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Abstract. Developed for more than forty years, optical fibers have features that make them particularly
attractive for making sensors. One of the strengths of these sensors is that they can measure different
physical parameters in a distributed manner over a wide range of lengths (from a few cm up to tens
of kilometers) with a spatial resolution ranging from millimeters to meters. In this article, we are
particularly interested in distributed fiber sensors, mainly based on light scattering processes, for
measuring strain variations. This review concerns both applications requiring long lengths of fiber
in a geological context, as well as those using length less than one meter for the medical sector. While
distributed fiber optics sensors have already shown their great potential for long-range applications,
short-range applications are a niche sector emerging in the last few years.

Résumé. Développées depuis plus de quarante ans, les fibres optiques présentent des caractéristiques
qui les rendent particulièrement attractives pour la réalisation de capteurs. L’un des points forts de ces
capteurs est qu’ils peuvent mesurer différents paramètres physiques de manière distribuée sur une
large gamme de longueurs (de quelques cm à des dizaines de kilomètres) avec une résolution spatiale
allant du millimètre au mètre. Dans cet article, nous nous intéressons particulièrement aux capteurs
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à fibre distribuée, principalement basés sur des procédés de diffusion de la lumière, pour mesurer
les variations de déformation. Cette revue concerne à la fois les applications nécessitant de grandes
longueurs de fibre dans un contexte géologique, ainsi que celles utilisant des longueurs inférieures à
un mètre pour le secteur médical. Alors que les capteurs à fibre optique distribués ont déjà montré
leur grand potentiel pour les applications à longue portée, les applications à courte portée sont un
secteur de niche émergeant ces dernières années.

Keywords. Optical fiber, Strain, Distributed sensor, Light scattering, Nanoparticles, Bragg grating.

Mots-clés. Fibre optique, Déformation, Capteur distribué, Diffusion de la lumière, Nanoparticules,
Réseau de Bragg.
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1. Introduction

In 1842 two articles were published in the Comptes-
Rendus de l’Académie des Sciences which marked
the beginning of guided optics and optical fibers. In
the first article, J. D. Colladon describes the experi-
ence of the luminous fountain that he had just dis-
covered the previous year [Colladon, 1842]. Upon re-
ceipt of this article, F. Arago, then perpetual secre-
tary of the Academy of Sciences invites Babinet to
describe his experience of guiding light in a glass
rod [Babinet, 1842]. Although Babinet attached lit-
tle importance to his discovery, he nevertheless men-
tioned two potential applications concerning light-
ing for microscopes as well as for medicine. These
two ideas will be applied at the end of the 19th cen-
tury and the beginning of the 20th century and will
lead to the advent of optical fiber in the 1960s follow-
ing the work of C. K. Kao, Nobel Prize for Physics in
2009 [Kao and Hockham, 1966].

If the telecommunications industry has been a
major player in the development of optical fiber
technology, the characteristics of these waveguides
quickly proved to be very attractive for other ap-
plications such as lasers and sensors [Koester and
Snitzer, 1964, Culshaw and Kersey, 2008]. Indeed,
they are small in size (125 µm in diameter), insen-
sitive to electro-magnetic interference, passive and
resistant to harsh environment. In addition, sensors
based on conventional optical fibers (telecom fiber)
benefit from all the technology already developed for
telecommunications networks (light sources, detec-
tors, optical components, etc.). Optical fiber-based
sensors therefore offer many advantages over me-
chanical or electrical sensors. In particular, the mon-
itoring of the physical parameters (such as temper-
ature, strain, chemical concentrations, etc.) can be
carried out in a distributed manner all along the fiber.
Measurement range (maximum length of the sens-
ing fiber) can vary from a few centimeters to sev-

eral tens of kilometers, while the spatial resolution
can vary from less than one millimeter [Luo et al.,
2019] to a few meters [Palmieri and Schenato, 2013].
Another distinctive feature of optical fiber sensors is
the capability of having many sensing points along
a single fiber or cable. This can be obtained either
by exploiting scattering phenomena in the so-called
distributed sensing, with more than 1,000,000 sens-
ing points per fiber [Denisov et al., 2016], or by us-
ing Fiber-Bragg gratings (FBGs) multiplexing, up to
thousands of sensing point per fiber, in some spe-
cific implementation [Guo et al., 2015] and [Götten
et al., 2020]. However, one major drawback is the cost
of the interrogators, which is quite high compared
to those employed by most classical sensor tech-
nologies, such as thermocouples or strain gauges.
Nonetheless, the cost per sensing point becomes fa-
vorable for fibre optic sensors (FOS) when large num-
bers of sensing points are required.

In this review we focus our interest on fiber sen-
sors for strain detection, of interest not only for geo-
sciences but also for medical sciences. In Section 2,
we describe the three main scattering mechanisms
involved in the detection, i.e. Raman, Brillouin and
Rayleigh scattering. Section 3 is devoted to fiber fab-
rication (FBGs and nanoparticle-containing fibers).
Long-range applications in geophyscial and geotech-
nical areas are described in Section 4. Last section
deals with short-range applications for the medical
domain.

2. Scattering mechanism

Scattering phenomena occurring in optical fibers are
the ground principle of operation of the present gen-
eration of distributed optical fiber sensors [Bao and
Chen, 2012, Schenato, 2017], as they provide a con-
tinuous reflectivity in each span of the fiber that can
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be localized with optical time- or frequency-domain
reflectometry methods.

Figure 1(a) shows a sketch of the scattering events
that occur in an optical fiber, which are caused by the
interaction between the incoming light and the opti-
cal medium. When light is propagating into an opti-
cal fiber, it interacts with the constitutive atoms and
molecules that are part of the fiber. The light elec-
tric field that travels in each section of the fiber gen-
erates time-dependent electric dipoles, which cause
secondary light waves that scatter around the fiber.
The scattering signal has a power several orders of
magnitude inferior to the input light, and therefore
it does not affect the light propagation in a signifi-
cant matter. The light scattered by the fiber instead
is emitted in a broad range of directions; a part of
this emission is coupled backwards into the fiber,
and constitutes the so-called backscattering that we
can observe in each section of the optical fiber. Dis-
tributed optical sensors interrogate the backscatter-
ing signal that is continuously emitted by the fiber
under test, and detect the intensity changes and the
frequency shift occurring in each section of the fiber.
In this regard, distributed sensors differ from other
optical fiber sensors because they do not use devices
that are inscribed (such as gratings) or externally fab-
ricated (such as interferometers) into the fiber to act
as a sensing device, but rather the fiber itself behaves
as a continuous sensor, resolving the physical mea-
surand along the fiber length [Bao and Chen, 2012].

