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Abstract

There is an increasing amount of trajectories data becoming available by the tracking of various
moving objects, like animals, vessels, vehicles and humans. However, these large collections of movement
data lack semantic annotations, since they are typically done by domain experts in a time consuming
activity. A promising approach is the use of machine learning algorithms to try to infer semantic annota-
tions from the trajectories by learning from sets of labeled data. This paper experiments active learning,
a machine learning approach minimizing the set of trajectories to be annotated while preserving good
performance measures. We test some active learning strategies with three different trajectories datasets
with the objective of evaluating how this technique may limit the human effort required for the learning
task. We support the annotation task by providing the ANALYTiC platform, a web-based interactive
tool to visually assist the user in the active learning process over trajectory data.
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1 Introduction

We are witnessing a rapid increase in the use of positioning devices, from new generation smart-phones to
GPS-enabled cameras, sensors, and indoor positioning devices. Thanks to the fact that these devices are
becoming smaller and cheaper, many kinds of objects are nowadays tracked, like vehicles, vessels, animals,
and humans. This results in huge volumes of spatio-temporal data which require dedicated methods to
properly analyze them. In this context, there is a growing interest in the semantic enrichment of movement
data: many application fields benefit from the synergic combination of pure geometrical spatio-temporal
data with semantic information, denoted as semantic or annotated trajectories. Tourism, cultural heritage,
traffic management, animal behavior or vehicle tracking, are just a few examples of studies benefiting from
annotated trajectories [14]. However, methods to make explicit the semantic dimension of movement data
are still lacking and finding methods to automatically or semi-automatically infer trajectory labels in large
datasets is an ongoing challenge [10].

Machine learning is a promising direction for annotating trajectories with semantic labels by iteratively
learning from labeled training sets (training sets) to build models (or classifiers) that are then applied to
unlabeled data to obtain a labeled dataset with a given accuracy. Machine learning is extensively used in
many prediction-based applications, where the predictions are purely numeric (e.g., velocity) or class based
(e.g. low or high velocity), and where they can learn from large labeled training sets. In the case of the
trajectory domain, when the inferred classes are semantic based (e.g. kind of transportation or activity
performed), the availability of training data depends mainly on trajectories manually annotated by humans.
These annotations are, however, difficult to obtain since they are extremely time-consuming for the domain
expert who needs to annotate large trajectories datasets correctly. The question, therefore, is: is it possible
to annotate trajectories automatically by analyzing their features, thus reducing the human effort involved in
manually annotating them?
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However, a good performance generally requires that the training set is large, demanding a substantial
effort from the domain expert to provide a sufficient number of examples to the classifier. We, therefore,
reformulate the above question into three distinct research questions:

RQ1 - Is there a machine learning method that will allow an automatic trajectory classification by mini-
mizing the number of required human labeled trajectories?

Active learning is a machine learning technique that learns a model in an interactive way by selecting the
instances where the classifier is the most uncertain. Therefore, active learning could be an effective approach
to reducing human labeling effort [18]. However, to the best of our knowledge active learning has not been
experimentally applied to trajectory data so far and many questions remain unanswered such as:

RQ2 - Is this machine learning method effective for trajectory data?
RQ3 - How can the user be assisted in labeling trajectories?
The contribution of this paper in answering the above questions is twofold: first, we experimentally

apply active learning in the trajectory domain for the semantic labeling of movement data. Trajectories
are classified into predefined classes and these classes become the semantic labels of the trajectories. We
evaluate the efficacy of the approach and discuss which active learning strategy performs better. Specifically,
we provide an empirical analysis of the active learning strategies known as uncertainty sampling (UNC)
and query-by-committee (QBC), applied to three trajectories datasets in different domains. We show how
these techniques obtained high performances with a small number of trajectories for training, reducing
as a consequence the labeling effort. Second, we propose a web-based visual interactive annotation tool
named ANALYTiC (AN Active Learning sYstem Trajectory Classification) supporting the user in the active
learning trajectory annotation task. By designing an effective visual support we can enable fast, accurate,
and hopefully trustworthy semantic annotation of the learning training set. The basic idea of active learning
is to interactively submit to the annotator the best set of trajectories to annotate to improve the classifiers’
performance. In machine learning, having a good sample of labeled trajectories is essential to reach good
performance values, thus the ANALYTiC tool is a step towards this direction.

To the best of our knowledge, this is the first attempt to exploit active learning techniques in the trajectory
semantic classification field. At the same time, this is the first annotation tool for trajectories tailored to
the active learning task. We think that this work could pave the way to a better use of machine learning for
trajectory semantic enrichment.

