ Corresponding author.
E-mail address: stefano.mutti@stiima.cnr.it (S. Mutti).

1 Consider Fig. 1. To contour a tube of 50 mm the wrist center has to follow a circumference of about 1 m as diameter.

Fig. 1. Laser Cutting performed by two cooperative Robot (LT360 from BLM
Group, [1]).

tackled by the maximization of dexterity along the path [7–11], by
using performance evaluation indexes [12], or controlling functional
redundancies [13]. However, such methods do not consider problems
such as backlashes or transmissions elasticity that cause poor robot
accuracy even after static calibration.

To overcome such limitations, many works [14–18] propose meth-
ods tailored on specific tasks and setup that may be extended to multi-
arm work-cells. Specifically, in [14], the optimization is performed
using a gradient method, that, however, may lead to the identification

http://www.elsevier.com/locate/rcm
http://www.elsevier.com/locate/rcm
mailto:stefano.mutti@stiima.cnr.it
https://doi.org/10.1016/j.rcim.2021.102131
https://doi.org/10.1016/j.rcim.2021.102131
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2021.102131&domain=pdf

c

o
r

k

R
t

PREPRINT VERSION
PUBLISHED VERSION AT https://doi.org/10.1016/j.rcim.2021.102131

Robotics and Computer–Integrated Manufacturing 71 (2021) 102131
0736-5845/© 2021 Elsevier Ltd. All rights reserved
Fig. 2. Cladding application: The axis of the deposition head must lie in a cone
entered with the surface normal direction, without quality deterioration.

f a local minimum, without the possibility to span all the alternative
obot configurations. Pamanes et al. [15] proposes a non-linear pro-

gramming technique requiring at the beginning a candidate solution
that satisfies all the constraints. The work relaxes the velocity con-
straints, i.e., the robot is supposed to be able to change configuration
between two consecutive nodes, but the approach is not full-automatic
and it is not suitable for when the problem is computationally complex.
Karamani et al. [16] proposes a response surface method but, since the
objective function and the output are interpolated, the optimal solution
might be very far from the global minimum due to the inaccuracy
introduced by interpolation model adopted. Furthermore, they super-
impose the robot configuration making bijective the inverse kinematics
function. Santos et al. [17] proposes a tunneling method for searching
the global minimum, but since the algorithm numerically solves a
highly non linear equation many times, it is not suitable for all those ap-
plication in which the computational time is relevant. In [18], instead,
the optimization is performed by two consecutive genetic algorithms,
making complex the balancing between exploration and exploitation.

Many works focus on stiffness-oriented methods [19–21], where the
robot configuration is optimized in order to raise the stiffness, with
benefits in applications that involve vibrations.

As alternative to the path optimization, a few works [22–25] ad-
dress this problem focusing on the cell layout optimization, but de-
spite the methods are interesting this practice is unlikely applicable in
industry, where the robotic cell is used for many different operations.

Generally, optimization techniques are un-satisfactory for multi-
robot tasks. First, the domain search space is huge, and may be a
non-connected manifold since the constraints are always expressed
in the Cartesian space but the inverse kinematics is not a bijective
function. Also, even infinite solutions may be possible if the task is
lazy-constrained (e.g., when the tool can rotate around its own axis).
A tentative to cope with these issue is in [26]. The work focuses on the
optimization of the workpiece positioning, taking in account only the
kinematic redundancy of the robots involved. The methodology consists
of splitting the problem in two sub-problems, and to run iteratively two
nested optimizers: first the problem of the object positioning is solved
(e.g., definition of the Robot-2 holding position), then, the Robot-1
redundant path is optimized. Finally, an iteration over the two steps
is computed. This work, however, do not consider the technological
redundancy (see Fig. 2), and the trajectory is fully constrained, i.e., the
robot tool orientation must be properly aligned as the Frenet frame
in each trajectory frame. On the one hand, this assumption keeps
limited the search space. On the other hand, it reduces dramatically
the applicability of the methodology. Among the plenty of optimization
2

algorithms, [26] proposes to use a Whale Optimization Algorithm c
Fig. 3. Robotic cell scheme.

(WOA) and an Ant Colony Optimization algorithm (ACO) for the first
and second optimization steps respectively. On the one hand, Mirjalili
et al. [27] prove that WOA is among the best-performing meta-heuristic
algorithms on a large set of mathematical problems. On the other hand,
the ACO is extremely efficient when a combinatory problem has to be
solved [28].

Starting from [26], this work brings two major upgrades: it in-
troduces a new method to deal with the dimension of the search
space allowing the integration in the model of the task redundancies,
and it integrates an efficient collision checking strategy to deal with
unfeasible trajectories. As remark, the collision checker ensures that
the search in the redundant space avoids the exploration in proximity
of unfeasible paths.

The paper is organized as following: in Section 2 the optimization
problem is mathematically formulated, in Section 3 the optimization
methodology is presented, highlighting the advancement with respect
to [26], in Section 4 the analysis of a paradigmatic use case is reported,
and some general considerations on the methodology performance are
discussed. .

2. Problem formulation

Consider the generic robotic cell composed by a robot performing
a specific task (Robot-1) and a robot holding the work-piece in static
position (Robot-2) as shown in Fig. 3. The affine transformation matrix
𝐓𝑅2
𝑅1

between the 2 robots base frames 𝑅1 and 𝑅2 is known. For the 𝑖th
robot denote 𝐪𝑅𝑖 ∈ R𝑑𝑜𝑓𝑖 as the vector of joint angles, where 𝑑𝑜𝑓𝑖 is the
joints number of the 𝑖th robot, and 𝐓𝑒𝑒𝑖

𝑅𝑖 as the transformation from the
base frame 𝑅𝑖 to the end-effector frame 𝑒𝑒𝑖 according to the forward
inematics, i.e.,

𝐓𝑒𝑒𝑖
𝑅𝑖 ≡ 𝐹𝐾𝑅𝑖

(

𝐪𝑅𝑖
)

(1)

egarding the inverse kinematics, denote 𝑅𝑖 as the set of size 𝑁𝑠𝑜𝑙 of
he solutions in the considered pose,

𝑅𝑖 ≜
{

𝐪𝑅𝑖1 ,… ,𝐪𝑅𝑖𝑁𝑠𝑜𝑙

}

= 𝐼𝐾𝑅𝑖

(

𝐓𝑒𝑒𝑖
𝑅𝑖

)

. (2)

As a remark, the size 𝑁𝑠𝑜𝑙 depends mainly on the kinematics, and on
the range of motion of the axes.2

Consider 0 and ℎ the absolute and the work object frame respec-
tively, where the Work Object Frame is the frame that is used to
describe the path that the robot has to perform. The path is a sequence
of 𝑁𝑝 different frames 𝑝𝑘, each described by a transformation 𝐓𝑝𝑘

ℎ with
𝑘 = 1,… , 𝑁𝑝.