Distributed sensors can interrogate Rayleigh, Ra-
man, or Brillouin scattering phenomena, which have
a wavelength dependency illustrated in Figure 1(b).
Rayleigh scattering is used in several distributed sen-
sors, most notably by optical backscatter reflectom-
etry (OBR) [Froggatt and Moore, 1998] for short-
distance sensing, and phase optical time-domain re-
flectometry (φ-OTDR) for long-range sensing [Eick-
hoff and Ulrich, 1981]. The key characteristic of
Rayleigh scattering is that the reflected waves have
the same wavelength as that of the input wave, and
therefore it is an elastic scattering. Optically, it can
be modelled as a space/time-dependent variation of
the refractive index of the fiber core; since the re-
fractive index of silica depends on the temperature
and on the strain exerted on the fiber, the interro-
gation of Rayleigh scattering is directly linked to dis-
tributed measurements of strain or temperature [Bao
and Chen, 2012, Froggatt and Moore, 1998].

Inelastic scattering instead involves a change of
frequency of the light waves scattered by the fiber
with respect to the input wave. The wavelength of
the light backreflected by inelastic scattering events
has both components that are red-shifted (Stokes)
and blue-shifted (anti-Stokes) with respect to the in-
put light [Bao and Chen, 2012]. Raman scattering in-
volves the widest wavelength shift between the input
and Stokes/anti-Stokes components, about 90 nm for
sensors operating at 1550 nm. Although not used di-
rectly in strain sensing, Raman scattering is at the
base of long-range distributed temperature sensors,
as the ratio between the anti-Stokes and Stokes light
intensity depends on the temperature [Farahani and
Gogolla, 1999]; for this reason, Raman scattering is
one building block of distributed temperature and
strain sensors (DTSS) which are used in pipeline
monitoring [Inaudi and Glisic, 2010].

Brillouin scattering involves the acoustic oscilla-
tions of glass, and for this reason it allows the detec-
tion of dynamic strain or acoustic signals along the
fiber [Coscetta et al., 2020]. The acoustic fields acting
on the fiber induce periodical variations of the fiber
refractive index due to the elasto-optic effect, which
results in a backreflected wave having a slight wave-
length shift (about 90 pm at 1550 nm) that is pro-
portional to the acoustic wave velocity. A wide range
of distributed strain and acoustic distributed sensors
has been developed, either analyzing the light re-
flected by the fiber, or using two optical sources at
each side of the sensing fiber [Brillouin optical time-
domain analyzer (BOTDA) Li et al., 2008a].

Rayleigh scattering (and in minor part inelastic
scattering) is a loss factor of optical fibers, and for
this reason research efforts have been addressed
to design single-mode fibers (SMFs) that minimize
light scattering, down to the current attenuation of
0.14 dB/km [Hasegawa et al., 2018]. The advent of
distributed sensors, however, has recently reversed
the trend [Tosi et al., 2020b]: as scattering is the sig-
nal detected by distributed sensors, researchers have
tried to engineer fibers that have a higher scatter-
ing, at the expense of higher propagation losses. En-
hanced backscattering fibers (EBFs) accomplish two
goals: they return a higher signal-to-noise ratio in
strain sensing, which has improved the accuracy in
shape sensing technologies for medical imaging [Par-
ent et al., 2018]; and they enable scattering-level mul-
tiplexing (SLMux) [Tosi et al., 2020b] which converts
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Figure 1. (a) Sketch of elastic scattering occurring in an optical fiber. (b) Wavelength (λ) dependency of
scattering processes in optical fibers when the input light is a laser having wavelength λ0.

Figure 2. Scattering trace of enhanced backscattering fibers, reporting the return loss analyzed on OBR
instrument for each fiber section. (a) Analysis of a high-gain fiber and determination of the scattering
parameters; (b) Attenuation uniformity of a low-loss fiber, reporting the one-way fiber attenuation in
each section.

a single-channel interrogator into a multi-fiber sens-
ing network, which is essential for shape sensing or
rigid medical devices in three dimensions [Beisenova
et al., 2019a].

A successful implementation of an EBF makes
use of MgO-based nanoparticles elongated in the
fiber core, to increase the local reflectivity by a sig-
nificant amount. Figure 2(a) shows the scattering
trace of such EBF, which achieves a scattering incre-
ment of about five orders of magnitude [Tosi et al.,
2020a]. The scattering gain is defined as the incre-
ment of scattering provided by the EBF with respect
to a SMF, and is measured at the EBF–SMF inter-
connection; the fiber reported in Figure 2(a) has a
gain G = 48.4 dB, and is one of the highest values
recorded so far as it approaches the reflectivity levels
of weak gratings. Conversely, EBF fibers have a high
two-way attenuation (2α), which is estimated as the
slope of the scattering trace (37.7 dB/m). Different

designs of the MgO-based fibers have shown atten-
uation ranging from 300 dB/m down to the recently
reported 14.3 dB/m [Tosi et al., 2021]. Since nanopar-
ticles have a rather random distribution in the fiber,
in terms of local density and relative position with
respect to the core, the attenuation is not constant
but rather fluctuates: Figure 2(b) shows the attenu-
ation of a low-loss MgO-based nanoparticle-doped
fiber, which ranges from 6.0 dB/m to 13.0 dB/m two-
way, and is one of the lowest values reported so far for
high-scattering fibers.

The main alternatives to the MgO-doped fibers
are based on increasing the local reflectivity in the
fiber through the inscription of nano-gratings [Yan
et al., 2017], distributed Bragg reflectors [Monet et al.,
2019], nanopores [Reupert et al., 2019, Donko et al.,
2018, Blanc et al., 2020] or other nanoparticles com-
position [Veber et al., 2019, Bulot et al., 2021]; most
relevantly a 25-cm inscription of a broadband weak
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reflector using a fs laser, achieving up to 45 dB scat-
tering gain, was reported by Yan et al. [2017].