This paper is organized as follows. The related work is briefly discussed in Section 2. Section 3 shows
concepts and terminologies regarding the trajectory domain and active learning. The experimental results
are presented and discussed in Section 4 while in Section 5 the ANALYTiC tool is introduced. Finally, the
conclusions are shown in Section 6.

2 Related Work

Active learning is a lively research area [19], where the basic idea is to identify small but meaningful subsets
of data to be labeled by an “oracle” as an input for a machine learning classifier. Active learning is gradually
applied to several domains: recommendation systems (e.g. [17]), natural language (e.g. [9]), bioscience (e.g.
[13]), geographical object matching (e.g. [21]) . However, to the best of our knowledge active learning has
not been experimentally applied to trajectory data. Therefore, this paper offers a first exploratory study,
supported by an interactive visual annotation tool, to better understand the benefits of active learning in
the semantic labeling of movement data.

One common way to annotate trajectory data is to detect interesting trajectory segments (e.g. stop and
moves) and enrich them with labels like the Points of Interest (see for example [2]) or more complex forms
of data like Linked Open Data, as discussed in [4, 16]. These methods use some predefined criteria (like the
distance from the trajectory points to a geographical object) to associate a given entity (e.g. the Point of
Interest) to a trajectory. However, in many cases the trajectory (or segment of a trajectory) annotation is
not related to a nearby geographical place; thus a simple distance measure is not sufficient to capture the
correct annotation. This is the case for the activities of a fishing vessel at sea or the behavior of an animal
moving within its habitat. In these cases we need a human being to annotate the data manually with the
correct semantic label. An example of a tool supporting the manual annotation of human trajectories has
been presented in [15]. Here the idea is that the user uploads his/her tracks into the system and a friendly
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web-based visual interface allows him/her to browse the collected movements, display them on a map and
add labels like the transportation means used, and the Points of Interest visited. In this case, there is no
machine learning phase as the whole dataset of trajectories has to be manually annotated to produce a
semantically labeled trajectory dataset.

Machine learning techniques have been applied to classify trajectories in domains such as maritime vessels
[3], traffic data [5], and human mobility [8, 24, 22]. The paucity of labeled instances in these applications and
the difficulty of labeling is often a bottleneck. In contrast to these approaches, the present paper proposes
to annotate only the high-yield samples (from the classifier’s performance perspective) of the whole dataset
with the objective of inferring the remaining labels through a machine learning task. Besides, ANALYTiC
also provides full support for the interactive active learning process on movement data. In contrast to Visual
Analytics approaches, proposing visualization methods for processing trajectory data as a support for the
whole analytical process [20, 6], here the visual approach is for user support in the annotation task and for
driving the steps of the active learning process. However, we believe that this experiment shows the potential
of combining machine learning with visual methods in the context of movement data and can be a first step
in this direction.

3 Background

In this section, we introduce some concepts and terms used in the paper. We also introduce, and briefly
discuss, the active learning basic terminology.

3.1 Trajectory concepts and terminologies

A trajectory is a list of spatio-temporal points τN = {tp0, tp1, . . . , tpN}, where tpi = (xi, yi, ti, ωi) and
xi, yi, ti are the spatio-temporal coordinates of the point and ωi is a point feature: any kind of numeric
information that can be extracted from a trajectory and associated with a spatio-temporal point, like the
speed or direction. The point features can be acquired by a geolocation device (e.g., the moving object’s
instantaneous speed) or calculated using the trajectory sample (e.g., the moving object’s direction variation
between two consecutive points) and it is assigned to a single point.

A trajectory feature is any numeric information computed using the information of the entire trajectory
(e.g., average or maximal speed). The difference between a point feature and a trajectory feature is that,
while the former is static, the latter is more dynamic. It means that, for point features, once the information
is collected or computed for a single point of a trajectory, this information will not change over time. However,
the trajectory features depend on the trajectory definition. By modifying it, the feature value will have to
be recomputed.

A semantic label (or semantic annotation) is any additional semantic and/or contextual information that
can be added to a trajectory[10]. Such information can be, for example, an activity (e.g., walking, studying,
driving, fishing) or a behavioral pattern (e.g., foraging or running from a predator). Henceforth, the term
label refers to a semantic label.

3.2 Active learning strategies

According to [18], Active Learning (AL) is used in situations where obtaining labeled data is expensive or
time-consuming; by sequentially identifying which examples are most likely to be useful, an active learner
can sometimes achieve good performance, using far less training data than would otherwise be required.
A common active learning scenario is called pool-based sampling [7]. This scenario assumes a small set of
labeled data L and another pool of unlabeled data U , where queries are selectively drawn from U . The
instances are queried according to an informativeness measure used to evaluate all instances in the pool.
Assuming an annotation budget B and a classifier’s performance measure, the active learning strategy aims
to select a problem instance to be labeled by an oracle (i.e. the human annotator) in order to expand L and
to maximize the classifier’s performance measure subject to the budget constraints.

