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Abstract: In volcanic regions, the analysis of Thermal InfraRed (TIR) satellite imagery for Land Surface
Temperature (LST) retrieval is a valid technique to detect ground thermal anomalies. This allows us to
achieve rapid characterization of the shallow thermal field, supporting ground surveillance networks
in monitoring volcanic activity. However, surface temperature can be influenced by processes of
different natures, which interact and mutually interfere, making it challenging to interpret the spatio-
temporal variations in the LST parameter. In this paper, we use a workflow to detect the main
thermal patterns in active volcanic areas by analyzing the Independent Component Analysis (ICA)
results applied to satellite nighttime TIR imagery time series. We employed the proposed approach
to study the surface temperature distribution at the Campi Flegrei caldera volcanic site (Southern
Italy, Naples) during the 2013–2022 time interval. The results revealed the contribution of four main
distinctive thermal patterns, which reflect the endogenous processes occurring at the Solfatara crater,
the environmental processes affecting the Agnano plain, the unique microclimate of the Astroni
crater, and the morphoclimatic aspects of the entire volcanic area.

Keywords: Thermal InfraRed (TIR); Land Surface Temperature (LST); Landsat; Independent Compo-
nent Analysis (ICA); Campi Flegrei caldera

1. Introduction

Over the last few decades, satellite Remote Sensing in the Thermal InfraRed (TIR;
3–14 µm) domain has been widely used for different purposes since satellite sensors con-
stantly acquire images of the Earth’s surface in different TIR bands [1–5]. The availability
of free and open access historical catalogues easily allows for the analysis of the surface’s
thermal properties and their variation over space and time by evaluating parameters, such
as the Land Surface Temperature (LST), which effectively represents the measure of the
surface radiative skin temperature [6–9]. According to the satellite mission features, the
LST parameter can be retrieved starting from images with different spatial and temporal
resolutions [10]. For example, high temporal and low spatial resolutions (i.e., >1 km and
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<15 min) characterize satellites such as the Meteosat constellation and the Geostationary
Environmental Satellites (GOES) [11–13], while moderate temporal and spatial resolutions
(i.e., <1 km and ≈1 day) are related to satellite sensors like the Advanced Very High-
Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer
(MODIS), and Sea and Land Surface Temperature Radiometer (SLSTR) [14,15]; sensors
and missions such as the Advanced Spaceborne Thermal Emission Radiometer (ASTER)
and Landsat-8 can instead provide information with a spatial resolution of 100 m and
a temporal one of 16 days [16]. Moreover, depending on the acquired bands, the LST
parameter can be inferred by applying different methodologies, such as the Single-Channel
Algorithm (SCA) and the Mono-Window Algorithm (MWA), which involve one TIR band,
or the Multi-Channel algorithm (MCA) that is based on the use of more than one TIR
band [17–19]. The employment of a different methodology can also affect the accuracy and
the resolution of LST estimation [20].

In volcanic and hydrothermal contexts, analysis of the LST parameter makes possible
the detection of ground surface thermal anomalous areas; these can be likely linked to
the Earth’s interior dynamic (i.e., endogenous processes) leading to volcanic unrest and
eruptions [2,21]. Therefore, TIR Remote Sensing can be helpful in the monitoring of
dormant or erupting volcanoes worldwide [1,22–27]. However, the accomplishment of this
task is only possible when the analyses are performed with appropriate resolution with
respect to the volcanic unrest phase. In the case of early pre-eruptive phases, an adoptable
strategy might involve Landsat images and the SCA approach to ensure a good spatial
and temporal resolution. Nevertheless, in complex active volcanic scenarios, where several
processes of different natures can occur, interfering with one another, a simple analysis of
the LST time-series may be insufficient for understanding the shallow thermal state of a
volcanic site [27,28].

