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The perceived visual quality of fruits and vegetables plays a central role in the choices made by retail
customers. Machine learning (ML) approaches based on image analysis have been recently proposed to
overcome the poor efficiency and subjectivity of human visual evaluation as well as the expensiveness and
destructiveness of physical and chemical methods that measure internal indicators. In this paper, we propose
a ML method based on Random Forests for estimating the chlorophyll and ammonia contents (considered, in
the literature, reliable indicators of product freshness) from images of fresh-cut rocket leaves. Our approach
copes with specific issues raised by (i) the non-uniform distributions of ammonia and chlorophyll values and
(ii) the need to provide insights into the features that produce a particular model outcome, aiming to enhance
its trustworthiness. Our experiments, performed on real images of fresh-cut rocket leaves, proved that the
proposed approach significantly outperforms 7 competitor methods, obtaining an improvement of the RSE
results of 6.6% for the prediction of the ammonia and of 10.4% for the prediction of the chlorophyll over its
best competitor. Moreover, a specific analysis of the explainability of the predictions showed that the learned
models are based on reasonable features, empowering their acceptance in real-world applications.

1. Introduction complexity of spectroscopy and hyperspectral imaging, both in terms
of time and costs required for the acquisition and for the subsequent
processing phases, makes their application more difficult in a pervasive
way along the supply chain to enable a continuous monitoring of the
parameters of interest. On the contrary, CVSs are simpler and can hope-
fully exploit cameras that are already available along the path from

the harvest to the distribution to final consumers. They aim to mimic

The research on contactless, non-destructive, rapid and accurate
evaluation of the quality of fruits and vegetables has recently gained
interest, to overcome the limits of traditional sensory and destructive
methods. While visual inspection by humans is subjective and error
prone due to intra-operator and inter-operators inconsistencies [1,
2], physical and chemical methods are generally destructive, time-

consuming, expensive, polluting and not suitable for the application in
an industrial line.

The product quality, together with the sustainability of the pro-
duction processes, plays a central role in the choices made by cus-
tomers [3]. Nowadays, emerging non-destructive methods in food tech-
nology include near infrared spectroscopy (NIR), hyperspectral imaging
(HSI) and computer vision systems (CVS). Most of the research applied
hyperspectral or multispectral techniques to vegetables [4-8]. The

human visual evaluation of quality by acquiring and processing images
of the whole visible surface of the products. These digital images are
analyzed by extracting the most discriminative visual characteristics
and by processing them through models usually learned by means of
machine learning methods [1].

In the last few years, CVSs have been used to automatically evaluate
several properties of different products: table grapes [9], fresh-cut

* Corresponding author at: Department of Computer Science, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy.
E-mail addresses: stefano.polimena@uniba.it (S. Polimena), gianvito.pio@uniba.it (G. Pio), maria.cefola@ispa.cnr.it (M. Cefola),
michela.palumbo@ispa.cnr.it (M. Palumbo), michelangelo.ceci@uniba.it (M. Ceci), giovanni.attolico@cnr.it (G. Attolico).

https://doi.org/10.1016/j.inpa.2024.09.002

Received 5 December 2023; Received in revised form 1 July 2024; Accepted 2 September 2024

Available online 3 September 2024

2214-3173/© 2024 The Author(s). Published by Elsevier B.V. on behalf of China Agricultural University. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: Stefano Polimena et al., Information Processing in Agriculture, https://doi.org/10.1016/j.inpa.2024.09.002



https://www.keaipublishing.com/en/journals/information-processing-in-agriculture/
https://www.keaipublishing.com/en/journals/information-processing-in-agriculture/
mailto:stefano.polimena@uniba.it
mailto:gianvito.pio@uniba.it
mailto:maria.cefola@ispa.cnr.it
mailto:michela.palumbo@ispa.cnr.it
mailto:michelangelo.ceci@uniba.it
mailto:giovanni.attolico@cnr.it
https://doi.org/10.1016/j.inpa.2024.09.002
https://doi.org/10.1016/j.inpa.2024.09.002
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Polimena et al.

nectarines [10], apples [11], and fresh-cut rocket leaves [12]. Nowa-
days, baby leaf vegetables such as spinach, rocket, and lettuce are
economically important products since they are basic components of
ready-made salads. Among these, rocket (Eruca sativa Mill.) is a popu-
lar leafy vegetable due to its distinct taste and nutritional content. For
this reason, in this paper we focus on this product, specifically on the
estimation of the amount of chlorophyll and ammonia in rocket leaves
through regression models.