According to the research reported in [12], uncertainty sampling (UNC) and query-by-committee (QBC)
are the two most frequently utilized AL strategies in the literature. In this work, UNC and QBC are compared
with the most common baseline that is used for comparing with active learning strategies, named Random
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Figure 1: Active learning strategy to label trajectories.

Sampling (RND). The RND strategy selects instances randomly from U , without considering whether it
provides any additional information to the classifier.

In UNC, the oracle (i.e. user) labels the instances for which the label is most uncertain. Equation
1 defines the uncertainty sampling based on conditional error, where PL(y|x) represents the conditional
probability distribution learned by the underlying classifier using the labeled set L. The conditional error is
the standard measure for probabilistic classifiers.

x∗UNC = argmax
x∈U

(1−max
y∈Y

PL(y|x)) (1)

The QBC approach involves maintaining a committee of models which are trained with L, but which
represent competing hypotheses. In this work, the committee of models is built with the same classifier
trained with different randomly sampled initial instances. Each member of the committee votes on the
labels of the queried instances. The most informative instance is the one where the committee most disagrees.
Equation 2 shows the vote entropy, where y ranges over all possible class labels in Y , V (y) is the number of
votes that a class label receives from the committee members, and C is the committee size.

x∗QBC = argmax
x∈U
−

∑
y∈Y

V (y)

C
log

V (y)

C
(2)

It is important to point out that any classifier can be combined with an AL strategy.

4 Experimenting Active Learning on Trajectory Data

As mentioned above, the objective of the active learning (AL) strategy is to select, among a set of trajectories,
the ones that, when manually annotated by the user, could improve the performance of the chosen classifier.

The active learning process for trajectories is summarized in Figure 1. The process starts with a set of
trajectory samples (U). In step (1) we fix a maximal budget B (i.e. a maximal amount of trajectories to
be queried) and a bag size (the groups of trajectories to be labeled each step) for the AL strategy. The
AL strategy sub-samples a number of trajectories (step 2) defined in the bag size based on some predefined
strategy (UNC, QBC, and RND) and shows the result to the human annotator (i.e. the domain specialist).
The annotator analyses each trajectory evaluating the point and trajectory features and labels the trajectory
(step 3). In the following step, the newly labeled trajectories are added to the training set (step 4). The
classifier builds a model that is exploited to annotate the non-labeled trajectories in the pool (step 5). The
procedure (steps 1 to 5) is repeated with a new bag of instances until the maximal budget of instances B is
reached.
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4.1 Trajectory datasets, methodology and evaluation metrics

We experimented with active learning in a total of three trajectory datasets covering different domains:
animals, vessels and human movements. These trajectories are associated with a semantic label and therefore
they act as a ground truth to evaluate the machine learning classifier’s performance.

We decided to use trajectory datasets with different characteristics regarding the number of trajectories,
the number of features and the balance between the classes. This allowed us to evaluate the performance of
the AL strategies under different conditions. The three datasets used in this work are described below.

The first dataset is provided by the Starkey Project1 and contains trajectories of elk, deer, and cattle.
Trajectories of each animal were generated on a daily basis and the animal type was used as the class labels.
The speed in m/s, the direction variation in degrees and the traveled distance from the previous point in
meters were computed as the point features. Six other numerical features, provided in the dataset were
used and associated with each point: soil depth, distance to nearest water supply, distance to nearest water
supply from within an ungulate-proof, elevation, canopy closure of all trees nearby the animal and percent
slope.

The second dataset contains data regarding vessels navigating on the Brazil’s northeast coast. Each point
contains information regarding fishing activities and their trajectories are labeled with the kind of activity
performed: fishing and not fishing. In this dataset, the trajectories were created using the sequences of
the same kind of activity performed by the same vessel. For each trajectory point, the speed in m/s, the
direction variation in degrees and the traveled distance from the previous point in meters were computed
as point features.

The third and last trajectory dataset is the Geolife [23], and contains data regarding human movements
collected in Beijing (China). In this dataset, we considered eight different types of transportation means:
walking, running, car, motorcycle, taxi, bus, train, and subway. We reduced the number of classes to three
by grouping the original ones in: (i) no vehicles (e.g. walk or run); (ii) rail-based (e.g. train and subway);
and (iii) vehicles (e.g. car, motorcycle, taxi or bus). In this dataset, the trajectories were created using the
sequences of the same kind of transportation means used by the same moving object. For each point in the
trajectories the speed in m/s and the acceleration in m/s2 was computed.