In this study, we use a workflow (Figure 1) to characterize the shallow thermal state
of volcanic and hydrothermal areas by analyzing time series of satellite TIR images using
the Independent Component Analysis (ICA) technique. In particular, the first step of the
workflow relies on the retrieval of LST time series from Landsat-8 (L8) TIRS nighttime
acquisitions, which allow for the study of phenomena in the absence of solar radiation
and the related effects; this is performed by considering the Radiative Transfer Equation
(RTE) based on the use of a single TIR band. We, therefore, estimate the LST parameter
with spatial and temporal resolutions equal to 100 m and 16 days, respectively. Then, the
second step of the considered workflow deals with the application of the ICA method to
the retrieved LST time series. This allows the separation of the multivariate LST dataset
into its independent components (ICs) [29–31], which reflects the relative contribution of
the main processes and factors affecting its distribution and thus the main thermal regimes
of the area. This method has already been successfully applied to study volcanic and
hydrothermal environments using different kinds of datasets [32–38].

We apply the proposed workflow to the Campi Flegrei caldera (CFc) volcanic site,
which represents a well-suited case study due to the interaction between magmatic sources,
hydrothermal processes, and morpho-climatic factors. In particular, the area of interest
(AOI) of our study is a narrow zone of the CFc that includes the most interesting sites
of the caldera. We first obtained the 2013–2022 LST time series by processing 90 L8
nighttime images. Subsequently, we applied ICA to identify the main thermal patterns.
The results clearly show four components related to the different thermal behavior of the
volcanic subregions like the Solfatara crater, the Agnano plain and the Astroni crater. Each
component was compared with other available independent datasets to understand their
related nature, such as the ground-based temperature acquisitions, the Global Navigation
Satellite System (GNSS)-derived vertical deformation rate, the recorded seismicity, and the
water table time variations. The obtained results point out how the proposed workflow is
suitable for the identification of thermal anomalies with different characteristics in the case
of evolving volcanic scenarios such as the CFc.
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Figure 1. Developed workflow. Operative flowchart used in this work to identify the main thermal
patterns of an investigated area.

2. Materials and Methods

In this section, we first describe the Landsat mission and the related products used as
input for the proposed analysis. Then, we describe the procedures composing the proposed
workflow (Figure 1).

2.1. Landsat Mission

The Landsat mission is a joint mission formulated, implemented, and operated by
the National Aeronautics and Space Administration (NASA) and the Department of the
Interior U.S. Geological Survey (USGS), which has been collecting imagery of the Earth’s
surface since 1972 [39]. Landsat products are among the most used to evaluate the LST
parameter since the mission provides long-term multispectral acquisition with sufficient
spatial and temporal resolutions for this purpose [40]. The latest L8, launched in February
2013, orbits the Earth in a Sun-synchronous, near-polar orbit at an altitude of 705 km
with a 16-day repeat coverage, and it is equipped with two sensors: the Operational
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) [41]. The first acquires images
in nine spectral bands ranging from the visible (VIS) to the near infrared (NIR), and
shortwave infrared (SWIR), with a spatial resolution of 30 m; the second acquires images
in two thermal bands centered at 10.9 and 12.0 µm (Band 10 and Band 11, respectively),
with a spatial resolution of 100 m [42–45]. Each acquisition is stored in the USGS data
catalog [https://earthexplorer.usgs.gov] (accessed on 10 January 2024), where they can
be freely downloaded for any area of the world by filtering out the selection using the
Worldwide Reference System-2 (WRS-2) path and row parameters. In the framework of
the proposed workflow, we consider the nighttime acquisitions related to the TIRS Band
10 (B10) TIFF images and their respective metadata files (MTL). We specify that the cloud
cover information is not provided for this kind of product.

2.2. Land Surface Temperature (LST) Retrieval

We use the Radiative Transfer Equation (RTE) to evaluate the LST parameter from
L8 TIRS imagery related to a single thermal band (i.e., L8 TIRS B10). We specify that the
considered approach requires information about the surface emissivity and the atmospheric
components [46,47]. TIRS B10 TIFF images are radiometrically and geometrically corrected,
and each pixel of the images is associated with a Digital Number (DN) in an unsigned
16-bit integer format (ranging from 1 to 65,535) [48]. DNs can be converted into Top of

https://earthexplorer.usgs.gov
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Atmosphere (TOA) radiance values, which represent the radiance arriving at the sensor
(LTOA), through the following calibration equation [1,45]:

LTOA = ML · DNs + AL (1)

where:
LTOA is the radiance arriving at the B10 TIRS sensor (W sr−1m−2µm−1);
ML is the multiplicative rescaling factor (=3.342·10−4 for L8 B10) from the MTL file;
AL is the additive rescaling factor (=0.1 for L8 B10) from the MTL file.
However, the atmosphere is not transparent to radiation, so a portion of the radiance

emitted by a surface body will always be absorbed and backscattered; this attenuation
effect is described by atmospheric transmissivity (τ); also, the atmosphere emits radiation,
and the radiance emitted by a surface will be additionally influenced by other atmospheric
factors (i.e., the downwelling and upwelling atmospheric radiance components). Thus, the
effective radiance arriving at the sensor can be expressed through the RTE as follows [1]:

LTOA = τ·ε·Lλ·Lu + τ·(1 − ε)·Ld, (2)

where:
Lλ is the real radiance emitted from the surface (W sr−1m−2µm−1);
Lu is the upwelling atmospheric radiance component (W sr−1m−2µm−1);
Ld is the downwelling atmospheric radiance component (W sr−1m−2µm−1);
τ is the atmospheric transmittance (ranging from 0 to 1);
ε is the surface emissivity (ranging from 0 to 1).
After calculating LTOA (Equation (1)), we use the RTE (Equation (2)) to obtain the real

radiance of the surface (Lλ). Specifically, here, we estimate the atmospheric parameters
(i.e., τ, Lu, and Ld) using MODerate resolution atmospheric TRANsmission (MODTRAN)
radiative transfer models [49,50], while the surface emissivity (ε) is extracted from the
ASTER Global Emissivity Dataset (ASTER GED version 003), which can be downloaded
from the Earth Science Data Systems (ESDS) website [https://search.earthdata.nasa.gov/
search] (accessed on 10 January 2024). The scientific datasets contained within the ASTER
GED are distributed in HDF5 formats and are composed of five layers; the emissivity
layer contains emissivity data for the five TIR bands of ASTER (B10 to B12) with a spatial
resolution of 90 m. Finally, we use Plank’s equation to retrieve the LST parameter as
follows [1,45]:

LST = k2/[ln(k1/LTOA + 1)], (3)

where:
k1 is the first thermal constant (=774.88853 W sr−1m−2µm−1 for L8 B10) provided by

the MTL file;
k2 is the second thermal constant (=1321.0789 K for L8 B10) provided by the MTL file.

2.3. Independent Component Analysis (ICA)

The Independent Component Analysis (ICA) falls within the Blind Source Separation
(BSS) techniques [30], which are based on the representation of data in a statistical domain
rather than a time or frequency domain. The projection onto another space allows separate
data to see hidden important structures [51]. First introduced in the early 1980s [52], ICA,
given a mixed signal as input, aims to search for a linear transformation that maximizes
the statistical independence between its components, defining in this way the signal’s
independent components (ICs) [29]. Statistical independence between signal components is
assessed by non-Gaussianity, which can be quantified using different properties of random
variables, such as kurtosis or negentropy. In comparison with other BSS methods, such as
Principal Component Analysis (PCA), the main advantage of ICA is the non-orthogonal
component separation that allows for the avoidance of the linear mixing of components.
Moreover, with PCA being based on the maximization of signal variance, it produces

https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
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uncorrelated but not independent components, which are not equally important like ICs.
For these reasons, ICA is more appropriate for the extraction of low-magnitude signals [53].