2 If the axes are multi-turn, and/or if there are self-collision in some
onfigurations.

R

PREPRINT VERSION
PUBLISHED VERSION AT https://doi.org/10.1016/j.rcim.2021.102131

Robotics and Computer–Integrated Manufacturing 71 (2021) 102131
0736-5845/© 2021 Elsevier Ltd. All rights reserved
The basic assumption that the Robot-2 is not moving while the
obot-1 performs the operation corresponds to impose that, at the 𝑘th

trajectory node, the robots tool frame 𝐓𝑒𝑒1
0 |𝑘 and 𝐓𝑒𝑒2

0 |𝑘

𝐓𝑒𝑒1
0 |𝑘 ≡ 𝐓ℎ

0 𝐓
𝑝𝑘
ℎ , (3a)

𝐓𝑒𝑒2
0 |𝑘 ≡ 𝐓ℎ

0 . (3b)

The assumption in (3a) can be relaxed for many nodes of the
trajectory. Indeed, the tool pose often can differ from the Frenet frame
assigned nominally to the node, and technological redundancies can
be exploited. Define 𝐴𝑙𝑡

(

𝑝𝑘
)

as the function that for each 𝑝𝑘 computes
a set of possible alternatives satisfying given constraints (e.g., the tool
lies inside a cone centered around the normal to the surface), using the
discretization method as in 3.1:

𝐴𝑘 ≜
{

𝐓𝑎𝑘,1
ℎ ,… , 𝐓

𝑎𝑘,𝑁𝐴
ℎ

}

= 𝐴𝑙𝑡
(

𝑝𝑘
)

, (4)

where 𝑁𝐴 is a constant over 𝑘 denoting the dimension of the discretiza-
tion of the searching space,

𝐓𝑎𝑘,1
ℎ ≜ 𝐓𝑝𝑘

ℎ

Once the set 𝐴𝑘 is computed for each 𝑘th node of the trajectory,
we can denote 𝐶𝑘 as the set of dimension 𝑁𝐶𝑘

of the feasible joint
configurations 𝐪𝑅11 |𝑘, as

𝐶𝑘 ≜
{

𝐪𝑅11 ,… ,𝐪𝑅1𝑁𝐶𝑘

}

|𝑘

=
⋃

𝑠≤𝑁𝐴𝑘

𝑅1
𝑘

(

𝐓0
𝑅1𝐓

ℎ
0𝐓

𝑎𝑘,𝑠
ℎ

) (5)

Worthily, 𝐶𝑘 is function of 𝐓𝑒𝑒2
0 , i.e., of the holding position as lead

by Robot-2. However, in order to span only the configuration space of
the Robot-1, it is possible to super-impose that the holding position is
generated as starting position from Robot-1. Denote 𝐪𝑅1𝑠𝑡𝑎𝑟𝑡 as a starting
joint configuration for the Robot-1, and 𝑝1 as the first node of the
trajectory. Closing the kinematics loop as show in Fig. 3, results in

𝑅2 ≜ 𝐼𝐾𝑅2(𝐓ℎ
0) = 𝐼𝐾𝑅2(𝐓0

𝑅2 𝐓
𝑒𝑒1
0 𝐓ℎ

𝑝1
)

= 𝐼𝐾𝑅2(𝐓𝑅1
𝑅2 𝐹𝐾𝑅1

(

𝐪𝑅1𝑠𝑡𝑎𝑟𝑡
)

𝐓ℎ
𝑝1
)

(6)

Once defined 𝐪𝑅1𝑠𝑡𝑎𝑟𝑡 is therefore possible to compute the search grid 𝛤
as

𝛤
(

𝐪𝑅1𝑠𝑡𝑎𝑟𝑡
)

≜
{

𝐶1,… , 𝐶𝑁𝑝

}

(7)

The size of the search grid may be very large. As matter of exam-
ple, consider a trajectory with 100 frames. Assume that meanly for
each node, 10 poses are feasible alternative poses, with a mean of 4
inverse-kinematics solutions each. Therefore, the number of possible
trajectories are (4 × 10)100 for each 𝐪𝑅1𝑠𝑡𝑎𝑟𝑡.

Finally, once the search grid is defined, the last step consists of
defining an objective function 𝑂𝑏𝑗(∗), to be maximized, that returns
a scalar value called objective value, for any path over the grid. The
definition of the objective function fully defines the behavior of the
optimization, and it is strongly related to the selected performance goal.

The full methodology has been called Whale and Ant Colony Op-
timization (WACO) and its pseudo code is shown in table Algorithm
1.

3. Method

This presented methodology is an improvement of [26].
Specifically, the contribution consists of the robust-statistical dis-

cretization of the task-redundant space, the integration of the collision
detection and an improved ACO algorithm designed to manage large
search graphs.

The algorithm is composed of two nested iterative optimization
3

methods. The outer loop implements a Whale Optimization Algorithm
(WOA), an iterative meta-heuristic swarm optimization algorithm with
a fixed number 𝑁𝑤ℎ𝑎𝑙𝑒𝑠 of particles called ‘‘whales’’. At every iteration
𝑖, takes as input the solution of the previous iteration, and it generates
the particles 𝑥𝑗𝑖 (with 𝑗 ≤ 𝑁𝑤ℎ𝑎𝑙𝑒𝑠), that corresponds to defining the
starting position of the trajectory, and the full nominal trajectory of 𝑝𝑘
frames as direct consequence.