For each trajectory, the minimum, maximum and average values of all point features were computed to be
used as the classifier’s features (i.e. trajectory features). This means that for each point feature considered
for each dataset, three trajectory features were derived. Table 1 gives an overview of the characteristics
of each dataset, where the balance between classes, the number of trajectories, and number of point and
trajectory features can be seen.

Table 1: Dataset summary.

Dataset
Classes names

(proportion by class)
N.

trajectories
N. point
features

N. trajectory
features

Animals
Elk(55%), Deer(26.9%)

and Cattle(18.1%)
25884 9 27

Fishing Vessels
Fishing(50.4%) and
not Fishing(49.6%)

127 3 9

Geolife
No vehicles(48.9%),

vehicles(40.2%)
and Rail-based(10.9%) speeds

16515 2 6

In this work, we tested the versions of UNC introduced in [7] and QBC introduced in [1]. The random
approach RND was used as a baseline. We chose the most common classifiers in the literature from the
sklearn package [11]: (i) Logistic Regression (LR); (ii) Gaussian Naive Bayes (GNB); (iii) Decision Trees;
(iv) K-Nearest (KNN); (v) Ada Boost (AB); (vi) Random Forest (RF).

We compare the three strategies using two evaluation measures: accuracy (ACC) and the area under
the curve (AUC). Accuracy measures the percentage of instances that are predicted correctly, and therefore
gives the quality of the classification performance. The AUC measures the probability that the classifier

1The Starkey Project http://www.fs.fed.us/pnw/starkey/index.shtml
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will rank a randomly chosen positive instance higher than a randomly chosen negative instance. Although
accuracy is the most frequent classification performance measure, it does not consider the imbalance among
the classes, a characteristic that is considered by the area under the curve (AUC) measure. Therefore we
decided to use both measures in our experiments.

It is important to point out that in this work we performed only a two-class analysis of the AL strategies.
We created sub-datasets for the datasets with more than two classes to compute accuracy and AUC. We
recall that these measures assume positive and negative classes; therefore, we derived new datasets assuming
one class as the positive class and the remaining others globally as the negative class. For example, in the
case of the animals dataset, a sub-dataset was created with the elk trajectories as being the positive class
and deer and cattle trajectories as the negative class. This procedure was repeated for each class in these
datasets, bringing a total of 7 sub-datasets used in the experiments.

For each experiment, the train split was used as the unlabeled pool U and 20 instances (ten from each
class) were used as the initially labeled set L. This amount of 20 instances was found by verifying the
minimum amount of instances that made all classifiers reach at least 50% of accuracy and 0.5 of AUC. For
all sub-datasets, we performed a five-fold cross validation to verify how the model generalizes its results
regarding an independent dataset (i.e. the test split). We also performed ten different trials using different
seeds, with values 1 to 10, to initially randomly select the labeled instances. This gives a total of fifty
(i.e. 5-fold multiplied by ten trials) different starting conditions in order to evaluate the performance of
the AL strategies. The final values for accuracy and AUC were defined by averaging these fifty trials in all
the experiments reported in this work. At each iteration, we picked the top 10 utility instances (i.e. bag
size), in the case of the fishing vessels dataset, and 20 utility instances, in the case of the other datasets,
ranked by an AL strategy until the maximal budged was reached. The decision of the bag size value of
10/20 has two main reasons. First, previous experiments showed that adding 1 or 5 instances at each AL
iteration has a low impact on the classifier’s performance (e.g. more or less than 1% and 0.01 of accuracy
and AUC, respectively). Second, by using a lower value than 10/20 creates a bottleneck in the back-end of
the application since many transactions would be sent to the server side. The maximal budget value of 400
was chosen based on a previous verification that showed that the classifiers combined with the AL strategies
did not improve more than 1% by raising the number of trajectories for training. In the case of the fishing
vessels dataset, this budget was fixed as 60 instances since only 127 instances were available.

As an answer to research question RQ1 - Is there a machine learning method that will allow an automatic
trajectory classification by minimizing the number of required human labeled trajectories? we proposed using
active learning methodology. To verify that active learning can actually reduce the number of labeled
trajectories we ran a number of experiments discussed in Section 4.2.1. The answer to the research question
RQ2 - Is this machine learning method effective for trajectory data? is discussed in Section 4.2.2.