The focus on the chlorophyll is motivated by the fact that the
quality loss of fresh-cut rocket leaves during the postharvest storage
is mainly due to senescence, strictly related to chlorophyll degradation
that, therefore, is the most common index used to evaluate the quality
and freshness of this product [13,14]. Generally, as reported by Pace
et al. [15], a 30% loss of total chlorophyll content is considered the
shelf life limit in rocket leaves stored for about 16 days at a temperature
between 5 °C and 20 °C.

On the other hand, the focus on the ammonia comes from the fact
that a low value of ammonia, which is a product of protein catabolism,
generally indicates freshness [16,17], while high values of ammonia
can indicate a product deterioration. Moreover, chlorophyll degrada-
tion produces yellowness during storage but also protein catabolism
which contributes to ammonia accumulation: therefore its relationship
with discoloration or yellowing process may be expected [18].

In the literature, we can find only a few applications regarding
the adoption of CVSs for the estimation of the amount of ammonia.
Pace et al. [19] applied a CVS on whole and fresh-cut lettuce for the
non-destructive estimation of ammonia as a senescence indicator in
leafy vegetables [20,21]. In that case, the parameters used to classify
the product and to estimate the ammonia content were the amounts
of green, white, and brown colors on the product. These colors were
identified in the color plane by studying a proper number of samples of
each color, manually extracted from images of fresh-cut lettuce. That
method strongly depends on the training samples used to define the
colors of interest: they must be carefully extracted each time a new
product needs to be analyzed.

Palumbo et al. [22] proposed one of the first CVSs able to evaluate
the visual quality level (considered as a machine learning classification
task) and estimate the amount of chlorophyll and ammonia (considered
as machine learning regression tasks) adopting a workflow based on
Random Forests. However, for the regression task, the authors empha-
sized some limitations due to the skewed distribution of the target
variables (i.e., the amount of ammonia and chlorophyll). Specifically,
when the values are not uniformly distributed in the training set,
the random sampling strategy adopted by Random Forests does not
properly consider boundary values in the construction of regression
trees, leading to less accurate predictions of new instances falling in
such boundary areas (see Fig. 1 for an example depicting the effect of
sampling performed on data following a Gamma distribution).

Moreover, these works do not include any mechanism to explain
why and how the models provide specific outputs. Indeed, although
ensemble methods generally lead to improve predictive accuracy, they
lose the interpretability of single trees (more details will be provided
in Section 2). On the other hand, it is fundamental to understand
which information influenced the model output, especially if decisions
of economic nature are made based on them.

In order to overcome these limitations, in this paper we design
a novel approach. Specifically, we propose a different sampling pro-
cedure to be adopted during the construction of Random Forests, in
order to provide the right importance to boundary values. The proposed
approach exploits principles usually adopted to cope with unbalanced
data in classification tasks, which provided satisfactory results in differ-
ent contexts [23]. It is noteworthy that more advanced approaches to
handle data unbalancing have recently been proposed in the literature,
also based on Generative Adversarial Networks (GANs) [24]. However,
they mainly focus on classification tasks and are not straightforwardly
adaptable to the regression task that we solve.
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Moreover, we analyze the learned trees to provide an explanation of
the provided predictions, not only to support the model validation, but
also to suggest some clues on the motivations behind the predictions
which can increase the acceptability of such an automated system in the
context of the efficient estimation of the quality of food and vegetables.
The remaining of the paper is organized as follows: in Section 2, we
describe the approach we adopt to collect and prepare data about
rocket leaves, as well as our novel method based on Random Forests;
in Section 3, we describe and discuss the results of our experimental
evaluation; finally, in Section 5, we draw some conclusions and outline
possible future work.

2. Materials and methods
2.1. Image acquisition and pre-processing

This section provides a quick summary of the procedure we followed
to capture the images and extract features to learn a regression model
to estimate the amount of chlorophyll and ammonia. This process was
conducted according to the procedure reported in Palumbo et al. [22].

Fresh rocket leaves were selected and placed in 50 x 30 cm open
polyethylene bags (Orved, Musile di Piave (VE), Italy) containing each
one about 350 g of product and stored at 10 °C (as commonly occurs in
the market). About 70 g of product was taken from each bag as sample
at five different times (corresponding to the five commercial quality
levels normally used to assess the state of products). The amount
of chlorophyll and ammonia of each sample was measured in the
laboratory, as described by Palumbo et al. [22]. Few images of each
sample were acquired after a random shuffle of the leaves to acquire
information about a larger part of its surface.

