TOWARDS THE DERIVATION OF AN EXPERIMENTAL PROGRAMMING ENVIRONMENT
FROM LANGUAGE FORMAL SPECIFICATIONS

Roberto Barbuti, Marco Bellia and Alberto Martelli
[stituto di Elaborazione dell'Informazione C.N.R.
Pisa, Italy

Enrico Dameri and Carlandrea Simonelli
Systems & Management SpA
Pisa, Italy

Pierpaolo Degano and Giorgio Levi
Istituto di Scienze dell'Informazione
Universita di Pisa, Italy

Abstract

The paper is concerned with a methodology for deriving an integrated programming
environment for a specific programming language, from a set of language independent tools
and a formal definition of the programming language. The approach is to define some
general tools (abstract syntax manipulation, editing and debugging commands, a parser
generator, an executable specification meta-language) which can be used to obtain a set of
granular language-dependent tools (syntax driven editor, parser, static analyzer, interpreter,
debugger, code generator) from syntactic and semantic language definitions.

1. INTRODUCTION

A major problem, in the development of computer
applications, is the efficiency of the software production
process. In fact, today's technology makes hardware
available at a very low cost, while the overall cost of the
software production (software design, development,
testing and. maintenance, including project management)
becomes more and more critical.

The efficiency of the software production process is
related to the cost of the production and to the product
quality. Reliability is one of the most relevant features
affecting software quality. ‘

The main goal of the research activity in the software
engineering area is increasing software productivity and
reliability.

This goal has been pursued following three major lines:

- the definition of suitable high level programming
languages;
- the definition of programming and project
management methodologies;
- the development of tools' which support
programming and management activities.
In this paper, we are concerned only with programming
systems, i.e. collections of tools which help managers,
designers and programmers in program editing, testing,
analysis, documentation, configuration, maintenance.
Conventional programming systems do not support some
programming activities (for instance, semantic oriented
program analysis and program‘ configuration), nor they
fully exploit the facilities offered by interactive
systems, nowadays in widespread use. Moreover, they do
not supply tools for program/project documentation, for

managing the project status, and for communication

This work has been supported by C.N.R. Progetto Finalizzato Informatica, Obiettivo CNET.

within the project team. Finally, conventional
programming systems consist of a collection of loosely
coupled tools, which are hard to combine, which have
non-uniform interfaces and do not allow a soft switch
from tool to tool.

The current trend is moving from programming systems
towards integrated programming environments, whose
main features are:

- a more comprehensive machine support to the
programming and management activities;

- tool integration;

- tools to enable an easy and natural
communication between man and machine and
among individuals.

Any integrated programming environment has to be
designed

taking care of the peculiarities of the

organization, which it is addressed to. Since the
integrated programming environment is, in turn, an
expensive software system, it is necessary to single out a
minimal environment, i.e. a set of tools, which must be
contained in any integrated programming environment.
Moreover, the minimal environment must provide
mechanisms to extend the basic set of tools so as to fit
with the

organization.

requirements coming from a specific
A great deal of activities supported by an integrated
programming environment, e.g. specification and design,
testing, validation, performance evaluation, strongly
depend on specific methodologies. Therefore, the
minimal environment should contain no tools which
enforce specific methodologies. Rather, it should provide
only those basic functionalities and mechanisms, which
allow to build any tool.

The major contributions to the definition of the general
features of today's integrated programming
environments come from interactive LISP systems (1, 2)
and from the operating system UNIX (3).

The very first programming environments have been
developed within the LISP community. One reason for
this arises because LISP users are quite demanding, since
they face difficult problems and deal with large and
complex programs. Moreover, LISP has some features
which naturally lead to the development of tools. Let us
mention the equivalence between data and programs, the
internal tree representation (close to the abstract syntax

representation of the program), the embryonal data base

and data base management systems provided by the

property list abstraction. Finally, the interactive

interpreter-based implementation promotes the

development of debugging and testing tools, and provides
a flexible command (LIsP
iteself!).

The main contribution from UNIX-based systems is the

and powerful language

idea of defining a machine-independent programming
enviranment. The Programmer's Workbench (PWB) (4) is
a collection of tools, running on a system (host machine)
fully devoted to program developrent and maintenance.
The host machine can be linked to application specific
target machines, to act as a remote job entry. PWB
contains tools for documentation, for managing a project
data base, for selective communication within a team.
The most relevant features of the underlying operating
system are the hierarchycal file system and the
extendible job control language, which is the basis for
tool composition. The choice of a single host machine
allows the definition of standards and results in lower
costs for training and for development of tools for
different target machines.