3. Optical fiber fabrication

Optical fibers are generally obtained by drawing at
high temperature a rod called a preform. The ad-
vent of preform preparation processes by chemical
vapor deposition in the 1970s significantly reduced
optical attenuation, from 1000 down to 0.2 dB/km
in 10 years. Vapor phase deposition consists of re-
acting gases (SiCl4 and O2 for example) to form soot
(SiO2) which is deposited on a substrate. The main
preform manufacturing processes are Outside Va-
por Deposition (OVD), Vapor Axial Deposition (VAD)
and Modified Chemical Vapor Deposition (MCVD).
These processes have been developed in order to
prepare a “perfect” glass: (i) the most homogeneous
glass to reduce light scattering (i.e. to improve the
transparency) and (ii) to limit the presence of de-
fects or impurities that can induce absorption bands.
The fibers presented in this review rely instead on
the presence of these defects. Defects such as Oxy-
gen Deficient Center (ODC) make glass photosensi-
tive [Skuja, 1998] and allow to photo-inscribe Bragg
gratings, and the presence of nanoparticles increases
light scattering.

3.1. Fiber-Bragg gratings

Initially developed for telecommunication industry,
FBGs are now commonly used in sensing applica-
tions [Kashyap, 2009], also in harsh and extreme en-
vironments [Mihailov, 2012, Kumari et al., 2019]. Ba-
sically, FBG is an optical filter that reflects targeted
wavelengths. To reach this goal, the structure of a
FBG corresponds to a longitudinal periodic modu-
lation of the refractive index of the fiber core. The
interaction between the light and the FBG can be
analyzed through the Bragg condition expressed as
λB = 2 ·neff ·ΛG where neff is the effective refractive
index seen by the light, and ΛG is the period of the
index variation. All the Bragg wavelengths (λB ) sat-
isfying this condition are reflected. As both the re-
fractive index and the grating period vary with tem-
perature or mechanical perturbations, FBG can be
used as sensor by measuring the Bragg wavelength
shift [Kersey et al., 1997]. The most common man-
ner to obtain a FBG is by using the photo-sensitivity

of the fiber core. Doping elements such as germa-
nium (commonly used in telecommunication fibers
to raise refractive index) induce refractive index in-
crease when they are exposed to visible or UV light.
To obtain the spatial modulation in the longitudinal
direction, a diffraction grating such as a phase mask
is used to create interference pattern. FBGs can be
discriminated, based on their formation mechanism.
The most common FBG is the type I. Small refrac-
tive index change can be obtained by irradiating with
UV light (typically 244 nm) to excite the ODC. Den-
sification of glass allows to increase refractive index
change. Such FBG can operate to temperature up to
400–500 °C. In addition, type I FBGs can be written
through different coatings also by using IR femtosec-
ond laser [Habel et al., 2017]. For type II, a high peak
power UV femtosecond laser is used. Refractive index
change is caused by multiphoton ionization which
modifies the amorphous glass network. High reflec-
tivity and high operating temperature (800–1000 °C)
characterize these FBGs. As they necessitate a single
shot laser exposure, type II gratings can be photowrit-
ten while the fiber is drawn [Askins et al., 1994].

The photosensitivity of fibers can be enhanced by
exposing the fiber to high pressure of hydrogen (“hy-
drogen loading”). Nonetheless, according to the lit-
erature, this process may hamper the temperature
stability of the FBGs, which can be recovered upon
proper thermal treatment of the fibers, such as ther-
mal annealing [Li et al., 2008b], which is a well-
known method to obtain regenerated FBGs [Polz
et al., 2021]. Hydrogen loading, in this sense, is im-
portant, but not essential, to obtain an index modu-
lation with sufficient magnitude for extreme temper-
ature operation [Canning et al., 2008, 2010]; nonethe-
less, it has been shown that regeneration can be ob-
tained even without hydrogen loading, although for
FBGs limited to lower temperature operation [Linder
et al., 2009].

Another class of Bragg gratings is the so-called
long-period gratings (LPGs) [Wang, 2010]. They dif-
fer from standard FBG because their refractive in-
dex varies with a period of hundreds of microme-
ters. Due to the longer grating period, the fundamen-
tal core guided mode couples to discrete, forward-
propagating cladding modes, which quickly atten-
uate during the propagation. Therefore, the trans-
mission spectra present a series of loss bands corre-
sponding to a distinct cladding mode coupling. The
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Figure 3. SEM images of the longitudinal cross-section of (a) a preform and (b) a fiber containing
nanoparticles. The drawing axis is horizontal. (c) SEM image in cross section of a fiber containing
nanoparticles.

corresponding transmitted peak-loss wavelength is
given by λm = (neff −n(m)

clad)ΛG , where neff and n(m)
clad

are the effective index of the mode travelling in the
core, and the LP0m cladding mode to which the core
mode is coupled, respectively. Moreover, other single
point sensors, exploiting interferometric effects such
as Fabry–Perot and Michelson cavity can be directly
fabricated on an optical fiber [Miliou, 2021]. Despite
the interest due to the intrinsic high resolution and
accuracy, these sensors are difficult to multiplex and,
therefore, they are outside the scope of this review.

3.2. Fibers containing particles

The MCVD technique is the process used to pre-
pare preforms drawn into particle-containing fibers
reported in this review [Blanc et al., 2011]. Since its
development in the 1970s, this method is commonly
used in industry to prepare specialty optical fibers
such as fiber lasers or sensors [Li, 2012]. As a first step,
vitreous layers are deposited inside a silica tube. The
composition of those layers are determined by the
use of different reactive gases carried in the tube by
oxygen. Gaseous species are limited to SiCl4, GeCl4,
POCl3, fluorine and boron carriers. Additive elements
(such as Mg) are incorporated during the solution
doping step. In this method, a porous layer, deposited
by MCVD on the inner surface of the silica tube, is
soaked with a solution of salts of metal chlorides (e.g.
MgCl2) dissolved in alcohol or water. After removing
the solution, the porous layer is dried, densified and
vitrified at high temperature (up to 1800 °C). Finally,
the tube is closed during the so-called collapse step
(at temperature higher than 2000 °C) to form a rod

called preform. To draw this preform into fiber, tem-
perature must be higher than the softening tempera-
ture (≈1650 °C for silica glass), typically 2000 °C.