Images were acquired using a 3CCD (having a dedicated Charged
Coupled Device for each color channel) digital camera (JAI CV-M9GE)
having a resolution of 1024 x 768 pixels. The imaged area was about
32 x 24 cm. The 3CCD sensor was used to avoid the artifacts introduced
by demosaicing, required to recover color information from a single
CCD. The optical axis of the LinosMeVis 12 mm lens system was
perpendicular to the black background. Eight halogen DC powered
lamps were placed along two sides of the imaged area and oriented
at a 45° angle with respect to the optical axis. The images were saved
as uncompressed TIFF to avoid the artifacts introduced by compression
algorithms.

A small X-Rite color-chart with 24 patches of known colors was
placed into the scene to measure color variations due to environmental
conditions and sensor characteristics. The colors in the color-chart were
used to estimate the linear transformation used to correct colors.

We performed color analysis only on the part of each image belong-
ing to the product at hand (foreground), that was separated from the
background by applying a multi-threshold approach, based on the Otsu
algorithm, to the Hue component of the image converted in the HSV
color space as described in Cavallo et al. [14].

A linear transformation was used for color correction. The followed
approach can be considered effective, i.e., it provides consistent color
measurements, and efficient, since it is computationally suitable for real
applications along the supply chain. In particular, given [r/ g/ 1T and
[+ gl b 1T the expected and the measured RGB values, respectively, for
the ith patch, with i = 1,...,24. To reduce the distance between the
expected and the measured values on the color chart, the following
equation was adopted:

e myy o mp myz |y
Ec | = |M21 M My3 || 8&nm @
b, m3p  myy  my )| b,

where [r,g,b.]7 are the colors corrected using the matrix. The matrix
was computed by the least-square approach, and was adopted to correct
all the foreground pixels of the image.
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Fig. 1. On the top, the value distribution of 1000 instances synthetically generated by a Gamma distribution with k (shape) = 1.5 and 6 (scale) = 1. On the bottom, the distribution
of 1000 instances randomly sampled with replacement from such non-uniform data using the bootstrap approach adopted by Random Forests. As can be observed, some boundary

regions (e.g., values > 8) are not represented by the sample.
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Fig. 2. Pipeline followed for image acquisition and pre-processing.

As color space to perform the analysis, we adopted the device-
independent and perceptually-uniform CIE L*a*b*. The L* component
was discarded, since it is too sensible to non-uniform illumination levels
across the scene. As features to adopt to learn a regression model, we
considered the color histogram of the foreground pixels. In particular,
for each color in the a*b* plane, we counted the number of occurrences
in the image. The continuous (a*, b*) plane was discretized into 261
integer values (in the range [-130;130]) for each axis (¢* and b*),
leading to a total of 2612 = 68121 colors/features.

A graphical overview of the image acquisition and pre-processing
pipeline is depicted in Fig. 2.

2.2. The proposed learning approach

In this section, we describe the approach we propose to learn a
model to predict the amount of chlorophyll and ammonia from the
extracted features. As introduced in Section 1, our approach is based on
random forests, since they already proved to be adequate for the task at
hand by Palumbo et al. [22]. However, we propose a different sampling
procedure in order to properly represent also boundary values, which
in the classical random sampling procedure are under-represented (see
Fig. 1). Before going into the details of the specific approach we propose
to improve the sampling procedure, as well as our approach to explain
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the provided predictions, in the following subsection, we first briefly
describe the standard random forest regressor.

2.2.1. Random Forest: background

Random Forest is an ensemble approach based on learning multiple
(possibly uncorrelated) regression trees from random subsets of the
dataset at hand. A regression tree is a hierarchical model consisting
of several decision nodes. Each decision node implements a function
that splits the observations falling in such a node into disjoint subsets,
according to a splitting feature/variable and a splitting point (which is
a value in the case of categorical features, and a threshold, in the case
of continuous features).

The learning process of regression trees is usually based on a top-
down induction procedure. It starts from the root node of the tree
containing all the training instances, which are recursively partitioned
by identifying the best splitting variable and splitting point, among
all the possible pairs of variables and splitting points. The learning
process follows a greedy approach: once a decision is taken, in terms
of the splitting variable and the splitting point, locally considering
the observations falling into a node, it cannot be reverted even if
more optimal (global) solutions could have been found considering the
subsequent steps.