The first integrated programming environment providing
most of those features, which are nowadays considered
necessary was, the Program Development System (PDS)
(5, 6). The main components of PDS are:

- a program data base, which allows the user to
manage item versions, development histories and
dependencies among items;

- a command interpreter, wich provides an
interactive user interface; .

- a set of tools for program editing, analysis and
execution. The integration among the tools is
achieved by a common internal representation
(program abstract syntax), by sharing the data
base, by allowing mutual tool invocation. The
tools are granular, i.e. every tool corresponds to a
specific simple functionality. For example, a
compiler is decomposed into a set of granular
tools, which includes a parser, a type-checker, a
scoper, an optimizer, a code generator.

Most of the ideas of PDS underlie the STONEMAN
proposal for the programming environment for the ADA
language (7). The innovative aspect of such a proposal is
concerned with the portability of the environment. In

order to achieve portability:

- the tool implementation language should be a
sultable ADA extension with primitives for tool
writing, e.g. an operation to transform a data
structure (compiled code) into a running process;

- the ADA abstract machine needs to be further
extended to contain suitable abstractions for

which

would make the environment partially dependent

those operating system functionalities
on the underlyng operating system, e.qg. resource
management and file system organization.

The resulting STONEMAN proposal defines an abstract

machine, the Kernel of ADA Programming Support

Environment (KAPSE), which contains all the above

outlined extensions.

Let us summarize those features which are common to

all the environments currently under development (8).

1. Integration, which requires:

- common internal program representation,
- uniform inter-tool interfaces,
- achievability of tools from other tools.

2. Open-endedness, which require the kernel to provide
the user with mechanisms for new tool definition.
Granularity of tools.

Interactivity which relies on:
- a simple yet powerful command language,
- a uniform user interface,
- user oriented interaction devices.
5. Multiuser support, including:
- a project data base,
- personal work-stations,
- an inter-use communication facility.

6. Host environment, i.e. the environment is supported
by a dedicated machine different from those on
which the produced programs will run.

7. Environment

portability, obtained by re-

implementing the kernel only.

2. THE PROGRAMMING CYCLE IN AN
INTEGRATED PROGRAMMING ENVIRONMENT.

The tools of the minimal environment can be grouped
into two families.

- Tools which do not depend upon the programming
language and which can be viewed as standard
operating system primitivies. Most of the tools in
the kernel (7), as well as the project data base,
the communication and the management tools

helong to this family, and can be shared by

environments for different languages, provided

that inter-tool interface are kept homogeneous so

as to allow easy integration with language
specific tools.

- Tools which depend upon the syntax and/or the
semantics of the programming language supported
by the environment. Tools in this family cover all
the activities which range from program editing
to compiling, linking and debugging.

In this paper we will be mainly concerned with tools
within this family. Our aim is suggesting a methodology
which allows to define some meta-tools which can be
used to derive language specific tools, given a formal
definition of the programming language. Let us first look
at the functionalities of the different tools in the
framework of an integrated programming environment.

The standard programming cycle requires the strictly
sequential use of the text editor, compiler, linker-loader
and debugger. The efficiency of such a cycle can be
substantially improved by supplying the user with

interactive, granular and integrated tools. As an

example, a programmer in such an environment is

allowed to perform the following actions.

1. Edit the program.

2. Check the syntactic correctness.

3. Repeat Steps 1 and 2 until syntactic correctness is
established.

4. Perform some other static analysis, e.g. type
cheking or systematic static testing.

Repeat Steps 1-4 until necessary.

6. Interactively run the (possibly incomplete and
incorrect) source language program.

7. Repeat Steps 1-7 until the program behaves
properly.

8. Perform source code optimization.

9. Generate object code.

The above example shows that the nature of the tools in

an integrated programming environment leads to deep

modifications in the pattern of tool composition and

sequencing, which results in:

- efficient error detection, since all the static
analysis tools are applied separately without
repeating time wasting compilations;

- early error detection, due the possibility of

analysing, testing and executing programs, which

may be only partially defined and, in any case, are
not yet compiled nor linked;

- efficient error correction, since as soon as an
error is detected by any analysis or testing tool, a
correction may be performed by resorting to the
editor and subsequently resuming the suspended
activity.

The general idea underlying such a pattern is to
interactively perform the analysis of programs along
with their "batch"
philosophy which requires the program to be fully

development, contrasted to a

defined before attempting any analysis. Program
execution tools should operate at the source lanquage
level, thus allowing the programmer to better understand
the behaviour of his program and to interact with the

execution tools.