4.2 Results and Discussions

We compared the results of the experiments with the three AL strategies using the six different classifiers
in two ways. First, we investigated which AL strategy among the three was able to reach a target value
for each measure determined by a five-fold cross-validation in the entire sub-dataset. The intention behind
this experiment was to evaluate which AL strategy most decreases the number of instances necessary for
a classifier to label the trajectories with the same value as using the entire dataset as the training data.
Second, we computed the statistical difference significance between UNC, QBC, and RND. The objective of
this experiment was to compute the difference in the performance between the three strategies and evaluate
if this difference is statistically significant to conclude whether one is better than other. We measured
the statistical difference significance through a paired t-test, where the pairs are the learning curves of the
strategies using the sequence of budgets given to the strategies. This is detailed in Section 4.2.2.

4.2.1 Budget to target comparison

We discussed above the use of active learning, and here we discuss how the AL strategies effectively reduce
the number of trajectories to be labeled. The result is summarized in Figure 2. This figure shows plots of
the AL strategy which reached the target value for each measure first. First we individually compare each
strategy with the RND baseline (Figure 2(a) and (b)), then we directly compare the two AL strategies UNC
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and QBC (Figure 2(c)).
Each data point in Figure 2 is a pair [xi, yi] of budget values necessary to reach the target for two different

AL strategies. The total of comparisons in each figure (XN and YN , where i = 0, 1, 2, ..., N) is equal to 84 (7
sub-datasets x 6 classifiers x 2 performance measures). The interpretation of Figure 2 is given below. When
a data point intersects the x = y line (i.e. green line in Figure 2), this means that the two AL strategies
x and y need the same budget to reach the target value for a measure, so they are essentially equivalent.
When a data point is below the line x = y (i.e. red dot in Figure 2), this means that the AL strategy in the
x-axis needs a higher budget to reach the target and it is, therefore, worse. Conversely, when a data point is
above the line x = y (i.e. blue dot in Figure 2), the AL strategy in the x-axis needs a lower budget to reach
the target, and it is, therefore, better.

Since most of the experiments almost reached the target, and a difference of 2% and 0.02 for accuracy
and AUC is not significant to conclude that a classifier performed better than other, we decreased the target
values to evaluate better the differences obtained by the AL strategies. By reducing the target values, the
QBC did not find the target only 10 times, UNC 25 times and the RND 16 times.

Figure 2: Budget to target comparison for all active learning strategies.

(a) Comparison between QBC and RND
for both AUC and ACC.

(b) Comparison between UNC and RND
for both AUC and ACC.

(c) Comparison between QBC and UNC
for both AUC and ACC.

In the first comparison, between QBC and RND (Figure 2 (a)), we observe that QBC found the target
in 38 experiments with fewer labeled instances than RND (red dots), while RND found the target earlier
only 15 times than QBC (blue dots). In 22 times a tie (points on the green line) occurred (white dots).
The second comparison is between UNC and the RND baseline, shown in Figure 2 (b). Here we see that
UNC found the target 32 times with fewer instances than the RND, while RND found the target earlier in
23 experiments. For 17 experiments a tie occurred. The last comparison is between the two active learning
strategies QBC and UNC (Figure 2 (c)). We see that QBC found the target 36 times earlier than the UNC,
while UNC found the target 14 times earlier than QBC and for 26 times, a tie occurred. Another interesting
finding is that a Decision Tree combined with the QBC strategy finds the budget value of accuracy and AUC
earlier than RND and UNC 26 times in 28 experiments. The results also showed that when Gaussian Naive
Bayes is combined with UNC, the budget value was found earlier by UNC 11 times in 14 experiments when
compared with RND strategy.

In summary, we conclude that QBC and UNC finds the target earlier than the RND baseline and QBC
finds the target even sooner than UNC. This experiment answers RQ1 since we show that active learning
is effective in reducing the number of trajectories to be labeled by the user. The reason for this conclusion
is that QBC, using at maximum 400 instances, achieved at least the same performance value for a classifier
using all data as training in 88% (74 of 84 experiments) of the experiments.