The identification of the best splitting feature and value/threshold
relies on some heuristics that, for regression tasks, are usually based
on the reduction of the variance. Precisely, given a node N, a splitting
feature f and a value/threshold v, the variance reduction & (f,v) is
computed as the difference between the variance of the target variable
of the examples falling in the node N (henceforth indicated as Ry) and
the sum of that of the examples falling in the left child node (hence-
forth indicated as R;(N, f,v)) and in the right child node (henceforth
indicated as R,(N, f,v)). More formally:

PRSI i =77 > o=y
Gy (fo0) = YVi€RN _ Yi€R|(N.f.0) Yi€R.(N,f.0)
N [Ryl [R/(N, f,0)l IR, (N, f,v)
@)

where yy, y; and y, correspond to the average of the values of the sets
Ry, R/(N, f,v), and R,.(N, f,v), respectively.

The recursive approach stops when no partitioning is possible (or
useful), namely, when the learned tree reaches a maximum pre-defined
depth, or when the number of instances falling into a node falls below a
given threshold, or when the variance of the target attribute in the node
is below a given threshold. When the process stops, leaf nodes of the
tree are associated with the actual predictions, which are computed as
the average of the target attribute of the training instances falling into
the leaf nodes.

One of the main strengths of trees is their interpretability: they
represent understandable rules that provide clear indications of which
features and which values are relevant for the prediction. However,
single regression trees generally exhibit a high variance: a small change
in the data can cause a large change in the structure of the tree.
This phenomenon generally translates into a low generalizability of the
learned model to unseen data.

Ensemble approaches, such as Random Forests, can overcome the
above-mentioned issue, by learning multiple regression trees from ran-
dom subsets of the initial dataset, and by averaging their predictions. In
details, the process followed by Random Forests is based on two sources
of randomness to achieve high diversity of each learned model. The first
comes from the generation of different subspaces of features, which is
usually obtained by a simple random sampling of the available features.
The second involves the random selection of training instances, which
is usually based on the bootstrap strategy: a sampling of n samples
from the n available training instances with replacement, which gen-
erally leads to discarding about 36.8% of the available instances in
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each sample. Although very effective, Random Forests could introduce
additional issues: the randomness of the sampling can lead to possibly
discarding rare/boundary values (this issue happens in Palumbo et al.
[22], see Fig. 1), and the decision taken by the ensemble is not
interpretable as the rules of single regression trees.

As for the second issue, it can happen that the sampling distribution
does not properly reflect the distribution of the population, which
could lead to the construction of unsatisfactory trees that provide
inaccurate predictions, especially for the under-represented cases. In
the classification task, this issue is exacerbated when simple random
sampling is adopted on datasets with unbalanced classes, that is, when
the distribution of training examples across the classes is not uniform.
In Fig. 3 we can see an extreme situation in which one of the minority
classes is not represented by any training instance in the sample, which
leads the learned tree to be totally unaware of such a class. Even if such
an extreme situation does not occur, learning methods usually tend to
provide a high amount of false negatives for minority classes on unseen
data, if proper approaches for handling unbalanced data at training
time are not followed. This phenomenon happens because the learning
methods aim to minimize the overall prediction error, without paying
specific attention to the minority classes.

For the regression task, we can observe an analogous issue when
the distribution of the target variable is not uniform. In this case,
some values may not be properly considered in the sampling phase, as
already shown in Fig. 1. In the following subsection, we specifically
focus on the approach we propose to overcome this issue for the
regression task at hand, starting with a brief overview of the approaches
proposed in the literature for classification tasks.

2.2.2. Dealing with a non-uniform distribution of the target variable

In the literature, several strategies have been proposed to handle
the problem of class unbalancing in classification tasks. The most
common approaches are based on oversampling the minority class, or
on undersampling the majority class.

Simple oversampling techniques are usually based on the random
duplication of examples of the minority class to obtain a balanced
dataset, where each instance may be selected multiple times. More
advanced techniques, such as SMOTE [23], are based on the generation
of synthetic examples starting from real examples of the minority class.
The SMOTE generation process is based on the construction, for each
real example e of the minority class, of k synthetic examples that are
“randomly in the middle”, in the feature space, between e and its
nearest neighbor. It is noteworthy that oversampling methods increase
the size of the dataset, and therefore the computational cost.

On the other hand, undersampling techniques randomly select and
remove samples from the majority class until the classes are balanced.
In the literature, we can also find more sophisticated approaches, like
Roughly Balanced Bagging (RBBag), that combines undersampling and
bagging [25] with the goal of making the sampling probability of mi-
nority class equal to that of the majority class. However, undersampling
strategies can lead to biased results due to the information loss caused
by the removal of available samples: the resulting dataset might not
accurately represent the original population.