3. INTERNAL REPRESENTATION OF PROGRAMS
AND ITS MANIPULATION

In order to allow integration of the tools in the
environment, they must operate on the same internal
representation of programs (abstract representation).
Such a representation has a tree-like form and is defined
according to the abstract syntax of the language.
Abstract syntax has been introduced in order to

facilitate -the definition of programming language
semantics (9, 10). It stresses the tree structure of
programs, clarifies the way a construct is obtained by
composition of simpler constructs, points out the various
kinds of syntactic structures the language provides. All
the details concerning lexical aspects or requirements
for efficient parsing (e.g. non-ambiguity, determinism)
are completely neglected.

Our goal is to define an internal representation common
to every language the environment will support. The
specific internal representation will be derived according
to the abstract syntax of the specific language. Hence,
we have defined a meta-language to express abstract
syntax which provides a set of basic constructs which are
used to built and manipulate trees.

We will now informally describe the way we use to
define the abstract syntax of the language. A definition
is a set of syntactic domain definitions of the following
form:

(FL) oplsel;:DTYPE ,..,sel DTYPE)—DTYPE

which constructs elements of the syntactic domain

DTYPE (e.g. IDEntifier, TYPE, STATement,..) by
applying op to elements of the syntactic domains
DTYPEl,...,DTYPEn, identifiabje by
selyyuensel (see the example below).

In the scheme (F1), domain DTYPE.l may have also the

selectors

following forms:

i) DTYPE %, which stands for a (possibly empty) list of
elements of the domain DTYPE;

ii) DTYPE+, which stands for a non-empty list of
elements of the domain DTYPE.

Example.

pra(name:IDE, deis:DCL , body:STATY) — PROGRAM

defines a (simple) program construct congisting of a

name, a list of declarations and a non-empty list of

statements. A tree of domain PROGRAM is the

%p\
body

nanie decls '
+

STAT STAT

following:

IDE
DCL DCL

where name, dcls, body are the selectors of the sons of
type IDE, DCL and STAT™, respectively.
The basic nodes of a tree are:

- the operator node, with a fixed number of sons;

- the (possibly empty) list node * and the non-empty
list node +, with a varying number of sons;

~ leaf node, without sons;)

- the domain node, which has no sons but can be
expanded according to the definition of the
domain (e.g. the leaves of the figure above).

The basic operation to visit and modify trees are:

- root, which gives the root of the internal
representation;

- father, which gives the node having the argument
as a son;

- son_of _name, which, taken a node and a selector
name, gives the subtree labelled by the selector
name;

- i-th_son, which, taken a list node, gives its i-th
subtree;

- brother, which allows to visit the elements of a

list node;

- change, which, given two trees, substitutes the
first (possibly empty) for the second.

The tree structure of internal representation must be
augmented by allowing property lists to be appended to
the nodes. Such properties can be defined and used by
the programmer and by the tools of the- environment.
Each tool will define its own properties (for instance, the
editor will operate on properties like "syntactic domain"
and the type checker on properties like "type"). The
abstract syntax manipulation module provides primitives

for properties insertion, deletion and modification.

4. PROGRAM EDITING AND MANIPULATION

The abstract representation of a program is built
starting from its text (concrete representation) by means
of the syntax directed editor. Unlike ordinary editors,
the syntax directed editor does not operate on strings of
characters, rather it handles trees. The syntax directed
editor is composed by a routine for handling abstract
representations, lexical and syntactical analyzers, and a
routine for building abstract representations. Moreover,
a program must be displayed according to its concrete
syntax, since the user should operate on it (e.g. inspect,
modify, analyze it) always through the same (and more
familiar) representation.
The syntax directed editor must support incrementality,
since should be possible to incrementally write (or
modify) a program. The incremental definition of a
program could be achieved both by a "generative" and by
an "analytic" definition mode. The generative mode
consists in driving program definition by displaying the
menu of the language constructs usable in that specific
context. For example,‘ if the user wants to write a while-
statement, the syntax directed editor will display the
following
while COND do

STAT

od
The user is then allowed to select and expand one of the
elements of the two syntactic domains COND and STAT,
according to their definitions.
The major advantages of the generative mode are that
programs are edited in terms of the programming
language constructs, and that users cannot write
syntactically incorrect programs, thus avoiding the need

of a parsing phase. On the other hand, this approach may

be rather tedious, e.g. when writing an arithmetic
expression.

The analytic definition mode is the standard -way of
writing programs, enriched with possibly incremental
parsing and by allowing the user to let unexpanded some
of its parts (with the constraint that the unexpanded part
must be a legal syntatic element). The program will be
completed by successive modifications of its abstract
representation resulting from the complete expansion of
all the syntactic constructs.