Within the context of LST retrieval from L8 TIRS imagery, the obtained time series can
be represented as LST(xi, tj), where xi is the position of the ith satellite image pixel, and tj
is the acquisition time of the jth L8 TIRS image. The LST dataset can be decomposed into a
finite number of components with fixed spatial patterns. Defining Bk as the spatial pattern
of the kth component and Ajk as the time-varying amplitudes of the kth component in time
tj, we can write the ICA decomposition as follows [32]:

LST(xi, tj) = ∑N
k=1 Ajk·Bk(xi) (4)

In this work, we focus our attention on the spatial patterns (Bk) of the ICs, whose
analysis allows for an understanding of the nature of the thermal patterns in the AOI. The
finite number of ICs that must be extracted from the input dataset is an a priori information,
required for the implementation of ICA. This information can be estimated using different
methods [54,55]; here, we use the L-curve method, which is a heuristic approach based on
the analysis of the residuals between the input dataset and the decomposed one with a
varying number of ICs [56]. Specifically, the L-curve is obtained by plotting these residuals
versus the number of the considered components, which may be at most equal to the
number of data less one. Finally, the optimal number of ICs is given by the maximal
curvature of the L-curve [57].

3. The Case Study of the Campi Flegrei Caldera (CFc)
3.1. Geological and Volcanological Background

The Campi Flegrei caldera (Figure 2) is an active volcanic field in a current state of
unrest. The caldera was formed after two major high-energy eruptions: the Campanian
Ignimbrite (CI) and the Neapolitan Yellow Tuff (NYT) [58], dated 40 and 15 kyr, respec-
tively [59,60]. Following the eruption of the NYT, the activity of the CFc has generated
at least 70 eruptions, which can be subdivided into three epochs of activity [61,62]. Most
of the craters can be ascribed to the last epoch (5.5–3.8 kyr), when the Solfatara (4.28 kyr)
and Astroni (4.20 kyr) craters were formed [62]. The last eruption of the CFc occurred in
1538 AD, generating the Monte Nuovo composite cone [63,64].Remote Sens. 2024, 16, 4615 6 of 19 
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The CFc is affected by the alternation of subsidence and uplift phases as well as
seismicity, also known as bradyseism [66]. The bradyseism episodes are believed to be
governed by overpressure of the shallow hydrothermal system, magma movement into
the crust, or by both phenomena, e.g., [67–71]. At present, the CFc is experiencing its
fourth bradyseism crisis (after the ones in 1945–1953, 1969–1972, and 1982–1984) [72], which
started in 2005 with a significant increase in 2012–2013, e.g., [73], when a maximum mean-
deformation velocity of about 6 cm/year was recorded at the Pozzuoli harbor [74,75]. The
ground vertical movements are also accompanied by frequent seismicity with shallow
hypocentral depth (<2 km) [76,77].

The CFc is also characterized by intense hydrothermal activity with the emission of
large amounts of deeply derived gases. The most active site is the Solfatara–Pisciarelli
area, e.g., [78] where the release of hydrothermal CO2, through fumarolic vents and soil
diffuse degassing, has reached values up to 4000–5000 t/d [79], ranking Campi Flegrei
among the top eight volcanic CO2 emitters on Earth [80] with an estimated energy release
of approximately ~100 MW [81]. Another hydrothermally active zone is the Agnano plain,
e.g., [82]; the presence of an aquifer at 0 to 3 km beneath this area [83] favors the upward
circulation of thermal aquifers [84], which are characterized by high concentrations of CO2,
indicating a contribution of heat and hydrothermal fluids from a magmatic system [85].
These fluids mixing with meteoric waters produce a plume of hot gasses from which steam
condenses close to the surface, thus feeding the water table within the Agnano plain [84,86].
Furthermore, the area is characterized by high temperatures with a diffuse surface heat
flux reaching 250 mW/m2 [87].

Together with endogenously active areas, the CFc also includes unique geoenviron-
mental sites due to the presence of the 30 monogenic edifices inside the caldera. An example
is the World Wildlife Fund for Nature (WWF) natural reserve of the Astroni crater [88,89],
which is characterized by a microclimate responsible for the distinctive wildlife and the
vegetation inversion phenomenon [90].

Furthermore, as one of the most populated active volcanoes on Earth, the CFc is
associated with high volcanic risk and is continuously monitored to record any variation
in its physical and chemical parameters, which could be interpreted as precursor activity.
The Istituto Nazionale di Geofisica e Vulcanologia—Osservatorio Vesuviano (INGV-OV)
manages a permanent multi-parametric monitoring network [91]. Regarding thermal
monitoring, the CFc is monitored through the ground-based TIR permanent network
(TIRNet) [92,93], handheld TIR cameras, and drones [94,95]. Recently, TIR Remote Sensing
has become a part of this monitoring network as a supporting tool to detect ground thermal
anomalies [27,28,96,97].