The above-mentioned techniques cannot be applied to regression
tasks, where the target values are continuous. In this context, we pro-
pose a method to take into account less represented values within the
learning procedure of Random Forests. The idea is to discretize the tar-
get variable to trace back to a classification problem. This discretization
would allow us to adopt existing oversampling techniques, increasing,
as already mentioned, the computational cost. On the contrary, we
aim at achieving the same result working on the sampling procedure
embedded in the Random Forests algorithm, without increasing the size
of the training set. We call our approach BAL-RF.

First, the target variable is discretized into m bins having equal
width. Then, for each regression tree learned by Random Forest, instead
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Fig. 3. An example of an unbalanced class distribution (on the left) on a dataset of 6050 instances, with 20 instances of class C, and of a sample of 100 instances obtained by

simple random sampling (on the right), where the class C is not represented at all.
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Fig. 4. Flowchart representing the proposed approach. The Image preprocessing step corresponds to the phases described in Section 2.1 and depicted in Fig. 2.

of sampling n examples with replacement from the »n available exam-
ples, we randomly select n/m examples from each bin with replacement.
In this way, each bin (that corresponds to a particular interval of the
target variable) is always represented by some training examples for
each learned tree.

Note that instances sampled multiple times may be discarded or
kept as duplicates. In the first case, for each bin we may possibly select
a number of instances which is actually less than n/m. This strategy,
henceforth called BAL-RF (no rep), generally leads to undersampling
from bins with the majority of instances, and to guarantee that bins
with a small number of instances are always represented in the training
set. In the second case, each bin is always represented by n/m instances,
with possible duplicates. This strategy, henceforth called BAL-RF (rep),
generally leads to a simultaneous undersampling from bins with a lot
of instances, and oversampling from bins with few instances. Both the
proposed strategies BAL-RF (no rep) and BAL-RF (rep) do not lead to
increase the overall number of training instances.

It is noteworthy that the discretization may be performed on vari-
ables other than the target one: in the specific case of the prediction
of the chlorophyll and ammonia, which are inherently correlated, the
discretization (and the sampling) performed on one of them may also
be adopted when learning the model to predict the other variable. This
specific scenario, which exploits the correlation in the target space, has
been explored in our experiments described in Section 3.

A flowchart of the whole proposed approach is reported in Fig. 4,
while a detailed view of the proposed sampling approaches is shown in
Fig. 5.

Finally, we emphasize that the proposed method can also be applied
to huge amounts of data. Indeed, looking at Fig. 5, it is clear that

each sample can be identified independently of the others, through the
proposed sampling approach. Moreover, each tree of the forest can be
learned independently of the others. These aspects make the proposed
workflow scalable and easily applicable in the context of big data.
However, it is out of the scope of this paper to empirically evaluate
the scalability of the approach over a cluster of machines.

2.2.3. Explaining the predictions

Explaining how models make predictions is becoming of paramount
importance in several fields. It not only can increase the trust in the
model, but allows researchers and end-users to identify potential issues
in the training data or in the adopted modeling approach. In our case,
extracting an explanation in terms of the characteristics that mostly
influence the prediction can help to verify that the model is considering
the right signals of the images.

As mentioned in Section 2.2, single regression trees are inter-
pretable, and allow to directly understand the rules behind a given
decision, as well as the features that influence the predictions. How-
ever, Random Forests lack this characteristic since their predictions
correspond to the average of the prediction of multiple trees. In this
case, however, it is still possible to assess the importance of the features
in the provided predictions, by resembling to their importance in each
tree of the forest. In general, the rationale is that features involved in
splits appearing in the top of the tree(s) are considered more important,
since they have been selected earlier during the training phase, thus
lead to the strongest reduction of the variance.

Accordingly, we can exploit the Gini index [26] to estimate the
importance I;(r) of the feature i in the tree ¢ as the average variance
reduction of the split nodes that involve the feature i, weighted by the
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Fig. 6. Distribution of the values of ammonia (on the left) and of chlorophyll (on the right) in the considered dataset.

probability to reach such split nodes. The probability p(N) to reach
a given node N is estimated as the number of examples that reach
the node, divided by the total number of examples n, namely: p(N) =
|N|/n. Accordingly, I;(r) is computed as:

2

Net| f*(N)=i

Ii(n = PIN) - &5 (f*(N), v*(N)) 3
where f*(N) and v*(N) are the best feature and value/threshold se-
lected by the learning algorithm for the node N during the construction
of the tree, and & (-, -) is the variance reduction achieved for the node
N (see Eq. (2)).