4.2.2 Learning curves comparison

Having shown that the active learning strategies are substantially better than non-active learning, here we
will go deeper into this analysis and try to understand if the difference in the learning curve is significant.
The significant difference between the strategies is measured using a p-value of 0.05 for the paired t− test.
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When the learning curve of a strategy is statistically significantly better than another, then we say this is
a Win (W); when it is significantly worse than another, we say it is a Loss (L). When the differences are
not significant, we say it is a Tie (T). Figure 3 shows two examples of learning curves comparisons for the
three strategies. The line in black represents the results of a default configuration obtained by a five-fold
cross-validation on the entire sub-dataset. Figure 3(a) shows the learning curve for the animals dataset with
the cattle trajectories as the positive class and the accuracy as the measure analyzed. Here, a win (W)
was assigned to QBC versus RND and QBC versus UNC while a tie (T) is assigned to UNC versus RND.
Therefore in this specific case we see how QBC performs significantly better than the baseline and the other
strategy, while UNC and RND are mainly in a tie. The plot also shows that a budget of 200 instances using
the QBC strategy reaches the default configuration of the DT classifier. Figure 3(b) shows the AUC for
the Geolife dataset with the vehicles transportation mean as the positive class. Here we observe a win (W)
for UNC versus RND, a loss (L) for QBC versus UNC and a tie (T)for QBC and RND. So in the Geolife
dataset, we see how the UNC is more significant than the other strategies. The figure shows that a budget
of 150 instances and the UNC strategy reaches the default classifier, and with a budget of 400 it increases
the AUC in more than 0.02 of AUC.

Figure 3: Learning curves comparison for two datasets.

(a) Learning curve for ACC of DT classifier in the ani-
mals(cattle) dataset.

(b) Learning curve for AUC of LR classifier for the geo-
life(vehicles) dataset.

The details of the results of all experiments are shown in Table 2. In each cell we report the number of
Wins, Losses and Ties respectively. Notice that the sum of all Win, Ties and Losses is always 7, the number
of sub-datasets tested with an AL strategy. The total number of experiments for all sub-datasets, each pair
of compared AL strategies (QBC/RND, UNC/RND and QBC/UNC) is 42 (7 sub-datasets x 6 classifiers).

Table 2: Results

Classifier
ACC AUC

QBC/RND
W/T/L

UNC/RND
W/T/L

QBC/UNC
W/T/L

QBC/RND
W/T/L

UNC/RND
W/T/L

QBC/UNC
W/T/L

Ada Boost 7/0/0 5/0/2 6/1/0 7/0/0 1/3/3 6/1/0

Decision Tree 5/2/0 2/4/1 6/1/0 4/3/0 2/3/2 6/1/0

Gaussian NB 3/3/1 6/0/1 1/0/6 0/1/6 0/0/7 7/0/0

KNN 6/0/1 6/1/0 0/5/2 1/5/1 4/2/1 0/2/5

L. Regression 5/2/0 3/1/3 4/2/1 5/2/0 1/2/4 6/0/1

R. Forest 6/1/0 7/0/0 0/6/1 3/3/1 4/3/0 0/3/4

Total 32/8/2 29/6/7 17/15/10 19/14/9 12/13/17 22/7/13

In summary, these results show that regarding statistical significance, QBC outperforms RND in accuracy
for all datasets, totaling 32 wins in a total of 42 experiments. When the AUC is considered, QBC wins in
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19 experiments. The comparison between UNC and the baseline shows that for accuracy, UNC outperforms
RND in 29 experiments and loses only in 7, and, therefore, it is significantly better than the baseline. When
the AUC is considered instead, we see that the UNC loses 17 times against the RND, ties 13 times and wins
12 times. This shows that UNC improves accuracy when compared to RND but loses in AUC. However,
it can be observed that most of the losses occur when the Gaussian Naive Bayes and Logistic Regression
classifiers are used. Finally, when QBC and UNC are compared, we see that QBC wins in accuracy (19
times) and wins in AUC (22 wins).

We have empirically showed that active learning (both QBC and UNC strategies) is suited to improving
accuracy compared to the RND baseline in trajectory datasets. When the AUC is considered, QBC showed
better results when compared to RND. Finally, the comparison between QBC and UNC showed that the
first improves both accuracy and AUC.

5 The ANALYTiC tool

In this section, we propose an answer to research question RQ3 - How can the user be assisted in labeling tra-
jectories? The ANALYTiC visual interactive system is a possible answer to this question. The architecture
is shown in Figure 4.

The system is composed of a front end interacting with the user and a back end that stores the trajec-
tories and executes the classification algorithms and AL strategies. Since it is a web tool the user interface
components were coded in HTML 5 and all the interactions with the user were coded in Javascript program-
ming language. It is important to cite three libraries that were used in this project: for coding the map
visualizations and interactions we used the mapbox2 and leaflet3 libraries. For showing the data as charts
to the user, we used the Google charts4 library.