Typical SEM images of the preform and the fiber
containing MgO-based silicate nanoparticles are pre-
sented in Figure 3. Particles, whose average diame-
ter depends on the concentration in the doping so-
lution, are whiter than the glass matrix because mag-
nesium is mostly partitioned in the silicate particles.
However, their composition follows a complex path.
Indeed, it has been reported that the composition of
the particles depends on their sizes: a higher con-
centration of Mg is measured in the largest particles
[Blanc et al., 2019]. For particles much larger than
10 nm, the drawing stage is an important step to be
considered as they can elongate and even break-up
due to Rayleigh–Plateau instability [Vermillac et al.,
2017, 2019]. Then, characteristics of the porous layer,
concentration of the doping solution and drawing
conditions must be carefully determined to optimize
particle features (size, density, morphology, etc), i.e.
to tune light scattering properties.

4. Long-range applications in geophysical and
geotechnical applications

In the last 20 years, distributed optical fiber sensors
have been proposed to address monitoring problems
in many different fields. One particular field of ap-
plication where the exploitation of distributed opti-
cal fiber sensing has greatly flourished is geophys-
ical and geotechnical monitoring. Indeed, the ca-
pability of measuring different physical parameters
over very long distances with a high spatial density
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of measuring points, the remote powering and con-
trol, and the sensor ruggedness make this technol-
ogy befitting to tackle the specific challenges of these
fields of application. Since these monitoring fields
often require covering large areas, distributed FOS
(DFOS) has started to be used. Some DFOS solutions
have even reached the market and have become well-
explored and widely-accepted tools.

In this section, we will introduce some selected
examples of DFOS for geophysical and geotechnical
long-range monitoring. With the term long-range, we
specifically intend those applications where the sens-
ing optical fiber length ranges from a few tens of me-
ters up to some kilometers. Although many specific
applications of DFOS exist, we have opted to address
and summarize only some selected works related to
static strain and temperature monitoring of geohaz-
ards, and seismic monitoring. The interested reader
is referred to the ample reviews of literature for de-
tails [Schenato, 2017, Fenta et al., 2021, Shi et al.,
2021].

The most commonly used distributed sensing
technology for strain and displacement monitoring
is the Brillouin-scattering-based sensing. In contrast,
Raman-scattering-based sensing, which is insensi-
tive to strain, is the most used for temperature mon-
itoring. Additionally, Rayleigh-scattering-based sen-
sors are also used for static strain monitoring in
geotechnics, but they are mostly employed for seis-
mic monitoring.

4.1. Distributed strain sensing

Regarding static strain monitoring, DFOS are widely
used for monitoring geomorphic processes e.g., for
landslides, subsidence and ground motion, levee,
and dike. Landslides are often triggered by heavy
rainfall that saturates the soil, thereby destabilizing
it and determining its failure under shear stress. Early
ground movement detection is crucial to give enough
time to the authorities for the evacuation of the pop-
ulation. With the aim of monitoring the strain ex-
erted by the soil movement, the optical fibers need
to be coupled to the soil, so to be dragged by the
ground movement: when the soil undergoes collapse
or sliding, the fiber gets stretched accordingly. The
sensing optical fiber cables are often embedded in
shallow trenches or simply anchored to the ground
through stakes. Depending on the installation, both

shallow landslides and slow slope movements can be
detected through the elongation induced in the sens-
ing fiber.

One of the first examples of landslide monitor-
ing employing Brillouin-based DFOS is provided in
Yoshida et al. [2002]. The landslide area, consisting
of approx. 70 ha (1500 × 500 m) was instrumented
with approximately 1200 m of fiber. The fiber was ar-
ranged in a square grid layout running 90 m in the
landslide moving direction and 80 m in the transverse
one. Part of the cable was buried under the ground at
50 cm depth, and part was anchored via fixing metal
plates. The spatial resolution of the Brillouin inter-
rogator was limited to 1 m, enough to provide a de-
tailed map of the strain field in the monitored area. A
similar approach, with a Brillouin-based sensor and
with the cable transversely intercepting the landslide
movement, has been proposed in Iten et al. [2009]. In
this work, only 80 m of cable was laid in the ground
beneath a hiking path, inside a small trench, and
coupled to the soil by micro-anchors. In the same
paper, mention is made of the implementation of
a geotechnical DFOS monitoring system applied to
a 60 km LNG pipeline section in Peru, affected by
geohazards.

Another approach, enabled by the long range ca-
pability of the DFOSs, consists in installing the fiber
in loop configuration through an array of soil nails,
inclinometers tubes, and frame beams, such as in
Shi et al. [2008]. A similar deployment was also pro-
posed by Hoepffner et al. [2008], at the Aggenalm
landslide (Bavarian Alps) where a Brillouin interroga-
tor (along with a Raman interrogator for tempera-
ture compensation) was used to probe a 90 m long
sensing cable, partly embedded in the soil and partly
inside an inclinometer borehole in a loop configu-
ration. More recently, in Kogure and Okuda [2018],
a DFOS-based on Rayleigh backscattering, was in-
stalled in a borehole to a depth of 16 m to detect the
vertical strain profile of a landslide with 10 cm spa-
tial resolution. Despite the limited length of the fiber
deployed in the borehole, the overall cable length was
more than 450 m with the remote interrogator hosted
at more than 200 m from the borehole in a safe struc-
ture. In this study, the strain variation along the bore-
hole depth was correlated with the soil stratigraphy,
while its temporal evolution showed a clear corre-
lation with the precipitation data that triggered the
landslide (Figure 4).
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Figure 4. Strain field vs. time along a 16 m-deep borehole drilled into a landslide in Japan as well as the
soil stratigraphy and precipitation information [reprinted with permission from Kogure and Okuda,
2018].

Similarly, Zhang et al. [2018] embedded a fiber op-
tic cable into a borehole and mapped the compaction
or rebound zone along the vertical profile up to 150 m
depth by means of Brillouin-based technique. The
simultaneous deployment of DFOS-equipped bore-
holes and cables laid across the boundary of a land-
slide has also been used to produce and validate
more accurate models on the shear deformation at
different locations of a landslide as in Sang et al.
[2019].