Therefore, the importance of the feature i according the random
forest is computed as the average of the importance of the feature i
over all trees T in the forest. Formally:

2 Lo

teT

JRF 1

RE - — 4
; ] C)]

3. Performance evaluation

In this section, we describe our experimental evaluation, providing
further details on the considered dataset and on the experimental
setting. We performed our experiments on a dataset of 1191 images
collected and processed following the procedure described in Sec-
tion 2.1. Moreover, starting from the initial 68,121 features, represent-
ing discretized colors in the (a*b*) plane, we discarded those that were
constantly valued with 0.0, leading to a total of 1997 features.

We considered the estimation of the amount of ammonia and of
the amount of chlorophyll as two separate regression tasks. The dis-
tribution of ammonia and chlorophyll in the dataset is depicted in
Fig. 6. As expected, their distribution is non-uniform. In particular,
for the ammonia, we can observe that the lowest values are highly
predominant.
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Fig. 7. Analysis of the influence of disc_on, m and sampling_strategy in terms of RSE on the prediction of the target variable ammonia (left) and chlorophyll (right).

As evaluation strategy, we adopted the 10-fold cross validation,
where 90% of the dataset is considered as training set and the remain-
ing 10% is considered as testing set, alternatively for 10 times.

As evaluation measures, we considered the Root Mean Squared
Error (RMSE) and the Relative Squared Error (RSE). While the former
provides a general idea about the actual error performed by the learned
regressor, the latter estimates the accuracy of the regressor with respect
to a simple baseline predictor, based on the average of the target
variable in the training set. They are formally defined as:

L 2
RMSE = Z@T ©)
;- j;;')2
RSE =221 "0 6
X -7 ©

where y; and y; are the true and the predicted values of the target
variable, respectively, for the ith testing instance; y is the average value
of the target variable in the training set; nt is the number of testing
instances.

We run the experiments with both variants of our approach BAL-
RF, namely BAL-RF (rep) and BAL-RF (no rep), with different values
of m, namely, m € {2,4,8}. Moreover, as mentioned at the end
of Section 2.2.2, we also investigated the possibility to perform the
sampling guided by the discretization on a target attribute to learn a
predictive model for the other target attribute. Henceforth, we indicate
the attribute on which the discretization is performed with disc_on,
which will assume the values disc_on € { Ammonia, Chlorophyll}.

We compared our results with those achieved by the approach
proposed by Palumbo et al. [22], that exploits Random Forests with the
standard bootstrap sampling. Moreover, we also run the experiments
with some other well-known regression methods, namely, Linear Re-
gression (LR), Regression Tree (RT) and Support Vector Regressor with
RBF kernel (SVR). The parameters of the method by Palumbo et al.
[22] have been set to the values specified in the paper, while for LR,
RT and SVR, we adopted their default values, as specified in the Python
scikit-learn library. We also compared the results with those achieved
by some approaches based on state-of-the-art neural network architec-
tures: a classical Multi Layer Perceptron (MLP), Residual Network [27]
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(ResNet50) and a Vision Transformer (ViT) [28], specifically vit_b_16.
The MLP architecture consists of an input layer having size equal to
the number of features, three hidden layers having size 512,256 and
128, and an output layer that returns the predicted value for the target
attribute. As activation function, we considered ReLU. The architecture
of ResNet50 and vit_b_16 were kept as they are described in their
respective papers [27,28].

It is important to notice that, unlike our approach and MLP, both
ResNet50 and vit_b_16 were directly trained from the original images,
without extracting color histograms. This is because these architectures
can also naturally capture the shape of the objects within the images,
together with the pixel colors, and providing them with a pre-processed
color histogram would have put them in an unfair training setting.

4. Results and discussion

All the results of our experiments are reported in Tables 1-2.
Focusing on the prediction of the amount of ammonia (Table 1), we
can observe that the proposed approach, in both its variants, provides
advantages over the method proposed by Palumbo et al. [22] when the
chlorophyll is used as discretization attribute (disc_on = chlorophyll),
with all the values of m. The average improvement on the prediction of
the ammonia in terms of RSE, achieved by BAL-RF over the method
proposed by Palumbo et al. [22], is 6.6%. This result confirms the
relationship between the values of the chlorophyll and of the ammonia,
and suggests that a sampling aiming to properly representing the whole
range of values of the chlorophyll can lead to learn regression trees
that are more accurate in the prediction of the ammonia. This may
correspond to indirectly injecting some background information about
the amount of chlorophyll that supports the prediction of the ammonia.

This advantage is not visible when the discretization is performed
on the ammonia (disc_on = ammonia), especially with high values of
m. This result may be motivated by the highly skewed distribution of
the ammonia (see the left part of Fig. 6), which leads to extremely
undersampling from the first bin, in the case of BAL-RF (no rep), and
to extremely oversampling from the other bins, in the case of BAL-RF
(rep).