As described in the previous Section, for each 𝑝𝑘 it is then possible
to impose a set of constraints as the maximum misalignment between
the tool axis and the surface normal direction, as well as the maximum
Cartesian speed according to the user needs. The inner loop, imple-
mented with an Ant Colony Optimization algorithm (ACO), iterates
over the multitude of these different paths granting the constraints, and
returns the iteration-best path ∗

𝑖 found, and a corresponding scalar
value 𝑂𝑏𝑗𝑉 𝑎𝑙∗𝑖 to the outer loop.

3.1. Search space discretization

Halton sequences have been selected to discretize the task redun-
dant space [29]. The effectiveness of these sequences is related to
the fact that they span homogeneously a search space, preserving the
minimum distance between samples in a 𝑘-dimensional space [30].
Specifically, consider an integer number 𝑛, and its representation in the
base 𝑏𝑗 as

𝑛 ≡
∑

𝑖<𝑀
𝑎𝑖𝑗,𝑛𝑏

𝑖
𝑗 ,

with 𝑀 is an integer larger enough that all the digits of the number
are represented, and each coefficient 𝑎𝑖 is 0 ≤ 𝑎𝑖𝑗,𝑛 ≤ 𝑏𝑗 . The Halton
sequence is constructed according to a deterministic method that uses
coprime numbers as its bases, and following [31], we can compute a
single Halton sequence as the 𝑠-tuple

𝑥𝑛 =
(

𝛷𝑏0 (𝑛),… , 𝛷𝑏𝑠 (𝑛)
)

where 𝛷𝑏𝑗 (𝑛) is the 𝑗th radical inverse function:

𝛷𝑏𝑗 (𝑛) =
∑

𝑖
𝑎𝑖(𝑗, 𝑛)𝑏−𝑖−1𝑗 ,

To improve the covering of the space, a scramble of the coefficients is
necessary, and the method in [32] has been implemented.

3.2. First optimization layer: configuration calculus

Denote 𝑁𝑊𝑂𝐴 and 𝑖 as the number of WOA iterations and the itera-
tion index (𝑖 ∈ 1,… , 𝑁𝑊𝑂𝐴), while denote 𝑁𝑤ℎ𝑎𝑙𝑒𝑠 and 𝑗 as the number
of the particles and the particle index (𝑗 ∈ 1,… , 𝑁𝑤ℎ𝑎𝑙𝑒𝑠). Finally,
denote 𝑥𝑗𝑖 as the 𝑗th particle whale generated at the 𝑖th iteration. Among
the different possibility, we selected the Robot-1 joint positions as the
WOA particle held value, i.e., 𝑥𝑗𝑖 ≡ 𝐪𝑅1𝑠𝑡𝑎𝑟𝑡|𝑖, where the value at the
iteration 1 is a random sampling of valid joint values. Following the
procedure in Section 2 and (7), the search grid results

𝛤𝑖 ⟵ 𝛤
(

𝐪𝑅1𝑠𝑡𝑎𝑟𝑡|𝑖
)

where the discretization of the search grid is performed using 𝐴𝑙𝑡
(

𝑝𝑘
)

,
and depends on the task redundancy. The starting joint position is valid
only if at least one path exist, that is

∀𝑘 ≤ 𝑁𝑝 𝐶𝑘 ≠ ∅

and, a feasible path from the starting pose to the final pose of the
trajectory is defined as

 =
{

𝐪𝑅1𝑠1 |1,… ,𝐪𝑅1𝑠𝑘 |𝑘,… ,𝐪𝑅1𝑠𝑁𝑝
|𝑁𝑝

}

, with 𝐪𝑅1𝑠𝑘 |𝑘 ∈ 𝐶𝑘, ∀𝑘 (8)

The selection of the highest objective value returning path ∗
𝑖 , among

the feasible ones, for the 𝑖th WOA iteration (outer layer), cannot be
computed using any analytical objective function due the excessive
number of feasible paths. The Ant Colony Optimization algorithm
(ACO) is therefore used as in [26] as the core of inner optimization
layer for the computation of ∗

𝑖 , and the evolution of the WAO is
obtained by the evaluation of the underlying ACO resulted objective

𝑅1
value, and the generation of a new vector of robot joints value 𝐪𝑠𝑡𝑎𝑟𝑡|𝑖+1

PREPRINT VERSION
PUBLISHED VERSION AT https://doi.org/10.1016/j.rcim.2021.102131

Robotics and Computer–Integrated Manufacturing 71 (2021) 102131
0736-5845/© 2021 Elsevier Ltd. All rights reserved
Algorithm 1: Whale and Ant Colony Optimization Algorithm (WACO)
Data: Load Task, robotic cell kinematic, and geometric data 𝑝𝑘 and 𝑁𝑝
Result: Optimized path ∗

1 begin
// Initialize

2 𝑁𝑊𝑂𝐴 ←max number of iterations before exit
3 𝑁𝑤ℎ𝑎𝑙𝑒𝑠 ←max number of whales computed in parallel
4 𝑂𝑏𝑗𝑉 𝑎𝑙𝑗𝑖 ← 0,∀𝑖, 𝑗
5 𝑀𝑎𝑥𝑂𝑏𝑗𝑉 𝑎𝑙 ← 0
6 𝑖 ← 1
7

// WOA Outer Loop until convergence
8 repeat
9 for 𝑗 ← 1 to 𝑁𝑤ℎ𝑎𝑙𝑒𝑠 do // For Loop Computed In Parallel
10 𝐪𝑅1𝑠𝑡𝑎𝑟𝑡 ← 𝑥𝑗𝑖 ← WOA_StateGenerator(𝑂𝑏𝑗𝑉 𝑎𝑙𝑗𝑖−1)
11

// Build the search graph
12 𝛤𝑖 ← 𝛤𝑖

(

𝐪𝑅1𝑠𝑡𝑎𝑟𝑡
)

13

// Call the inner optimization algorithm. 𝛤𝑖 is purged by the nodes that are in collisions
14

(

 𝑗
𝑖
∗
, 𝑂𝑏𝑗𝑉 𝑎𝑙𝑗𝑖 , 𝛤𝑖

)