The back end of the application stores the trajectory data in a SOLR5 cloud. The main reason to use
SOLR is that it is one of fastest searching platforms currently available. On the top of SOLR, we created
a RESTful (REpresentational State Transfer) web service aiming to facilitate the communication between
the front end and the back end. The decision to use a RESTful web-service in the back end was because
it is a well-known architecture that provides interoperability between computer systems on the Internet.
All the Active Learning algorithms (e.g. our own implementations), the classifiers (sklearn [11]) and data
queries (SOLR) were implemented in the Python programming language (version 2.7). To provide all this
infrastructure as a RESTful service we used the bottle6 library.

Figure 4: The ANALYTiC architecture.

In the following we focus on the front end presenting the solutions to support the user interactions for

2The Mapbox Project - https://www.mapbox.com
3The Leaflet Project - https://leafletjs.com
4The Google Charts Project - https://developers.google.com/chart/
5The Apache Solr Project - http://lucene.apache.org/solr/
6Bottle: Python Web Framework - http://bottlepy.org/docs/dev/
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the trajectory labeling and the support of the Active Learning process. An overview of the elements of the
ANALYTiC front end user interface is presented in Figure 5. In Figure 5(a) we show the top panels that
compose the web interface, while Figure 5(b) shows the bottom panels. In the top navigational bar of the
tool (Figure 5(a)), the user can choose the dataset to annotate. The user then chooses a classifier among
the six available and one of the three AL strategies (UNC, QBC or RDN).

The largest part of the interface is devoted to the actual annotation task, managed by the middle
navigational bar that is composed of two panels: (i) on the left, a map displays the trajectories to be labeled;
(ii) on the right, two panels show the features values (point and trajectory) useful to evaluate the trajectory
label.

In a bottom part of the trajectory features we have a section where the user may label the trajectory
with the most appropriate annotation and move to the next trajectory. The bottom navigational bar, shown
in Figure 5(b), drives the user through the AL process (Figure 1) and displays the configuration parameters
for the active learning task. This section of the interface is composed of four panels: (i) on the top left, the
panel interactively displays the next action to take, thus driving the user through the steps of the active
learning process; (ii) the panel on the top right summarizes the number of trajectories already labeled and
the number of trajectories to be labeled to reach the total budget that was selected by the user; (iii) the
panel on the bottom left summarizes the user’s choices in terms of the selected classifier, the AL strategy,
the bag size and maximal budget; and finally, on the bottom right, (iv) a panel manages the manipulation of
the labels including the addition of new labels, the selection of the color of the label on the map, and other
display features like the trajectories’ weight and visibility.

The whole active learning process is summarized as follows. The user starts the interaction by selecting
the dataset to be annotated, then the classification algorithm (i.e. Logistic Regression, decision trees, etc)
and the active learning strategy (Random, UNC or QBC). These selections appear in the bottom left box.
Next, the user can choose the total budget of trajectories and bag size that will be used in the AL process.
Having done that, the ”Next” panel invites the user to the following step, namely adding the labels, in the
bottom right box. From here the user may personalize the visual features like color line weight and visibility
of the lines. Then the ”Next Step” box indicates the user that he/she needs to start the annotation process.
The user is invited to select a trajectory in the map, where a combination of color and arrows shows the
movement direction and intensity of movement features like speed or direction variation. The top right
box interactively shows the numerical values of the selected features in the plot, supporting the user in the
annotation process. The process is finished when the total budget of trajectories are annotated.

We detail and exemplify how the user is assisted by the ANALYTiC tool in the active learning process
as follows. The ANALYTiC tool combines map visualization aspects with charts regarding the trajectory’s
features and the semantic labels added by the user. The map display needs to cope with some challenges.
First of all, the display of all the trajectories data is, in most cases, unfeasible due to a large number of
objects to be shown, and the view would not be meaningful for the user. This is the reason why we decided
to show only a randomly chosen first small set of trajectories to be labeled. Therefore, the map only displays
a maximum number of trajectories at the same time, and this number is limited by the bag size L.

Furthermore, the map panel visualization needs to be effective in showing in a compact way the actual
movement with the trajectory and point features. For this reason, we implemented two visualization solutions
to ease the movement understanding of the annotator: (i) the actual movement is explicitly displayed with
moving arrows that are positioned according to the movement direction; and (ii) the colors of the lines are
displayed in saturation grades of red color reflecting the value of the point feature: a low value is colored
with a light intensity of red while higher values are colored with a more intense red. The point feature’s
actual values are detailed using a line chart that shows the values following the temporal order. The tool
provides an interaction between the line chart and the map: when the user clicks on a value on the line
chart, the corresponding geographical position is displayed on the map by plotting a red pin on it. This
feature helps the user to connect the point features observed in the plots with the geographical position of
the moving object to better understand the moving object’s behavior, its location, and to perform a more
accurate labeling. In the case of the animals dataset, for example, the user could verify when the trajectory
is geographically close to a water resource and showing a low speed behavior. In this case the expert may
conclude that the trajectory belongs to a cattle and annotate the trajectory accordingly.