Comparing the results with the other competitor systems, we can ob-
serve that BAL-RF always outperforms all of them, with both considered
discretization attributes and with all the values of m. Specifically, LR
obtained a value of RSE higher than 1.0, which means that it performs
worse than the naive predictor based on the sample mean. The results
obtained overall suggest that the task at hand is not linear, and is more
appropriate to adopt regressors able to capture non-linear relationships.
Focusing on neural network architectures, MLP and ResNet50 obtained
higher RMSE/RSE values with respect to all the configurations of BAL-
RF, while vit_b_16 obtained a RMSE/RSE results comparable with those
achieved by our worst configuration (BAL-RF (no-rep) - disc.on =
Ammonia and m = 8). The sub-optimal results achieved by ResNet50
and vit_b_16 may be motivated by the fact that the quality of rocket
leaves in terms of ammonia mainly influences the distribution of colors,
rather than the shapes possibly captured by such architectures.

Switching the discussion to the prediction of the amount of chloro-
phyll (Table 2), we can draw similar conclusions. Also in this case,
performing the sampling based on the discretization of the other target
variable (i.e., ammonia, in this case) corresponds to indirectly inject-
ing some knowledge about it in the predictor, which leads to lower
prediction errors. Moreover, thanks to the lower skewness of the value
distribution for chlorophyll (see the right part of Fig. 6), both variants
of BAL-RF provide the expected advantages also when the discretiza-
tion is performed on such a variable, which corresponds to making
the learning algorithm more aware about the whole range of values
assumed by the chlorophyll. Overall, the average improvement in terms
of RSE, achieved by BAL-RF in the prediction of the chlorophyll over
its closest competitor (i.e., the method by Palumbo et al. [22]) is 2.2%
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Table 1

Results in terms of RMSE and RSE on the target variable ammonia.
A green background indicates a better result with respect to
all the competitors. The best result for each target variable is
emphasized in bold.

Target = ammonia disc_on m RMSE RSE
LR - - 74.191 1.698

DT - - 32.758  0.331

SVR - - 39.895 0.491

MLP - - 28.312 0.250
resnet50 32.568 0.333
vit_b_16 26.129  0.251

Palumbo et al. [22] 23.581 0.171

2 24.408 0.184

Ammonia 4 24.735 0.189

8 25.724 0.204

BAL-RF(rep) 2 22760  0.160
Chlorophyll 4 22.675  0.159

8 22.977 0.163

2 23.734 0.174

Ammonia 4 24.852 0.190

8 26.062 0.209

BAL-RF(no rep) 2 22.626 0.158
Chlorophyll 4 22.775  0.160

8 22.923 0.162

Table 2

Results in terms of RMSE and RSE on the target variable chloro-
phyll. A green background indicates a better result with respect
to all the competitors. The best result for each target variable is
emphasized in bold.

Target = chlorophyll disc_on m RMSE RSE

LR - 31.252 3.691

DT - 12.577 0.598

SVR - 10.413 0.410

MLP - 10.076 0.386
resnet50 10.978 0.463
vit_b_16 - - 13.476 0.704
Palumbo et al. [22] - - 9.150 0.316
2 8.624 0.281

Ammonia 4 9.031 0.308

8 9.608 0.349

BAL-RF(rep) 2 8604 0280
Chlorophyll 4 8.668  0.284

8 8.865 0.297

2 8.592 0.279

Ammonia 4 8.889 0.299

8 9.492 0.340

BAL-RF(no rep) 2 8556 0277
Chlorophyll 4 8.583  0.278

8 8.678 0.285

when the discretization is performed on the ammonia and 10.4% when
the discretization is performed on the chlorophyll.

The performance exhibited by the other competitors, also for the
prediction of the chlorophyll, falls way behind those achieved by BAL-
RF, with unsatisfactory results obtained by LR. Also for the chlorophyll,
it appears that properly modeling the distribution of colors, as done
by BAL-RF, MLP and the method by Palumbo et al. [22], is more
beneficial than capturing differences in terms of shapes, as done by
ResNet50 and vit_b_16. Moreover, the approach followed by BAL-RF
for properly representing boundary values in the instance sampling
procedure provides it with the advantage to outperform MLP and the
method by Palumbo et al. [22].