The limited invasiveness of the fiber optic ca-
ble allows also the integration of DFOS in soil an-
chors, which are geotechnical sub-horizontal rein-
forcements for remediation of unstable slopes. A soil
anchor is a hollow steel bar, installed by a self-drilling
technique in the soil or rock, and it is often inte-
grated with tendons cemented in the inner hole. In
Cola et al. [2019], the authors installed an optical fiber
cable within the hole of some soil anchors, side-by-
side to the tendons and cemented with them. The an-
chors were 40-m long and the fiber cables were in-
terrogated by a Rayleigh-based OFDR with 1 cm spa-
tial resolution with the aim of determining the dis-
tributed strain profile along the nails. The system ul-
timately measures both the axial force distribution
in the anchor and the soil–anchor interface friction.
More specifically, the integration of DFOS makes pos-
sible to infer information about the health condition
of the anchor, but also promotes the anchor itself as

a sensor, allowing to probe the evolution of the stress
field in the surrounding soils and therefore provid-
ing information about the landslide, such as the po-
sition of the sliding interface. Similarly, information
about the structural health and about the soil friction
can be inferred by embedding DFOS in foundation
piles under static load testing [Pelecanos et al., 2018,
Bersan et al., 2018].

Although those installations could resemble an
inclinometer, DFOSs measure strain or its varia-
tion, whereas inclinometers measure slope inclina-
tion changes and actual deformation. Despite that,
several authors have tried to implement DFOS incli-
nometers equipping borehole tubes or casings, up to
some tens of meters depth, with three or more op-
tical fibers and exploiting the Euler–Bernoulli beam
theory and relying on the application of a quadratic
integral method or classical conjugate beam method
[Lenke et al., 2011, Minardo et al., 2014, Sun et al.,
2016, Huang et al., 2018, Minutolo et al., 2020, Zhang
et al., 2020]. An example of one of this inclinometer,
installed in a landslide at the Three Gorges Reservoir
Area is shown in Figure 5.

Over the years, the improvement in the spatial res-
olution of the interrogators, allowed to perform ex-
periments in physical models, where centimeters-
scale spatial resolution is required due to the lim-
ited size of the setup. For example, in Schenato et al.
[2017], the researchers instrumented a large-scale
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Figure 5. (a) Example of fibers arrangement in a DFOS inclinometer. (b) Displacement measured by a
standard inclinometer and a DFOS-based inclinometer during the evolution of a landslide [reprinted
with permission from Sun et al., 2016].

physical model (6 × 2 × 3.5 m) with 30 m of engi-
neered corrugated fiber cable deployed in a mean-
dering path oriented along the landslide direction.
The fiber was deployed below the surface at a pre-
determined sliding interface and the corrugation on
the fiber sheath guaranteed sufficient coupling to
the soil. By means of artificial rainfall, the slope was
driven to collapse while monitoring the strain along
the fiber. The authors were therefore able to provide a
detail map of the strain spatial distribution and evo-
lution over time, with indication about the coupling
efficiency and even early signs of slope failure. Fig-
ure 6 shows the physical model on the left and the
map of the strain field at different stages of the land-
slide and soil–cable coupling: from left to right are
shown the initial coupling, the full coupling, the par-
tial coupling and the post-collapse phase. Similar ex-
periments were carried out by other groups, but in
smaller physical models, exploiting both Brillouin-
[Damiano et al., 2017, Song et al., 2017, Darban et al.,
2019] and Rayleigh-based techniques [Papini et al.,
2020].

Distributed strain sensing has been applied also
to river embankments since the very early 2000s
[Naruse et al., 2000, Zhang et al., 2010, Lei et al., 2012,
Zhou et al., 2013]. The aim of these works was the
early detection of collapse, via Brillouin-based tech-

nique for strain monitoring. Typically, the fiber ca-
bles were buried at few tens of centimeter depth in
the embankment scarps in meandering path whose
strands follow the direction of the embankment. Only
few of them implemented temperature compensa-
tion with portion of fibers left in strain-free condi-
tions or by employing an additional Raman-based
system. To improve the spatial coverage of sensors
over the embankment scarp, Nöther et al. [2008] and
Artières et al. [2010] proposed the use of engineered
geotextiles equipped with optical fibers.

4.2. Distributed temperature and pressure sens-
ing

Embankment monitoring is also one of the most
early application of DFOS for the distributed mea-
surement of temperature within the soil, via Raman-
based technique. The goal of this kind of monitoring
is the detection of anomalous temperature behavior
within the soil, often correlated to dangerous filtra-
tion path and seepages, which may lead to the ero-
sion and the final collapse of the structure. In order
to effectively identify critical events, it is mandatory
to have an a-priori long term measurement cam-
paign to determine the normal thermal behavior of
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Figure 6. (a) Physical model of a landslide instrumented with optical fiber for strain sensing. (b) Evo-
lution of the strain field, with reference to the coupling between the collapsing soil and the fiber cable
[reprinted and modified with permission from Schenato et al., 2017].

the structure, which fluctuates with season. Further-
more, the sensing system has to probe the structure
with an adequate spatial resolution, as early filtra-
tion paths are likely very small. Current standard
commercial Raman interrogators provide a spatial
resolution of 0.25–1 m over a range of some kilome-
ters. Nonetheless, despite this long range capabil-
ity, in most of the reported installations the fiber
length is limited to some hundreds of meters
[Shanafield et al., 2018]. The accuracy needed to
detect anomalous temperature change has to be
quite large, in the order of 0.1 °C, as very often the
filtration water flow rapidly reaches thermal equilib-
rium with the surrounding soil. This usually requires
long measurement time, in the order of some min-
utes, still matching with the needs of this field of
application [Bersan et al., 2019].

Based on these premises, the early installations
of temperature DFOSs in embankments [Albalat and
Garnero, 1995, Fry, 1997, Aufleger et al., 1997, Johans-
son and Sjödahl, 2004], struggled to effectively iden-
tify such anomalies. Nowadays, much of the research
on the use of DFOS in embankment monitoring are
based on the so-called “heat-up” or “active” thermo-
metric method [Perzlmaier et al., 2004, Sayde et al.,
2010, Cola et al., 2021]. This method consists of mea-
suring the temperature along an heated optical fiber;
usually the heating is achieved by injecting current
into electrical wires bundled with the fibers in the
same cable. Instead of the actual temperature, the
time-constant of the heating and cooling phases are

used to characterize the degree of saturation of the
soil and also to track active filtration flows that dis-
sipate the heat more rapidly [Pyayt et al., 2014], as
shown in Figure 7.