3.2. Landsat-8 Data at the CFc

From the USGS data catalog [https://earthexplorer.usgs.gov] (accessed on 10 January
2024), we selected L8 Collection 2 Level 1 (L8 C2L1) scenes of the CFc AOI, which is
covered by WRS-2 frame 052/212. We considered the acquisitions during the 2013–2022
time interval and filtered the selection to leave only the nighttime acquisitions (around
20:45 UTC). Furthermore, from a total of 190 nighttime scenes, we manually chose only
90 of them, characterized by low cloud cover, and downloaded the related TIRS B10 TIFF
images with their MTL file. The selected dates are not equally distributed over time as
reported in Table S1.

According to the proposed workflow, the LST was then evaluated through the RTE
algorithm (Equations (2) and (3)) [1]. From ASTER GED version 003, we selected the
emissivity information related to ASTER B10, whose resolution was reduced to the same as
L8 TIRS B10 (i.e., 100 m). Moreover, for the atmospheric parameters’ estimation through
MODTRAN, we considered the atmospheric profiles (in terms of altitude, pressure, temper-
ature, and relative humidity) obtained using the Atmospheric Soundings provided by the
University of Wyoming [http://weather.uwyo.edu/upperair/sounding.html] (accessed on

https://earthexplorer.usgs.gov
http://weather.uwyo.edu/upperair/sounding.html
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10 January 2024) at the nearest meteorological station, which is located at Pratica di Mare,
Italy (name: LIRE, number: 16245, latitude: 41.65, and longitude: 12.43).

3.3. LST Time Series at the CFc

Figure 3a shows the LST time series (grey dots) and the related mean temporal trend
(blue dots and continuous line) of the AOI during the considered period. We can observe
mean LST values ranging from a minimum of 2.5 ◦C in September 2020, which has been
the coolest month of the last few decades, to a maximum of 28.5 ◦C in June 2022, which has
been the hottest month of the hottest year in history since 2003 (for further details, please
refer to the Climate Monitoring for Italy report edited by CNR-ISAC and freely available at
isac.cnr.it/climstor/DPC/climate_news.html, accessed on 10 January 2024). The mean time
series clearly exhibits the oscillating behavior of the temperature due to seasonality. We
modeled the seasonal trend through a sinusoidal regression and subtracted the retrieved
best-fit pattern (Figure 3b) from the original dataset. The detrended dataset is shown in
Figure 3c (grey dots) with mean values (blue dots and continuous line) ranging from a
maximum of 20 ◦C to a minimum of 13.5 ◦C. The detrended time series also highlights a
significant temperature increase of ≈1.3 ◦C/year starting from 2020.
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We then computed the mean maps of the detrended LST for the entire considered
period, 2013–2022 (Figure 4), and for each year (Figure S1). In all of the maps, we observed
low LST values within the areas of the Astroni crater and the Agnano plain, and higher
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LST values near the Solfatara area, where a positive thermal anomaly was identified with a
mean LST value > 20 ◦C.
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3.4. Independent Components of the LST Pattern at the CFc

The application of the L-curve method to our LST dataset allows for the observation
of maximum curvature in correspondence with the number of components equal to four
(red arrow in Figure 5). We therefore implemented the ICA to the retrieved LST dataset by
fixing at four the number of ICs that have to be extracted equally.
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Figure 5. Results of the L-curve method. Analysis of the residuals against the number of components
(black crosses); the black dashed lines indicate different slope trends in the L-curve, while the red
arrow shows the point where the L-curve has its maximum curvature. The residuals (y-axis) are
computed as the sum of the squares of the differences between the input dataset and the decomposed
one with respect to the number of considered components.
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The four extracted ICs are shown in Figure 6 as maps of their spatial patterns normal-
ized with respect to their standard deviation. These maps show the behavior of component
subportions in terms of correlation between each other; in particular, areas with the same
trend (positive or negative) are correlated, thus sharing the same behavior in terms of
LST variations, while areas with opposite trends (different signs of the normalized spatial
patterns) are anti-correlated, thus having different behaviors in terms of LST variations.
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The performed analysis highlights the following findings: the first component (IC1,
Figure 6a) shows an anti-correlation between the Solfatara crater and the remaining CFc
sub-portions; the second component (IC2, Figure 6b) highlights an anti-correlation mainly
between the Agnano plain and the Solfatara crater; the third component (IC3, Figure 6c)
instead identifies an isolated thermal pattern at the Astroni crater, showing no correlation
with the surrounding areas; finally, the fourth component (IC4, Figure 6d) does not show a
clear correlation pattern with respect to any particular area of the AOI.