← InnerOptimizator(𝛤𝑖)
15 end
16 𝑀𝑎𝑥𝑂𝑏𝑗𝑉 𝑎𝑙 ← max𝑗

{

𝑂𝑏𝑗𝑉 𝑎𝑙𝑗𝑖
}

17 until 𝑖 ≤ 𝑁𝑊𝑂𝐴

18 end
Algorithm 2: Inner Optimization layer: Iteration over Ant Colony Optimization algoritm (ACO)
Input: 𝛤𝑖
Output: ∗

𝑖 , 𝑂𝑏𝑗𝑉 𝑎𝑙∗𝑖 , 𝛤𝑖

1 begin
2 Assign weights to all edges in graph 𝛤𝑖
3 𝑁𝑎𝑛𝑡𝑠 ← number of ants
4 𝑁𝐴𝐶𝑂 ← max number of iterations of the ACO algorithm before exit
5 𝜖 ← convergence threshold to exit
6 𝑜𝑘 ← 𝐹𝑎𝑙𝑠𝑒
7 if heuristic offline computation then
8 Update the weight of graph 𝛤𝑖 using a proper heuristic, as in (9)
9 end
10

11 repeat // until ∗
𝑖 is not collision free

12 if heuristic online computation then
13 Update the weight of graph 𝛤𝑖 using a proper heuristic, as in (9)
14 end
15 (∗

𝑖 , 𝑂𝑏𝑗𝑉 𝑎𝑙∗𝑖) ← ACO_PathSelector(𝛤𝑖, ObjectiveFunction, 𝑁𝑎𝑛𝑡𝑠, 𝜖, 𝑁𝐴𝐶𝑂) // it optimizes the obj func on the grid
// it updates the pheromone

// it runs all the Ants in Parallel
16 (𝑜𝑘, 𝛤𝑖) ← CollisionChecker(∗

𝑖 , 𝛤𝑖) // Check collision, see algorithm 3
17 if 𝛤𝑖 == ∅ then
18 𝑂𝑏𝑗𝑉 𝑎𝑙𝑖 ← 0
19 return
20 end
21 until 𝑜𝑘
22 end
3.3. Inner optimization layer: the path selection

ACO’s aim is that of finding a path that maximizes the objective
function on the inputted grid. While the graphs in [26] were almost
small, the graphs here considered may be huge in size. The Ant Colony
Optimization algorithm (ACO) deployed in [26] is therefore insuffi-
cient, and a Elitist Max–Mix ACO is here proposed. Following [33],
the pheromone deposited on a node has a minimum and a maximum
threshold, and the only solution taken in account at every iteration
is the one with the highest objective value. To tune the algorithm’s
4

parameters, the average of the number of solutions per point has been
used as the number of nodes instead that the whole number of nodes
as in [33], since the graph may be not fully-connected.

ACO takes as input a graph, while 𝛤𝑖 is just a grid of points. In order
to transform it in a graph, all the weights of the connections between
the nodes have to be set. To transform it in a directed graph, each
joint configuration in 𝐶𝑘 must be connected to the configurations in set
𝐶𝑘+1 (see Fig. 4). The connection is formalized through weights, their
presence help the algorithm in its search strategy towards the optimum.
If a connection with a consecutive node is not possible for any reason
(e.g., overcome the maximum speed) the weight is put to null, and it
disconnect the nodes. A commonly used formula to assign the weights

is the inverse of the norm of the joint distance vector between two joint

c

a

𝑂

e
a

PREPRINT VERSION
PUBLISHED VERSION AT https://doi.org/10.1016/j.rcim.2021.102131

Robotics and Computer–Integrated Manufacturing 71 (2021) 102131
0736-5845/© 2021 Elsevier Ltd. All rights reserved
Fig. 4. Simplified graph example. The columns hold different joint configurations for
the trajectory frame.

configurations belonging to two consecutive points:

𝑤𝑒𝑖𝑔ℎ𝑡 = 1
‖

‖

‖

(𝑞𝑅1
𝑘 − 𝑞𝑅1

𝑘−1)
‖

‖

‖

(9)

but many more can be used as heuristic criteria. The computation of
the weights can be done online or offline. Computing the values offline
before feeding the graph to the ACO algorithm avoids that the heuristic
is computed more times for the same node, while computing it online
as the ACO performs, allows calculating only the needed weights.

In the case of the offline heuristic, the number of values to compute
is equal to:

𝑁𝑜𝑓𝑓𝑙𝑖𝑛𝑒 = (𝑁𝐴 𝑁𝐶)2 𝑁𝑝 (10)

where 𝑁𝐴 is the dimension of the set 𝐴𝑘, 𝑁𝐶 the dimension of set 𝐶𝑘
and 𝑁𝑝 the number of points in the trajectory. In the case of the online
heuristic, the number of values to compute is equal to:

𝑁𝑜𝑛𝑙𝑖𝑛𝑒 = 𝑁𝑎𝑛𝑡𝑠 𝑁𝐴𝐶𝑂 𝑁𝑝 𝑁𝐴 𝑁𝐶 (11)

where 𝑁𝐴𝐶𝑂 and 𝑁𝑎𝑛𝑡𝑠 are the maximum number of iterations of ACO
and the number of Ants used respectively. Denoting 𝑟 as

𝑟 =
𝑁𝑜𝑓𝑓𝑙𝑖𝑛𝑒

𝑁𝑜𝑛𝑙𝑖𝑛𝑒
=

𝑁𝐴 𝑁𝐶
𝑁𝑎𝑛𝑡𝑠 𝐴𝐶𝑂𝑖𝑡𝑒𝑟

, (12)

the online computation is better when 𝑟 ≥ 1, otherwise the offline
omputation is most performing.

The algorithm evolution is defined by the objective function that
ssigns a scalar value to path 

𝑏𝑗𝑉 𝑎𝑙 = ObjectiveFunction () . (13)

The definition of the function must be selected accordingly to the goal
performance (e.g., minimization of the length of the path, minimization
of the number of velocity inversion etc.).