About the use of other DFOS technologies for
temperature measurement, few works can be found
in the literature, either Brillouin- or Rayleigh-based
ones: these solutions require the fibers not to be
affected by the strain and are mostly limited to
small-scale physical models [Zhu et al., 2007, Wang
et al., 2016, Bersan et al., 2017, Cheng et al., 2021].

Alternatively, the distributed measurement of
pressure has been envisaged as an effective way to
monitor an embankment’s health. Pore-water and
total pressures lead to the development of hydraulic
forces that affect the dam’s shear strength, determin-
ing a dangerous localized strain. These processes
occur well before the collapse but may lead to a
rapid failure as they determine the backward ero-
sion piping mechanism. These anomalous pressure
regimes, if detected, could be used as precursory
signals of failure because they take place well before
the strain arises, which initially occur without any
surface evidence. Unfortunately, high spatial and
pressure resolution are required for that aim. Despite
many types of FBG-based pressure sensors having
been reported in the literature [Zhou et al., 2006, Wei
et al., 2018, Schenato et al., 2019, Ho et al., 2021], to
date, there have been only a few examples of dis-
tributed pressure sensors capable of achieving such
performances, and they have been implemented
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Figure 7. Temperature measured in the embankment during the heating of the hybrid cable according
to the “active” thermometric method (curves with different colours correspond to different time stamps).
The section of the cable where the temperature drops corresponds to the seepage position, where the soil
has a larger thermal conductivity [reprinted with permission from Pyayt et al., 2014].

only in bare fibers [Teng et al., 2016, Kim et al., 2016,
Schenato et al., 2020a] by means of Brillouin-based
techniques. Recently, a proof-of-concept of a very
high-sensitive, high-spatial-resolution distributed
pressure sensing cable based on an engineered cable
cross-section and suitable for hydrological applica-
tions has been proposed [Schenato et al., 2020b].
The cable was designed to transfer effectively the
external pressure into strain affecting the embedded
fiber, then measured by means of a Rayleigh-based
technique.

4.3. Distributed acoustic sensing

An additional technology that has entered power-
fully in geophysics is the distributed acoustic sens-
ing (DAS) technology. DAS is based on the coherent-
detection of the Rayleigh backscattering generated
by a narrow band source. Upon the illumination of a

coherent source, the heterogeneity and density fluc-
tuations of the silica generate coherent backscatter-
ing signals that vectorially sum, resulting in a spe-
cific interference pattern, which encodes the spa-
tial distribution of the heterogeneity and the cor-
responding relative optical phases. Strain and tem-
perature variations affect and perturb that interfer-
ence pattern, and therefore, they can be measured
through its variation. Several optical schemes to re-
trieve such a pattern at a very high speed have been
implemented, all substantially based on the so-called
φOTDR [Juškaitis et al., 1994, He and Liu, 2021].
This technique promotes the optical fiber to act as
an array of in-phase geophones, measuring the sur-
rounding acoustic or vibration field with a resolu-
tion of some meters over a range of several kilo-
meters [Zhan, 2020]. Differently from a geophone,
which records ground motion (velocity), a DAS typ-
ically measures strain-rate, and the data from the
DAS requires a proper spatial integration to be con-
verted into geophone-equivalent data [Lior et al.,
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2021].
Initial applications of DAS in geophysics have re-

garded the vertical seismic profiling in the oil and gas
industry [Mestayer et al., 2011, Daley et al., 2013, Ma-
teeva et al., 2013, Parker et al., 2014]. Nowadays, sev-
eral works have been published about the use of DAS
as long-range distributed earthquake seismometers
[Lindsey et al., 2017, Jousset et al., 2018, Williams
et al., 2019, Sladen et al., 2019, Lellouch et al., 2021].
In these works, dark fibers, i.e., unused laid optical
fibers with no traffic running on it, in existing stan-
dard telecom cables have been probed with a DAS.
These works showed that even micro-earthquakes
hundreds of kilometers away can be successfully
detected [Sladen et al., 2019]. In Williams et al.
[2019], the system was shown to be able to record
the seismic waves of different types (see Figure 8).
Moreover, a deep earthquake with moment magni-
tude 8.2 striking the Fiji area was detected with a
40 km-long ocean-bottom fiber optic cable offshore
Belgium.

DAS has also been proposed for vibration-based
landslide monitoring as a replacement for geo-
phones. The sensitivity of DAS is typically worse
than that of geophones per single sensing point.
Still, this approach’s advantage consists of the very
large number of coherent sensing points that can
be probed. The feasibility of this method has been
tested so far in a small-scale physical model of a
landslide [Michlmayr et al., 2017], and more recently
in a physical model of debris flows [Schenato et al.,
2020c]. In this last work, despite the smaller size of
the model (approx. 2 m-long), 800 m of fiber coiled
in 20 mandrels have been deployed, and probed.

Other geophysical applications where seismic
monitoring is of paramount importance are related
to ocean bottom surveys and volcano-triggered
earthquakes. Despite occurring in completely di-
verse environments, they share similar issues related
to the extreme harshness of the operative conditions
and the required spatial extensiveness of monitor-
ing. Initially addressed by massive arrays of quasi-
distributed FBGs [Kringlebotn, 2010, Sorge et al.,
2005], they have been only recently addressed by
DAS technology, with outstanding results [Williams
et al., 2019, Nishimura et al., 2021, Jousset et al.,
2022].

Worthy of mention, in ocean environment, is the
wildlife monitoring of baleen whales in the Arctic us-

ing DAS that employs the globally available infras-
tructure of sub-sea telecommunication fiber optic
cables [Bouffaut et al., 2022].

5. Short-range applications in medical sci-
ences

5.1. Distributed fiber optics strain sensors

While distributed fiber optics strain sensing has
found its own place in modern science and technol-
ogy showing great potential in long-range applica-
tions, particularly in the field of geotechnical appli-
cations. the applications for the short-distance have
started emerging over the last few years. The key fac-
tor that creates interest regarding distributed fiber
sensing for short-range applications is the possibil-
ity to compact a large number of sensing points in
a short space, thereby obtaining sub-centimeter de-
tection. The main short distance class of applications
that can fully exploit the potential of distributed fiber
sensing is the field of bio-medical applications [Tosi
et al., 2018].