4. Discussion

We propose a workflow for the characterization of the surface thermal state and the
identification of the main thermal patterns of volcanic areas by analyzing a time series of
satellite-derived nighttime LST parameters through ICA. The proposed method therefore
allowed for the investigation of thermal anomalous zones, extracting from TIR images the
surface temperature rather than other radiative power trends, e.g., [98]. We applied this
procedure to study the CFc volcanic area by considering 90 cloud-free nighttime L8 TIRS
B10 images during the 2013–2022 time interval.
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The first phase of the proposed flowchart (Figure 1) provided the LST time series and
maps, which highlighted the presence of one thermal anomaly at the Solfatara crater and
surrounding areas with a temporally stable 20 ◦C value for temperature. We remark that
our dataset has a spatial resolution of 100 m, which does not allow for the identification
of strictly local phenomena characterized by high temperatures, such as those related to
degassing or fumaroles at the Solfatara crater and Pisciarelli fumarole field. Nevertheless,
the used dataset enables the identification of this thermal anomalous zone by showing a
positive increase of >10 ◦C when compared with the surroundings. This result confirms the
usefulness of satellite-derived temperature data in detecting thermally anomalous zones
over large areas.

In the second phase of our workflow, the application of ICA analysis to the retrieved
LST dataset allowed for a better investigation of thermal patterns at the CFc. According to
the L-curve method, we decomposed our dataset into four components.

IC1 showed a negative correlation between the Solfatara crater and the surrounding ar-
eas (Figure 6a). This anti-correlation trend just overlaps with the positive thermal anomaly
at the Solfatara crater (Figure 4), which hosts a well-known hydrothermal system with dif-
fuse degassing at La Fangaia, Bocca Nuova, and Bocca Grande sites and where the ground
temperature can also exceed 100 ◦C [99–101]. The Solfatara crater is also characterized by
frequent earthquakes [76], and maxima of the deformation field considering the magnitude
of the horizontal gradient have been detected [74,75]. We therefore compared IC1 with
other available independent information, as follows, in order to understand the nature
of the detected anomaly. All of the comparisons were proposed during the 2019–2023
time interval, in which all of the considered datasets were available. The first comparison
(Figure 7a) was performed with the ground-based temperature measurements, acquired
by the INGV-OV at around 60 ground points located in the Solfatara crater at −0.1 m b.g.l.
[https://www.ov.ingv.it/] (accessed on 10 January 2024). The ground temperature trend
(red continuous line in Figure 7a) showed higher values with respect to IC1 (blue dots in
Figure 7a) and its best-fit polynomial trend (fourth-order: blue continuous line in Figure 7a).
This is mainly due to the different resolutions between both of the data; indeed, the ground-
based dataset is also able to reflect the effect of the diffuse degassing at the La Fangaia,
Bocca Nuova, and Bocca Grande sites. In this context, we remark that satellite-derived
measurements are not able to completely frame a strictly local thermal anomaly whose
extent is less than their resolving power. Nevertheless, both datasets show comparable
stable temporal trends, especially since 2019, when increasing temperatures are recorded in
both data. This confirms the reliability of the LST parameter for monitoring purposes.