Our syntax directed editor supports a mixed use of the
two modes, in order to achieve the advantages of both
the generative and the analytic modes.

To generate a syntax directed editor from the definition
of a language, a parser generator and a constructor of
needed. The
adopted in the design of the parser generator is SLR(1),

abstract representations is technique
extended to cope with incrementality. The parser must
be able to analyze not only a whole program, but an
element of any syntactic domain, typically when in
generative mode one substitutes for an unexpanded
element its full definition. In other words such a
situation arises when a part of a program (belonging to a
specific syntactic domain) is to be replaced by another
part which must belong to the same domain. The adopted
solution consists in splitting and slightly extending the
parsing table of the language in several parsing
(sub)tables, each corresponding to a syntactic domain.
The parsing of a part of a program is done by using the
(sub)table(s) corresponding to its syntactic domain. As a
particular case, a program will be parsed by using all the
(sub)tables.

To generate the constructor of abstract representations,
a meta-tool has been designed which takes as input a
mapping from concrete to abstract syntax. Such a
mapping is needed since in general the two syntaxes are
quite different. In fact, the concrete syntax contains
more productions than the abstract one, both to express
syntactic details (such as presence of begin-end) and to
define semantic aspects (such as the operator
precedence relationships). The way this mapping is
obtained is similar to that of (11), and will not be given
here, due to space limitations. The constructor of
abstract representations is a meta-tool which, given a
mapping from the concrete to the abstract syntax, builds

the internal representation.

The integrated programming environment user must
interact with his program always through its concrete
representation. Thus, there must be a displayer which,
given an abstract representation of a program, displays
it in a concrete form. Let us note that the displayer is
used also in the generative program definition mode.

The text of a program is displayed according to a form
normalized by the abstract syntax. Moreover it is
prettyprinted to better show its structure. All the
standard functionalities of a prettyprinter (see for
example (12)), e.g. displaying only few levels of a
programs, are supported.

The program displayer is generated by another meta-tool
which takes as input a mapping from the abhstract syntax
to the displaying format. Let us finally remark that the
displayer results to be a non-standard interpreter for the

language.

5. PROGRAM EXECUTION TOOLS

The essential feature of an execution tool in a program
development environment is that of allowing interaction
during execution in terms of the source language. For
this reason, the main execution tool of our programming
environment is an interpreter. In this section we describe
a methadology for deriving interpreters, and other
execution tools from the formal definition of the source
language semantics. In particular we will refer to the
denotational style of definition, which is now widespread
for sequential languages. For instance, it has recently
used to give the semantics of the sequential part of ADA
(14, 15).

The denotational definition of the semantics gives to a
program a meaning in some abstract domain which is
defined using mathematical concepts like functions or
sets. For instance, the meaning of a program might be a
function from an input to an output domain.

The main characteristic of denotational semantics is
that the meaning of a program is given in terms of the
meaning of its syntactic components. More precisely, the
denotational semantics gives a meaning to every
(abstract) syntax construct of the language, and this
meaning is defined in terms of the meanings of the
components of that construct (compositional property).
To give the meaning of every syntactic construct, some
auxiliary domains must be introduced. For instance, the

semantics of imperative languages makes use of domains

like environment, state or continuations (to descibe
jumps).

Thus the main features of denotational semantics are
that of being necessarily structured with respect to the
abstract syntax of the language, and of expressing the
meaning of the constructs in terms of abstract domains,
which model important semantic concepts, without any
constraint from real machine.

The denotational semantics of the source language may
be expressed in an algorithmic formalism, i.e. another
programming language, called meta-language (for
instance the SIS system by Mosses (11) provides a meta-
language, called DSL, to define the denotational
semantics).

Once the semantics of a language L has been written in a
meta-language M, it is possible to execute programs of L
by means of the executor of M. This execution may be
performed in steps. Let us assume, for instance, that the
semantics LSem(P) of a program P is a function from an
input to an output domain. Then we can first apply LSem
to a given program P obtaining a function from input to
autput. Then this function LSem(P) may be applied to
input data to get the corresponding output. Note that
this is essentially a "“compilative® approach, where
“compiling" means translating from L into the meta-
language. In fact, the first step "compiles” P into an M
program, which in the second step is evaluated on input
data.

An “interpretive" approach requires a different style of
giving the denotational semantics, where only "first
order" functions are allowed. That is, for instance, the
semantics of a program will be defined as a function
which takes two arguments, a pragram and an input, and
returns an autput. The main difference between the two
approaches lies in the semantics of procedures: in the
"higher order" approach the semantics of a procedure is
a function, whereas in the “first order" approach it is
usually a so called "closure", i.e. a structure consisting
of the procedure itself and of the environment in which
its body has to be evaluated.