Concerning bio-medical applications, there are
some niche sectors that can strongly benefit from
the use of distributed fiber optics strain sensing,
mainly where high level of precise measurements,
as well as minimal invasive sensing, is required
[Amanzadeh et al., 2018]. Some of these sectors in-
clude colonoscopy, epidural administration, intra-
arterial therapies, cardiac procedures, end oph-
thalmic robotic surgery, i.e. applications where it can
be beneficial to use a needle catheter equipped with
optical fiber sensors for strain measurement or shape
reconstruction [Mandal et al., 2016, Gonenc et al.,
2017, Khan et al., 2019]. In this regard, it is also neces-
sary to stress that the use of optical fiber technology
is not only beneficial for the purpose of precise strain
sensing, but also introduces advantages given by the
nature and the material of the sensing medium. In
fact, glass optical fiber presents peculiar properties
such as compact size, robustness, chemical inert-
ness, bio-compatibility, and immunity to external
electromagnetism, that makes fiber sensors perfect
for bio-medical applications [Lee, 2003].

It is worth noting that the research for new and
innovative bio-medical devices based on fiber op-
tics sensing technology has been mainly focused on
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Figure 8. (a) Raw DAS data (Ten seconds of raw distributed acoustic sensing (DAS) data along the last
5 km of the array): coherent signals from ocean and seismic waves propagating both landward and
seaward across the array can be identified. (b) Mean power spectral density (PSD) of raw DAS strain data
of 1 h of data in the same position of the left plot [reprinted with permission from Williams et al., 2019].

the use of FBGs or arrays of FBGs, since they repre-
sent a mature technology, reliable, and easily avail-
able on the market. In the field of medical devices
that require strain measurement to enable their func-
tionalities, the use of FBGs is a good solution un-
til the precision of the measurement and the spa-
tial concentration of the sensing points become a
mandatory requirement for the sensing system. The
FGB, in fact, is a single point sensor and the infor-
mation on the strain measurement is limited to its
spatial location. The use of arrays of FBGs can im-
prove the situation by promoting the system to a
multi-point sensing device, however the technology
of FBGs inscription limits the distance between the
elements of the array to roughly 1 cm. For some ap-
plications it does not represent a problem, in a way
that the limited number of sensing points or the dis-
tance center-to-center between the sensing points
can be overcome by a careful analysis of the output
data, as it can be in the case of a catheter for colon
endoscopy whose bending can be reconstructed with
a certain amount of precision by using a set of FBG
arrays [Waltermann et al., 2014]. On the other hand,

other applications can be significantly improved by
the use of sub-centimeter distributed fiber sensing.
An interesting case is represented by the identifica-
tion of the achievement of epidural space during the
procedure of epidural anesthesia.

Epidural anesthesia is a largely used pain-relief
method, whose main use is delivering anesthetic
to pregnant women during labour [Eltzschig et al.,
2003]. The procedure consists in reaching the epidu-
ral space, a small space of 2–6 cm located in spinal
cord between ligamentum flavum and dura mater.
The success of this method of anesthesia depends
on the correct identification of the epidural space,
which can be a difficult target to reach. Even if some
manual methodologies have been developed in med-
ical practice for improving the procedure of epidu-
ral anesthesia [Hoffmann et al., 1999], the success
of the operation results in a certain percentage of
failure, which can be quantified to be around 10%
[Hermanides et al., 2012]. To improve the success
of achieving epidural space and to assist the clin-
icians during the procedure, different quantitative
technological methodologies and tools have been
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Figure 9. Color map of the strain occurring on a sensorized needle during the insertion into a phantom
over time. The change of strain indicates the passage through the various layers of the phantom, which
reproduces the anatomy of the spine.

proposed, some of them making use of fiber optics
sensing technology. An FBG was inserted inside the
epidural needle nearby the tip in order to detect the
pressure variation that occurred during the penetra-
tion of the needle into the spine tissue by Carotenuto
et al. [2017]. A similar approach has been studied by
equipping a needle for lumbar punctures in order to
detect the force occurring on the device [Ambastha
et al., 2016]. Both these solutions rely on the use of
a single point of sensing since the physical property
to detect is limited to the pressure/force occurring
on the tip of the device. Even if the scientific result
is valid, a larger amount of sensing data can be re-
trieved by equipping the epidural needle with an
optical fiber sensor and by using a distributed ap-
proach. Based on this idea, Beisenova et al. [2018]
have glued an SMF-28 fiber longitudinally along an
epidural needle and measured the distributed strain
occurring during needle penetration into a custom-
made phantom. The distributed stain measurement
has been obtained by using a Luna OBR interrogator.
The typical strain map is shown in Figure 9. In the
figure it is possible to distinguish the change of strain
associated with the passage in different layers of the
phantom, representing the anatomy of the spine.
The fact that the entire strain measurement along
the needle is detected permits, in principle, to have
a wider collection of information. Therefore a more
precise behavior of the needle can be reconstructed
including: rotation, misalignment, and displace-
ment. Moreover, this approach introduces a more
comprehensive perspective for distributed stain

measurement, which involves the reconstruction of
the 3D shape sensing of the medical device, for trac-
ing the direction of the needle during the insertion.

5.2. 3D shape sensing for medical application

The impact of shape sensing, for both industrial
and medical applications, has significantly triggered
the interest of the scientific community in the last
decade [Waltermann et al., 2015]. There is no doubt
that shape sensors based on fiber optics technology,
mainly in the context of precision bio-medical ap-
plications, present advantages with respect to shape
sensors based on electronic technology [Amanzadeh
et al., 2018]. The small size of sensors based on
fiber optics technology is intrinsically associated
with the possibility of having both multi-point or
distributed sensing configuration; the first uses the
FBGs technology, the second exploits the natural
back-scattering, occurring in the fiber, and the OFDR
detection strategy.