We performed the second comparison (Figure 7b) considering the local seismicity.
Specifically, from the INGV web tool Generator Of Serenade Statistic Pages (GOSSIP)
[https://terremoti.ov.ingv.it/gossip/] (accessed on 10 January 2024), we selected the events
that occurred beneath the Solfatara crater, with 250 m of maximum horizontal distance
from its center, during the 2019–2023 time period, evaluating the seismicity probability
density function on a monthly basis (green continuous line in Figure 7b). This shows a
positive correlation with respect to IC1 (blue dots in Figure 7b) and its best-fit polynomial
trend (fourth-order: blue continuous line in Figure 7b). Specifically, we observed that a
clear temperature increase started a few months after the number of earthquakes began
increasing (approximately mid-2020 to late-2020). However, the temporal sampling and
spatial resolution of the proposed satellite data do not allow us to reliably quantify the
possible delay between the two phenomena, and a more complex long-term relationship
cannot be satisfactorily argued.

The last comparison is related to the vertical ground deformation derived using the
GNSS dataset (Figure 7c). Specifically, we considered the weekly time series recorded
at the SOLO station within the Solfatara crater. This station belongs to the continuous
Global Positioning System (cGPS) monitoring network of the CFc (for further details on the
cGPS network and time series analysis, refer to [102]). We evaluated the monthly vertical
deformation rate (orange dots in Figure 7c) and its best-fit polynomial trend (fourth order:

https://www.ov.ingv.it/
https://terremoti.ov.ingv.it/gossip/
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orange continuous line in Figure 7c). The comparison with the analogous IC1 trend (blue
dots and continuous line in Figure 7c) shows comparable patterns, with an increase in
the deformation rate followed by a temperature increase. Also, in this case, any deeper
relationship between the phenomena described by these data cannot be reliably quantified
because of the different resolutions of both of the datasets.
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Figure 7. Comparison of the retrieved IC with other datasets. Comparing the retrieved IC1 thermal
field (blue dots) and its best-fit fourth-order polynomial trend (blue continuous line) with (a) the
ground-based temperature trend (red continuous line), (b) the seismicity probability density function
(green continuous line), (c) the cGPS-derived vertical deformation rate (orange dots), and its best-fit
fourth-order polynomial trend (orange continuous line). (d) Comparison of the interpolated trend
(blue continuous line) of the mean IC2 thermal field (blue dots) and the median water table level
changes recorded at the Agnano plain (cyan continuous line). (e) Correlation plot between the
retrieved IC4 spatial pattern and the related altitude; the orange line points out the best-fit linear
regression line.
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In the end, we associated the thermal anomaly of IC1 with the endogenous processes
occurring at the Solfatara hydrothermal system.

IC2 highlighted a correlation pattern for the entire Agnano plain that is in turn anti-
correlated with the Solfatara crater. We specify that the Agnano plain is characterized by the
circulation of hydrothermal fluids of magmatic origin; these fluids mixing with meteoric
waters, in the hydrothermal system, generate a plume of hot gasses from which steam
condenses close to the surface, feeding the water table in the area [84,86]. The comparison of
IC2 with hydrogeological data has therefore provided more information about this pattern
(Figure 7d). We considered the measurements of the water table level variations versus
time. This dataset has been collected hourly by the INGV-OV network at a single station
in the Agnano plain since 2019. We therefore compared the time series of the mean IC2
LST (blue dots and continuous line in Figure 7d) with the time series of the daily median
value of the water table levels (cyan continuous line in Figure 7d), extracted during the
period of overlapping between both datasets (i.e., 2019–2023). The comparison clearly
showed an anti-correlated behavior (e.g., in October 2021), which is associated with the
interaction between the hydrothermal fluids and the meteoric waters. Specifically, during
heavy rain episodes, meteoric waters directly feed the water table in the Agnano basin,
interacting with the condensed hydrothermal fluids and leading to a rise in the water table
level. The presence of water near the surface, due to the different thermal inertia, resulted
in a decrease in the LST. In the absence of significant precipitation, the LST values showed
that they were not affected by the water table level increase; indeed, positive LST peaks did
not correspond to low water table levels.