Another example of how the platform can assist the user in the labeling task is exemplified in Figure 6.
This figure shows the elements available to the user to evaluate and interact with a trajectory chosen by the
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Figure 5: Overview on ANALYTiC panels.

(a) Top panel overview.

(b) Bottom panel overview.

AL strategy to be labeled. Figure 6(a) shows an example of a trajectory from the fishing vessels dataset
where the user visualizes the estimated speed in the sequence of points. Notice the dark red representing
higher speed. The chart in the bottom part (i.e. Trajectory features and classification) is designed for
the user to explore correlations between the trajectory features and the labels assigned to the trajectories.
In Figure 6(a), after adding labels for some trajectories, the user may explore a plot of the average speed
(e.g. avg speed) with the maximal direction variation (e.g. max dir) and observe that the fishing pattern
occurs with more frequency when the average speed is low and the maximal direction variation is high.
After labeling more trajectories using the chosen AL strategy the user can keep exploring the trajectory
features space and this situation is exemplified in Figure 6(b). The figure shows the same trajectory visually
represented by its direction variation. Again, the red intensity changes accordingly to the values of each
point feature value. Other conclusions could be derived from Figure 6(b) regarding the trajectory features.
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For example, by exploring and plotting the average speed and the maximal speed (e.g. max speed) in the
trajectory features chart, the user could realize that some sort of linear separability is observed between these
features. These plots therefore support the user in getting detailed information and correlations whenever
he/she needs more insights in the trajectory labeling.

Figure 6: ANALYTiC tool elements.

(a) Analysis of estimated speed for the fishing vessels dataset.

(b) Analysis of direction variation for the fishing vessels dataset.
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After labeling all the trajectories required by the AL strategy, the annotator can visualize the results
of the classification of all trajectories in the entire dataset. The same concept of bags, used to indicate
the group of trajectories to be labeled, is used for visualizing the results, avoiding a huge overlapping of
trajectories on the map. Figure 7(a) shows an example of a bag of trajectories labeled as fishing and not
fishing vessels, while Figure 7(b) shows the charts with results obtained by an AL strategy. The user can
explore three different charts as the result of a simulation: (i) a histogram for point features; (ii) a histogram
for trajectory features; and (iii) the labels distribution. The ANALYTiC tool is available for testing at the
URL https://bigdata.cs.dal.ca/resources.

Figure 7: ANALYTiC results display.

(a) A bag with trajectories labeled by the ANALYTiC tool.

(b) Output analysis generated by a simulation with an AL strategy and a classifier.
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6 Conclusions

The problem of annotating trajectory data is well recognized in the literature, and many efforts are being
devoted to this objective. However, the manual annotation of large datasets is unfeasible and therefore
machine learning classification techniques can help in trying to automatically infer trajectory labels by
learning from a labeled training set. However, human labeled trajectories datasets are difficult to obtain, due
to the human effort needed to annotate them semantically. Is there a machine learning method that will allow
an automatic trajectory classification by minimizing the number of required human labeled trajectories? Is
this machine learning method effective for trajectory data? In trying to answer these questions we propose
the use of active learning, a machine learning method that attains high performance with fewer labeled
examples when compared to classical supervised strategies. The burden of the manual labeling process is
further alleviated by the proposed ANALYTiC tool, a web-based interactive system that assists the user
through the steps of the active learning process with a specific focus on the labeling trajectories task.

We showed, through a series of empirical evaluation experiments in 5 trajectories datasets, how active
learning strategies choose the best subset to annotate (namely UNC and QBC) and perform significantly
better than a standard non-active learning strategy based on a random (RND) choice of the subset to be
labeled. We can, therefore, conclude that active learning is effective in reducing the trajectories datasets to
be labeled. This result motivates the second contribution described in the paper, the ANALYTiC tool. This
web-based visual interface is capable of supporting the domain expert through the active learning process
and specifically in the trajectory annotation through a set of visual solutions that ease the labeling inference
task.

This work is a novel direction in combining visual techniques with machine learning for movement data.
We have several interesting directions to follow for further studies. The addition of segmentation algorithms
as the first task of this process is certainly one step further to build a more comprehensive system. We also
intend to improve the ANALYTiC system by allowing the user to add more geographical features related to
the domain: this will create more meaningful point and trajectory features that can help in the classification
task. Finally, an empirical analysis of multi-class trajectory databases would be conducted aiming to verify
how the AL strategies perform under this condition.
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