The problem of shape sensing, achieved by using
fiber technology, can be translated to the problem of
detecting the fiber bending curvature and direction.
In order to measure the bending, there are two dif-
ferent approaches proposed in literature: the first is
measuring the change of optical intensity in a multi-
core fiber, the second is to detect the strain induced
by the fiber bending. The last detecting strategy has
become predominant, mainly because of the matu-
rity of the FBG technology, that offers a consistent
and reliable sensing platform. Nevertheless, it is well
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known that a FBG offers a single point measurement,
so that to target a complete shape sensing we need to
equip the device with multiple fibers with inscribed
arrays of FBGs [Roesthuis et al., 2014]. Another pos-
sibility relies on the use of multi-core fiber provided
with inscribed FBGs [Flockhart et al., 2003]. The ge-
ometrical arrangement of the fibers, used to equip
the device, is strictly dependent on the geometry of
the object whose shape is to be detected. In case of
object with beam shape, which is a common geom-
etry for medical devices like catheters and needles, a
full 3D shape measurement can be achieved by using
three fibers (or a fiber with three cores) arrange in a
triangular shape [Waltermann et al., 2014]. By twist-
ing the fibers it is also possible to detect the twist
of the beam [Askins et al., 2008], while by adding a
fourth fiber it is possible to compensate for the tem-
perature [Beisenova et al., 2019a]. Fibers presenting
multiple cores, with a number larger than four, can be
used to implement advanced shape reconstruction
algorithms in order to improve the precision [Floris
et al., 2019].

As mentioned before, the use of multi-point fiber
sensors can be a limitation in the case of precise and
critical bio-medical applications. In this case, a larger
number of sensing points, located on the longitudi-
nal direction of the device is required. Distributed
strain sensing is the solution for boosting the accu-
racy of shape sensors [Bao and Chen, 2012]. How-
ever to achieve shape sensing of a medical tool, like a
needle or a catheter, it is necessary to supply the tool
with a number of optical fibers, three or four accord-
ing to the standard configurations proposed in liter-
ature. This, in principle, represents a problem since
detection systems like OBR can be fed with only one
fiber sensor as input. A parallel of optical fiber, used
to feed the OBR, will result in an incoherent over-
lap of the back-scattering coming from each fiber,
making it impossible to detect the strain and its spa-
tial location. Beisenova et al. solved this, apparently
tough, issue by using a nanoparticle-doped high scat-
tering fiber with an operating protocol called SLMux
[Beisenova et al., 2019b]. The high back-scattering is
generated by the presence of MgO-based nanoparti-
cles located in the fiber core [Blanc et al., 2011]. Ex-
ploiting the high scattering, a parallel of fiber can be
created, so that the high scattering fiber overlaps only
with low scattering SMF pigtails. Because the scatter-
ing level of MgO-based nanoparticle fiber is 30–40 dB

higher that the normal fiber scattering, the SMF-28
scattering can be treated as noise.

Beisenova et al. exploited the new SLMux capabil-
ity for demonstrating 3D shape sensing of an epidu-
ral needle [Beisenova et al., 2019a]. As shown in
Figure 10(a), four cuts of nanoparticle-doped fibers
have been glued longitudinally on an epidural nee-
dle, connected to the OBR by the SLMux configura-
tion. The fibers were organized in a 90° configura-
tion, so that each couple of opposite fibers measures
the strain along one of the coordinate axis, as de-
picted in Figure 10(b). Counting two fibers for each
axis permits improving the precision of the strain
measurement. Moreover, since the geometrical prob-
lem of 3D shape sensing requires three fibers to be
fully determined, the presence of four fibers can be
used to discriminate the offset given by the presence
of temperature, which affects uniformly all the four
fibers. The strain on the fiber sensors has been de-
tected with a resolution of 2 mm by the OBR. The
strain information has been converted into bending
data by a simple algorithm. Several insertions into a
custom-made phantom have been performed to val-
idate the 3D shape sensing model. An example of 3D
reconstruction is shown in Figure 10(c, d). As it is
possible to notice, the system is able to detect mini-
mal bending angle, permitting an ultra-precise shape
reconstruction, impossible for FBG-based systems.
This new distributed strain sensing paradigm can po-
tentially open new frontiers in critical bio-medical
applications like ophthalmic surgery.

6. Conclusion

Thanks to its characteristics (small size, immune
to electromagnetic interference, passive, resistant to
harsh environment, etc.), optical fibers have become
in recent decades a technology of choice for making
sensors. In addition, its ability to be sensitive over
lengths ranging from cm to more than 100 km makes
it possible to produce distributed sensors for fields as
diverse as geology or medicine.

In the context of geology, detection mainly ex-
ploits Brillouin scattering to detect strain and Ra-
man scattering for temperature measurements. To
monitor geomorphic processes such as landslides,
DFOS are embedded in shallow trenches or simply
anchored to the ground. A detailed map of the strain
field in the monitored area can be obtained thanks
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Figure 10. Epidural needle sensorized with a parallel of four fibers, exploiting SLMux (a); schematic of
the fibers attached on the needle and forming an angle of 90° (b); enhanced bending reconstructed by
measuring the strain of each fiber along z-direction at different times (c); corresponding needle bending
reconstructed in 3D space at different times (d).

to the ability of the fibers to be arranged in a square
grid. The vertical strain profile can be detected by
installing the DFOS in a borehole. Such DFOS are
also of interest to monitor the health condition of
river embankments and soil anchors. Coupled to a
Raman-based technique, distributed measurement
of temperature can be performed to detect early
filtration path. Based on the coherent-detection of
the Rayleigh backscattering, the distributed acoustic
sensing is an additional technology to measure the
acoustic or vibration field. Long-range distributed
earthquake seismometers and landslide monitors are
based on this technology.

For the applications relying on short-range DFOS,
strain and temperature detection is mainly based
on FBG technology and Rayleigh backscattered
light. Due to the minimally invasive size and its
biocompatibility, short-range DFOS are of inter-
est in bio-medical applications. For instance, fibers
glued around a needle allow monitoring of strain

to reconstruct its shape during the insertion. Such
DFOS can be based on multi-core fiber or FBGs
photo-inscribed in fiber core. Recently, the use of
nanoparticle-doped high scattering fibers promoted
a new protocol (SLMux) to measure simultaneously
information from several fibers with a large number
of sensing points.

DFOSs have found a place in modern science and
technology showing great potential in long-range ap-
plications, particularly in the field of geophysics. The
applications for short distance are in niche sectors
and are emerging in the last few years. The new
distributed strain sensing paradgim (SLMux) can
potentially open new frontiers in critical bio-medical
applications.
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