We performed an additional analysis on the influence of the pa-
rameters m and disc_on as well as of the specific sampling strategy
adopted by our method, i.e., BAL-RF (rep) and BAL-RF (no rep). The
results of this analysis are depicted in Fig. 7. By observing the figure,
we can confirm that the discretization performed on the chlorophyll
is very beneficial for the prediction of both chlorophyll and ammonia.
As regards the value of m, the best results are obtained with m = 2
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Target = ammonia
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Target = chlorophyll

Fig. 8. Graphical representation of the 5 top-ranked features for the prediction of ammonia (left) and chlorophyll (right). Each gradient depicts the range of colors represented

by a given pair of values in the a*b* plane, by varying the value of L in the range [0, 100].

and m = 4 for the ammonia, and with m = 2 for the chlorophyll.
This result indicates that the proposed sampling strategy is beneficial,
provided that the range of values is not excessively fragmented. In
the latter case, indeed, the effect of the combined undersampling and
oversampling may significantly distort the training data distribution
with respect to that observed during the prediction phase. Finally,
regarding the sampling strategy, it seems that BAL-RF (no rep) and
BAL-RF (rep) achieve comparable results, and that BAL-RF (no rep)
provides a slight advantage. This result suggests that BAL-RF (no rep)
is generally preferable, since it also feeds the learning algorithm with
less training instances.

Finally, in Fig. 8 we show the 5 most important features, identified
according to the strategy described in Section 2.2.3, for the configu-
rations that led to the best results (see the bold values in Tables 1
and 2). Note that a feature corresponds to a given pair in the a*b*
plane, while to actually draw the colors we need the triplet of values
in the L*a*b* space. Therefore, in Fig. 8, we report, for each feature,
the corresponding color gradient by varying the value of L* in [0, 100].
From the figure, we can observe that brown-to-yellow colors are the
most useful for the prediction of the value of ammonia, while, as
expected, greens mostly support the regressors to predict the value of
the chlorophyll. As introduced in Section 2.2.3, this analysis not only
helps to observe and understand the features that mostly explain the
predictions, but can also increase the trust in the designed approach
for its application in real-world environments, since it is easy to verify
that the provided output is based on reasonable characteristics of the
images.

In general, the main findings of this study can be summarized as
follows:

the proposed method can be considered the new state-of-the-art
for the estimation of chlorophyll and ammonia contents from
images, since it outperformed 7 existing methods solving the same
task;

the obtained results confirmed the inherent relationship between
chlorophyll and ammonia: using some information about the
amount of chlorophyll during the discretization phase led to
improvements in the estimation of the amount of ammonia;

the considered task is clearly not linear: approaches able to model
only linear relationships (e.g., LR) failed to provide accurate
estimations;

the amount of chlorophyll and ammonia in rocket leaves appears
to influence the frequency of colors, rather than their location in
the image: complex neural network architectures, whose features
capture spatial structures within the images, obtained worse re-
sults with respect to those focusing on color histograms, such as
our approach;

« exploiting the capability of our method of explaining its outputs,
we observed that brown-to-yellow colors were leveraged for the
estimation of ammonia, while greens mostly supported the esti-
mation of chlorophyll. The relationships between such colors and
chlorophyll/ammonia contents appear natural and reasonable for
experts. This increases the belief that the estimations provided by
our approach are trustworthy.

5. Conclusions

In this paper, we proposed an approach for the contactless and
non-destructive evaluation of fresh-cut rocket leaves, based on the
estimation of the amount of chlorophyll and ammonia. Specifically,
we adopted a machine learning method that builds a regression model
able to estimate such amounts from images related to rocket leaves.
Methodologically, with respect to previous works, we contributed along
two different aspects: (i) we tackled the issues raised by the non-
uniform value distributions of the target variables in the bootstrap
procedure adopted by Random Forest, by adopting a novel sampling
approach; (ii) we adopted a strategy to explain the estimations provided
by the model, which aims to provide clues on the colors that mostly
contributed to the prediction.

Our extensive experimental evaluation proved that the proposed
approach can outperform methods based on Random Forests and 6
additional competitor systems, in terms of RMSE and RSE. Specifically,
the proposed sampling approach not only allowed the regressor to be
more aware of the whole range of values in the dataset, but indirectly
led to injecting some background information about the amount of
chlorophyll to support the prediction of the ammonia, and viceversa.

As future work, we will aim to improve the learned models to make
them robust to variations in the images possibly introduced by the live
environment, including light/color perturbations and the presence of
complex backgrounds. These issues are currently coped with by color
correction and foreground extraction steps, that pose strict constraints
on the environment used during the acquisition. At this aim, we will
also investigate the possibility to exploit specific settings, also based
on adversarial learning.
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