Due to computational effort, it is not possible to check the collision
inside the ACO algorithm. Therefore, the collision is performed only
on the best so-far path ∗ found by the ACO algorithm. The solution,
however, might be not feasible due to collision. In this case, the inner
optimization layer iterates over ACO in order to find a feasible path.
Remarkably, the collision detection algorithm purges from the graph
all the configuration that are in collision, discarding solutions that
are not feasible rather than including them in the optimization (see
Section 3.4). In algorithm 2 is shown the inner optimization layer
pseudo-code.
5

p

Algorithm 3: Collision detection
Data: Robot-1 (R1), Robot2 (R2), Environment (E), WorkObject (WB),

Tool (T)
Input: 𝛤𝑖, 𝑖
Output: 𝑜𝑘, 𝛤𝑖

1 begin
2 if inCollision(R2(p), E) then
3 𝑜𝑘 ← 𝐹𝑎𝑙𝑠𝑒 // set graph to unfeasible
4

5 𝛤𝑖 ← ∅
6 return
7 end
8

9 for each 𝑝 in 𝑖 do
10 𝑜𝑘 ← not inCollision(T(p), WB) if not 𝑜𝑘 then
11 for each Tool orientation in 𝑝 // check collisions

between tool and workpiece for every tool
orientation in 𝑝

12 do
13 if inCollision(T, WB) then
14 𝛤𝑖 ← PurgeNode(𝛤𝑖)
15 end
16 end
17 return
18 end
19 end
20

21 for each 𝑝 in 𝑖 do
22 𝑜𝑘 ← not inCollision(R1(p), E)
23 if not 𝑜𝑘 then
24 for each IK solutions of R1 in 𝑝 // check collisions

between Robot1 and Robot2 for R1 IK solution
in 𝑝

25 do
26 if inCollision(R1, E) then
27 𝛤𝑖 ← PurgeNode(𝛤𝑖)
28 end
29 end
30 return
31 end
32 end
33

34 for each 𝑝 in 𝑖 do
35 𝑜𝑘 ← not inCollision(R1(p), R2)
36 if not 𝑜𝑘 then
37 for each IK solutions of R1 in 𝑝 // check collisions

between Robot1 and Robot2 for R1 IK solution
in 𝑝

38 do
39 if inCollision(R1, R2) then
40 𝛤𝑖 ← PurgeNode(𝛤𝑖)
41 end
42 end
43 return
44 end
45 end
46 𝑜𝑘 ← 𝑇 𝑟𝑢𝑒
47 end

3.4. Collision detection

Collision detection is computationally demanding, and the number
of possible combinations of robot cell joint position to be checked at
every WOA iteration is equal to 𝑁𝑤ℎ𝑎𝑙𝑒𝑠 × dim(𝛤). Also, it increases
xponentially with the number of discrete redundant configurations
nd points in the trajectory. In this module the collision detection
roblem was solved by using the state of art of collision detection

S. Mutti et al.

c

t
c
a
p

w
a

o
t

PREPRINT VERSION
PUBLISHED VERSION AT https://doi.org/10.1016/j.rcim.2021.102131

Robotics and Computer–Integrated Manufacturing 71 (2021) 102131
0736-5845/© 2021 Elsevier Ltd. All rights reserved
libraries and by exploiting the peculiarities the problem studied. The
collision detection is performed with the library GPU-Voxels [34] that
implements voxel based algorithms and that takes advantage of parallel
computation on GPU to increase computational speed.

The collision detection is divided in 4 parts in order to take ad-
vantage of the peculiarities of the involved problem, collisions in the
multi-robot cell studied can have various sources (robots–environment,
robot–robot, tool–work-piece).

Voxel based methods can have different outputs based on the dis-
cretization chosen, indeed a coarse discretization has an higher prob-
ability of having false positives (i.e. the two object result in collision
even if it is not true) but it is computationally less expensive. Moreover
the discretization required depends directly from the desirable mini-
mum distance between the objects to be checked. So objects that are
required to be closer should have fine discretization while object that
are in general farther and not required to be close should have a coarse
resolution, for example the tool and the workpiece can have a distance
of some millimeters while the robots are not required to be so close.
In conclusion, the different sources of collision have different level of
discretization based on the aforementioned motivations.

It can be easily noticed that when a collision is found it is possible
to delete other nodes close to the one that is in collision. Specifically,
a collision between the Robot2 and the environment, since both are
static, sets the entire graph as unfeasible, meanwhile a collision be-
tween the tool and the workpiece automatically deletes from the graph
a number of nodes equal to the inverse kinematic solution for that
specific position and orientation of the tool-head.

The collision detection routine check all the possible sources of col-
lision: Robot2–Environment, Tool–Workpiece, Robot1–Environment,
Robot1–Robot2. The routine is composed by four different steps with
two different level of discretization:

1. Robot2–Environment (low discretization)
2. Tool–Workpiece (high discretization)
3. Robot1–Environment (low discretization)
4. Robot1–Robot2 (low discretization)

If a collision is found, except the case 1, all the graph nodes belonging
to the same trajectory frame are checked before computing a new ACO
iteration. If no collision free node is found the graph is set as unfeasible.
The order of the collision detection steps has been chosen to perform
firstly the steps that can reduce the graph dimension more quickly. The
pseudo-code is shown in Algorithm 3

4. Performance analysis

4.1. Experimental setup

The software designed to perform the tests uses the ROS framework,
in order to import robot parameters from the ROS industrial [35]
project repository, and to take advantage of the ROS middle-ware
libraries, it also makes use of a modified version of the ikfast open-
rave [36] library for computing the inversion kinematic of a robots in
a parallel way on the GPU, its architecture is shown in Fig. 5.

The setup is composed by two ABB IRB4600 20.5 (see Fig. 1)
onfigured for pipes laser cutting.

Different paths with varying number of points of have been inves-
igated, from simple circular holes and pegs on the pipes side, to a
omplete trimming of the tips. The trimming of the tips is considered
difficult operation due to the circular path of the robot around the

ipe, and the collision possibility during the path execution.
For the presented cases, the number of points in the trajectory is 50,

hile the task redundancy consists of a free rotation around the 𝑧 tool
xis.

In the experiments, the objective function to maximize is the inverse
f the quadratic sum of the joints speed of the Robot1 along the
6

rajectory, with a penalization term that takes in account the proximity
Fig. 5. Software architecture.

to joint limits, due to the degraded performance of the robot near the
limits.