IC3 identified the isolated thermal pattern of the Astroni crater in functions of no
correlation with the surrounding zones. This result may be explained by considering the
unique microclimate associated with this area. Actually, because of its concave shape,
cold and humid air tends to settle toward the bottom of the crater and is retained be-
cause of the absence of air currents due to shielding by the crater slopes; this generates a
thermal-inversion phenomenon, which also highly affects the local vegetation, resulting in
complementary vegetation-inversion [90]. We therefore interpreted the IC3 thermal pattern
as related to microclimatic factors.

The last IC, IC4, did not reveal a particular correlation pattern with respect to the AOI
of the CFc. We then investigated the component nature by considering morpho-climatic
effects and compared the spatial trend of IC4 with the topography of the area (Figure 7e).
Despite the presence of some outliers, the analysis showed a positive correlation between
them, with a mean temperature gradient versus altitude of 0.012 ◦C/m (Figure 7e). This
result confirmed the interpretation of the IC4 pattern as related to morphoclimatic factors
(e.g., the temperature changes with the altitude and the regime of local winds).

5. Conclusions

In this work, we propose a methodology based on LST retrieval and the applica-
tion of the ICA technique for the detection of thermal patterns of volcanic zones. This
methodology allowed for analysis and understanding of the shallow thermal field of active
volcanic and hydrothermal areas and its associations with the different processes occurring,
which interact and interfere with each other, at least in terms of the thermal state of the
ground surface.

We verified the soundness of the used workflow by analyzing the thermal state of the
volcanic site of the CFc. We first constructed the 2013–2022 LST time series and subsequently
applied ICA by extracting four thermal patterns with the L-curve method. These are
related to the processes occurring at the Solfatara crater, at the Agnano plain, the distinct
microclimate of the Astroni crater, and the morphology of the area. The interpretation of
the obtained thermal patterns was possible considering other available datasets.

The retrieved results allowed for confirmation of the reliability of satellite data in
detecting anomalies of the LST parameter in functions of the related spatial and temporal
resolutions and the ability of ICA to extract the thermal components affecting the LST
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distribution with different characteristics. The proposed methodology can be defined as a
valuable tool to obtain a detailed characterization of the shallow thermal state of any area
in the world, especially considering high-risk active volcanic areas, where it can provide
support to ground surveillance with the aim of detecting any variation in the thermal
field. Furthermore, each extracted component can also be useful for modeling purposes for
phenomena of different natures. This study can be followed by future developments related
to the integration of thermal images from different satellites (e.g., L8 and ASTER) and
drone-based TIR sensors, improving the spatial and temporal resolution of the LST dataset.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16234615/s1. Table S1: Processed images; Figure S1: Mean
LST maps.
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TIR Thermal InfraRed
LST Land Surface Temperature
ICA Independent Component Analysis
ICs Independent Components
AOI Area Of Interest
CFc Campi Flegrei caldera
GOES Geostationary Environmental Satellites
AVHRR Advanced Very High-Resolution Radiometer
MODIS Moderate Resolution Imaging Spectroradiometer
SLSTR Sea and Land Surface Temperature Radiometer
SCA Single-Channel Algorithm
MWA Mono-Window Algorithm
MCA Multi-Channel algorithm
L8 Landsat-8
RTE Radiative Transfer Equation
GNSS Global Navigation Satellite System
NASA National Aeronautics and Space Administration
USGS Department of the Interior U.S. Geological Survey
OLI Operational Land Imager
TIRS Thermal Infrared Sensor
VIS Visible
NIR Near-Infrared
SWIR Shortwave-Infrared
WRS-2 Worldwide Reference System-2
B10 Band 10
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MTL Metadata file
C2L1 Collection 2 Level 1
DN Digital Number
TOA Top of Atmosphere
MODTRAN MODerate-resolution atmospheric TRANsmission
ASTER GED ASTER Global Emissivity Dataset
ESDS Earth Science Data System
BSS Blind Source Separation
PCA Principal Component Analysis
CI Campanian Ignimbrite
NYT Neapolitan Yellow Tuff
INGV-OV Istituto Nazionale di Geofisica e Vulcanologia—Osservatorio Vesuviano
GOSSIP Generator Of Serenade Statistic Pages
cGPS Continuous Global Positioning System
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