The trial has been run with different parameters combination:

a. For the outer optimization layer:

– 𝑁𝑊𝑂𝐴, the iterations number of WOA
– 𝑁𝑤ℎ𝑎𝑙𝑒𝑠, the number of the whales particle

b. For the inner optimization layer:

– 𝑁𝐴𝐶𝑂 iterations number
– 𝑁𝑎𝑛𝑡𝑠, Ant number

Different redundancies have also been tested, from the rotation
around the cutting head 𝑍 axis, to a more relaxed conic redundancy in
which the head 𝑍 axis can freely move inside a given cone with a small
aperture. The trials have been made on a desktop computer equipped
with a NVIDIA GeForce gtx 1060 GPU, on which the algorithm has
been designed, taking advantage of the CUDA libraries for parallel
computation. Due to the size of the memory needed for running the al-
gorithm, which raises exponentially with the discretization parameters
and trajectory frames, the tests performed have a limited number of pa-
rameters combination. However, as shown by the collected results, the
problem can be adequately solved with a limited amount of resources.
The code implementation used, its configuration and the resulted data
of the tests can be accessed at [37].

4.2. Sampled results considerations

All the trials gave a feasible , collision free path as output. In
Figs. 6,7,8, are shown some significant results extracted from algo-
rithms run on the same task with different WOA parameters. The dotted
lines show the best so-far value of the objective function among all
the WOA particles at every iteration, while the dashed line shows the
average of the dotted lines. The continuous lines show the average
value of the objective function hold by all the whales particles at every
iteration. All the performed trials, regardless of the parameters value,
have shown a predictable trend, in which it is noticeable the presence of
2 distinct phases. During the first phase, the whales particles ‘‘explore’’
the joint space of the robots, the hold solutions are diverse(as shown
by the difference between the average value, continuous lines, and the

PREPRINT VERSION
PUBLISHED VERSION AT https://doi.org/10.1016/j.rcim.2021.102131

Robotics and Computer–Integrated Manufacturing 71 (2021) 102131
0736-5845/© 2021 Elsevier Ltd. All rights reserved
Fig. 6. Objective value trends for peg hole task with 10 whales particles for 200
iterations.

Fig. 7. Objective value trends for peg hole task with 20 whales particles for 250
iterations.

Fig. 8. Objective value trends for peg hole task with 25 whales particles for 300
iterations.

best so-far values, dotted lines) and constantly change due to the WAO
algorithm nature and its parameters value. In the second phase the
solution are refined, the WOA algorithm particles move in proximity
of their solutions and the exploration is concluded, the search is now
focusing on optimizing the best solutions found so-far, settling on the
nearest optimum points. The experiments are repeated 5 times for each
7

parameters combination to have a statistical sample.
Fig. 9. Cell configuration 1 - peg hole task.

Fig. 10. Cell configuration 2 - tip trimming task.

In Figs. 9 and 10 are shown 2 of outputted result configuration,
where the Robot-1 is shown fixed at the first point of the trajectory to
perform, the external environment is hidden for sake of visualization
simplicity. Figs. 11 and 12 show the resulted path solution for a hole
peg and trimming operation, where it is noticeable that the path frames
exploit the task redundancy by changing the directions along the path.

Furthermore, the algorithm is shown to hugely exploit the available
redundancy, changing the TCP orientation during the movement in
order to decrease joint speeds and accelerations during the work head
re-orientations. This increases in cases like the tip trimming, where
taking advantage of the task redundancy is crucial to have smooth
solutions. Fig. 13 shows the average deviation from the nominal 𝑍 TCP
angle during 2 different types of tasks, collected using 100 experiments
per type of task.

4.3. Parameters influence

The parameters of the WOA and ACO algorithms have been tuned
following practice from the state-of-the-art, namely, the tuning for the
ACO parameters is detailed in [33], for the parameters relative to the
pheromone threshold value and decay rate, while WOA parameters
adopt the nominal value proposed by the authors in [27]. The decision
to consider such values for the parameters, has been taken due to
the extensive analysis performed by the respective authors, and by
our extensive analysis with different tuning methods. Specifically, the
WOA 𝑎𝑙𝑖𝑚 parameter, which sets the proportion between exploration
and exploitation, is set to 1, while ACO agents are set to 1024, with
an iteration number of 50 and the weights exponential coefficient set
to 2. Internal parameters relative to ACO pheromone are related to
the graph dimensions, and hence are set dynamically in the algorithm.
Besides these parameters, WACO algorithm presents further parameters

f

t
(
l

s
t
c

PREPRINT VERSION
PUBLISHED VERSION AT https://doi.org/10.1016/j.rcim.2021.102131

Robotics and Computer–Integrated Manufacturing 71 (2021) 102131
0736-5845/© 2021 Elsevier Ltd. All rights reserved
Fig. 11. Path peg hole.

Fig. 12. Path trimming.

Fig. 13. Average redundant angle deviation in degrees from the 𝑍 Frenet frame axis,
or different tasks, using different WOA parameters, normalized on a 21 point path.

o be tuned as 𝑁𝑤ℎ𝑎𝑙𝑒𝑠 (the number of whales particles) and the 𝑁𝑊𝑂𝐴
number of iterations). The algorithm running time is shown to depend
inearly on 𝑁𝑤ℎ𝑎𝑙𝑒𝑠 and 𝑁𝑊𝑂𝐴, as shown in Fig. 14, where the average

time and its standard deviation are plotted for different parameters.
The running time deviation value is due to the collision checking
phase, which is the non-deterministic part of the algorithm in terms
of execution time. The bottom part of Fig. 14 shows the trend of
the objective value per whales and whales iteration numbers, showing
that it has an asymptotic behavior. This behavior highlights the fact
that the optimization problem is well solved with a limited amount of
resources and that the solution space is explored adequately. Fig. 15
hows the relations between the objective value and the computation
ime, suggesting the parameters zone with a good trade off in term of
omputation time and result optimality.
8

A

Fig. 14. Algorithm running time(top) and objective function value(bottom), using
number of WOA particles times number of iteration on the abscissa. Fixed number
of ACO cycles(50), tip trimming task. Upper figure shows data with a linear fitting,
while the bottom one a natural logarithmic fitting.

Fig. 15. Objective value over algorithm running time, test case same as Fig. 14, data
fitted with a natural logarithm.

5. Conclusions and future developments

In this paper a method named WACO (Whale and Ant Colony
Optimization) to optimize task placement for process planning of re-
dundant multi-robot cells is presented, the optimization is performed by
2 nested meta-heuristic algorithms (WOA and ACO) in order to enhance
the overall accuracy of the task. The method assures the kinematic
feasibility of the task trajectory, the task and kinematic redundancies
exploitation, and the optimization of collision free trajectories. Inter-
nal parameters of the nested algorithms have been tuned using well
known state of the art procedures, which have proved adequate for
the problem in question. The WACO has demonstrated convergence
to a common sub-optimal solution, in regard to the number of agents
involved in the computation, showing furthermore a common opti-
mization threshold, which highlights the satisfactory exploration of the
solution space. Furthermore, the rising trend of the solutions found
per iteration, suggests that the optimization methods is efficient in the
problem optimization. Results show that the exploitation of the task
redundancy is a key element to the optimization. The calculation time is
still not completely satisfying, due to the high amount of offline data to
compute, although, the method is highly parallelizable so the calcula-
tion time is expected to decrease. Future methods improvements might
involve the use of online statistical tools to avoid offline computation of
graph weights, in order to have a better management of the hardware
resources used to run the algorithm.

CRediT authorship contribution statement

S. Mutti: Conception and design of study, Acquisition of data,

nalysis and/or interpretation of data, Writing - original draft, Writing

S. Mutti et al.

PREPRINT VERSION
PUBLISHED VERSION AT https://doi.org/10.1016/j.rcim.2021.102131

Robotics and Computer–Integrated Manufacturing 71 (2021) 102131
0736-5845/© 2021 Elsevier Ltd. All rights reserved
- review & editing. G. Nicola: Conception and design of study, Acqui-
sition of data, Analysis and/or interpretation of data, Writing - original
draft, Writing - review & editing. M. Beschi: Conception and design
of study, Writing - review & editing. N. Pedrocchi: Conception and
design of study, Writing - original draft, Writing - review & editing. L.
Molinari Tosatti: Conception and design of study, Writing - review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

All authors approved the version of the manuscript to be published.

Funding

Made4lo(Metal Additive for Lombardy) project by Regione Lombar-
dia.

References

[1] BLM Group, 2020, www.blmgroup.com/it/lasertube/lt360. (Accessed 30 April
2020).

[2] Y. Chen, F. Dong, Robot machining: recent development and future research
issues, Int. J. Adv. Manuf. Technol. 66 (9–12) (2013) 1489–1497.

[3] W. Ji, L. Wang, Industrial robotic machining: a review, Int. J. Adv. Manuf.
Technol. 103 (1–4) (2019) 1239–1255.

[4] P. Urhal, A. Weightman, C. Diver, P. Bartolo, Robot assisted additive
manufacturing: A review, Robot. Comput.-Integr. Manuf. 59 (2019) 335–345.

[5] Siemens, PLM NX, 2020, www.plm.automation.siemens.com. (Accessed 30 April
2020).

[6] ABB, RobotStudio, 2020, https://new.abb.com. (Accessed 30 Apri 2020).
[7] T. Yoshikawa, Manipulability and redundancy control of robotic mechanisms, in:

Proceedings. 1985 IEEE International Conference on Robotics and Automation,
Vol. 2, 1985, pp. 1004–1009.

[8] J. Angeles, C.S. López-Cajún, Kinematic isotropy and the conditioning index of
serial robotic manipulators, Int. J. Robot. Res. 11 (6) (1992) 560–571.

[9] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics, Modelling, Planning and
Control, Springer, 2009.

[10] G. Legnani, D. Tosi, I. Fassi, H. Giberti, S. Cinquemani, The ‘‘point of isotropy’’
and other properties of serial and parallel manipulators, Mech. Mach. Theory 45
(10) (2010) 1407–1423.

[11] J. Lachner, V. Schettino, F. Allmendinger, M.D. Fiore, F. Ficuciello, B. Si-
ciliano, S. Stramigioli, The influence of coordinates in robotic manipulability
analysis, Mech. Mach. Theory 146 (2020) 103722, http://dx.doi.org/10.1016/j.
mechmachtheory.2019.103722.

[12] Y. Lin, H. Zhao, H. Ding, Posture optimization methodology of 6R in-
dustrial robots for machining using performance evaluation indexes, Robot.
Comput.-Integr. Manuf. 48 (2017) 59–72.

[13] S. Mousavi, V. Gagnol, B.C. Bouzgarrou, P. Ray, Stability optimization in robotic
milling through the control of functional redundancies, Robot. Comput.-Integr.
Manuf. 50 (2018) 181–192.

[14] J.T. Feddema, Kinematically optimal robot placement for minimum time coor-
dinated motion, in: IEEE International Conference on Robotics and Automation
Minneapolis, April, 1996.
9

[15] G. Pamanes, S. Zeghloul, Optimal placement of robotic manipulators using
multiple kinematic criteria, in: Proceedings - IEEE International Conference on
Robotics and Automation, Vol. 1, April, 1991, pp. 933–938.

[16] B. Kamrani, V. Berbyuk, D. Wäppling, U. Stickelmann, X. Feng, Optimal robot
placement using response surface method, Int. J. Adv. Manuf. Technol. 44 (1–2)
(2008) 201–210.

[17] R.R. dos Santos, V. Steffen, S.d.F. Saramago, Optimal task placement of a serial
robot manipulator for manipulability and mechanical power optimization, Intell.
Inf. Manag. 02 (09) (2010) 512–525.

[18] G.C. Vosniakos, E. Matsas, Improving feasibility of robotic milling through robot
placement optimisation, Robot. Comput.-Integr. Manuf. 26 (5) (2010) 517–525.

[19] Y. Guo, H. Dong, Y. Ke, Stiffness-oriented posture optimization in robotic
machining applications, Robot. Comput.-Integr. Manuf. 35 (2015) 69–76.

[20] G. Xiong, Y. Ding, L. Zhu, Stiffness-based pose optimization of an industrial robot
for five-axis milling, Robot. Comput.-Integr. Manuf. 55 (2019) 19–28.

[21] T. Cvitanic, V. Nguyen, S.N. Melkote, Pose optimization in robotic machining
using static and dynamic stiffness models, Robot. Comput.-Integr. Manuf. 66
(2020) 101992.

[22] M. Tay, B. Ngoi, Optimising robot workcell layout, Int. J. Adv. Manuf. Technol.
12 (5) (1996) 377–385.

[23] S.-W. Son, D.-S. Kwon, A convex programming approach to the base placement
of a 6-DOF articulated robot with a spherical wrist, Int. J. Adv. Manuf. Technol.
102 (9–12) (2019) 3135–3150.

[24] G. Boschetti, R. Rosa, A. Trevisani, Optimal robot positioning using task-
dependent and direction-selective performance indexes: General definitions and
application to a parallel robot, Robot. Comput.-Integr. Manuf. 29 (2) (2013)
431–443.

[25] S. Mitsi, K.-D. Bouzakis, D. Sagris, G. Mansour, Determination of optimum robot
base location considering discrete end-effector positions by means of hybrid
genetic algorithm, Robot. Comput.-Integr. Manuf. 24 (1) (2008) 50–59.

[26] G. Nicola, N. Pedrocchi, S. Mutti, P. Magnoni, M. Beschi, Optimal task positioning
in multi-robot cells, using nested meta-heuristic swarm algorithms, Procedia CIRP
72 (2018) 386–391, http://dx.doi.org/10.1016/j.procir.2018.03.081.

[27] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw. 95
(2016) 51–67.

[28] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell.
Mag. 1 (4) (2006) 28–39, http://dx.doi.org/10.1109/MCI.2006.329691.

[29] H. Chi, M. Mascagni, T. Warnock, On the optimal Halton sequence, Math.
Comput. Simulation 70 (1) (2005) 9–21, http://dx.doi.org/10.1016/j.matcom.
2005.03.004.

[30] R. Tijdeman, Review: L. Kuipers and H. Niederreiter, Uniform distribution of
sequences, Bull. Amer. Math. Soc. 81 (1975).

[31] L. Kocis, W.J. Whiten, Computational investigations of low-discrepancy se-
quences, ACM Trans. Math. Software 23 (2) (1997) 266–294, http://dx.doi.org/
10.1145/264029.264064.

[32] J. Matoušek, On theL2-discrepancy for anchored boxes, J. Complexity 14 (4)
(1998) 527–556, http://dx.doi.org/10.1006/jcom.1998.0489.

[33] P. Pellegrini, D. Favaretto, E. Moretti, On MAX – MIN ant system’s parameters,
in: International Conference on Swarm Intelligence, Springer, Berlin, Heidelberg,
2006, pp. 203–214, http://dx.doi.org/10.1007/11839088_18.

[34] A. Hermann, F. Drews, J. Bauer, S. Klemm, A. Roennau, R. Dillmann, Unified
GPU voxel collision detection for mobile manipulation planning, in: IEEE Inter-
national Conference on Intelligent Robots and Systems, 2014, pp. 4154–4160,
http://dx.doi.org/10.1109/IROS.2014.6943148.

[35] ROS Industrial Consortium, 2020, https://rosindustrial.org. (Accessed 30 April
2020).

[36] OpenRAVE, 2020, http://openrave.org/docs/0.8.2/openravepy/ikfast/. (Accessed
9 August 2020).

[37] S. Mutti, G. Nicola, N. Pedrocchi, WACO, in: GitHub Repository, GitHub, 2020,
https://github.com/CNR-STIIMA-IRAS/WACO.

http://www.blmgroup.com/it/lasertube/lt360
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb2
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb2
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb2
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb3
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb3
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb3
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb4
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb4
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb4
http://www.plm.automation.siemens.com
https://new.abb.com
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb8
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb8
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb8
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb9
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb9
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb9
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb10
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb10
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb10
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb10
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb10
http://dx.doi.org/10.1016/j.mechmachtheory.2019.103722
http://dx.doi.org/10.1016/j.mechmachtheory.2019.103722
http://dx.doi.org/10.1016/j.mechmachtheory.2019.103722
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb12
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb12
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb12
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb12
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb12
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb13
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb13
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb13
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb13
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb13
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb16
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb16
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb16
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb16
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb16
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb17
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb17
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb17
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb17
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb17
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb18
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb18
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb18
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb19
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb19
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb19
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb20
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb20
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb20
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb21
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb21
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb21
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb21
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb21
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb22
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb22
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb22
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb23
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb23
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb23
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb23
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb23
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb24
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb24
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb24
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb24
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb24
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb24
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb24
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb25
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb25
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb25
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb25
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb25
http://dx.doi.org/10.1016/j.procir.2018.03.081
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb27
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb27
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb27
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1016/j.matcom.2005.03.004
http://dx.doi.org/10.1016/j.matcom.2005.03.004
http://dx.doi.org/10.1016/j.matcom.2005.03.004
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb30
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb30
http://refhub.elsevier.com/S0736-5845(21)00016-8/sb30
http://dx.doi.org/10.1145/264029.264064
http://dx.doi.org/10.1145/264029.264064
http://dx.doi.org/10.1145/264029.264064
http://dx.doi.org/10.1006/jcom.1998.0489
http://dx.doi.org/10.1007/11839088_18
http://dx.doi.org/10.1109/IROS.2014.6943148
https://rosindustrial.org
http://openrave.org/docs/0.8.2/openravepy/ikfast/
https://github.com/CNR-STIIMA-IRAS/WACO

	Towards optimal task positioning in multi-robot cells, using nested meta-heuristic swarm algorithms
	Introduction
	Problem formulation
	Method
	Search space discretization
	First optimization layer: configuration calculus
	Inner optimization layer: the path selection
	Collision detection

	Performance analysis
	Experimental setup
	Sampled results considerations
	Parameters influence

	Conclusions and future developments
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