However the "first order" semantics is not quite
denotational, since the meaning of a procedure is not
given in a semantic domain, and the semantics of a
procedure call is not compositional. Thus a carrect
methodology would be to consider the 'higer order”

semantics as the true semantics of the language, and to

derive the "first order" semantics from it through an
equivalence preserving transformation (10, 13).

Besides the interpreter, the programming environment
will provide a compiler to run already tested and
debugged program units with a gain in efficency. By
compiler we mean, of course, the granule of traditional
compiler performing code generation and optimization.
This tool must be integrated with the interprebter in
order to allow execution of partially compiled programs.
The required

integration may be achieved by

constructing the compiler with the same technique

described above, i.e. through a sequence of
transformations starting from denotational semantics
(13, 16). _

Finally, if the source language possesdes the concept of
module as a separate program | unit, then the
programming environment will provide another tool, the
configuration interpreter, for extracting modules from a
program library and connecting them together to form
program ready to be run. Thus, this tool will provide the
functionalities of traditional linkers and loaders, but
tuned with the specific source language (by performing,

for instance, type checking).

5.1 STATIC ANALYSIS TOOLS

Static semantics is the part of semantics which describes
all the features of a language which can be checked
statically such as, for instance, scope rules or type
consistency. It may be also defined using a denotational
technique, if the meaning of syntactic constructs is
given in different (non standard) domains. For instance,
the meaning of a program might simply be either
"correct" or "wrong", the domain of values might become
the domain of types, and the store might be eliminated.
As in the case of standard semantics, if we define the
static semantics in the meta-language, we have an
interpreter (static interpreter), which can be used to
check the static aspects of a program. As pointed out
before, this interpreter operates on non standard
domains, and usually has a simple control structure than
the standard ane (cycles are executed only once).

Often the semantics of a language is given, by definition,
in two parts, the static part and the dynamic part (see
for instance ghe semantics of ADA (14, 15)). The static
which

programs are well formed, and the dynamic semantics is

semantics establishes syntactically correct

defined only for well formed programs.

We propose instead to start with a unique standard
denotational semantics of a language, dealing with both
static and dynamic aspects, and then derive from it the
static semantics. If the meta-lanqguage possesses an
abstract data type constructor, the standard semantics
will be given by referring to domains defined as abstract
data types; then the static semantics, and the associated
interpreter, will be obtained by maodifying the
specification of those data types. Note that with this
approach the structure of the standard and static
interpreters is always the same, and that they differ only
in the specification of semantic domains. Furthermore
we point out that we might derive more than one static
interpreter, for dealing separately, for instance, with
scope rules and with type checking, if the structure of

the language allows it.

5.2 DEBUGGING TOOLS

The process of interactive error detection and correction
may be divided into three phases, which usually require
different tools:

- detection and correction of syntax errors;

- detection and correction of static semantics

errors (types, scope rules,...);
- detection and correction of dynamic semantics
(run time) errors.

In traditional programming environments, either
compiler or interpreter based, the first two phases are
performed during translation from the text of the
program into the internal form. Thus the interaction is
necessarily limited, consisting simply in correcting the
program text according to the error messages and in
retranslating it.
Traditional debuggers deal with the third phase, allowing
to interact with the program during execution. The main
feature of a debugger is that the programmer must
always be able to reason at the level of the source
language in terms of semantic concepts, without
worrying about the underlying implementation. Most
currently available debuggers are compiler based, and
the interactions with the source program are rather
limited, depending on the informations about the source
program which are passed to the compiled code. Usually
they allow to inspect, and in some cases to alter, the

value of a variable and to refer to text lines in the

source program in order to insert or remove break and
trace points. More sophisticated interactions are possible
if an interpreter is used instead of a compiler, since the
directly to (an internal

interpreter may refer

representation of) the source program. A further
improvement is achieved by using a symbolic interpreter
during the debugging phase (17).

In the programming environment described in this paper,
the first phase, dealing with syntactic errors, will be
performed interactively through the syntax directed
editor.

The other two phases, dealing with static and dynamic
errors, may be described, in general terms, in the same
way. In fact, as we pointed out in the previous
subsection, static checking of a program is performed by
the execution of a non standard (static) interpreter,
which may stop either at some point of the program
having detected a static error, or at the end of the
program if it is correct. Similary, the run time
interpreter will stop whenever a run time error or a
break point will be encountered. In any case, when an
interpreter stops, another tool is entered, the (static or
dynamic) debugger, which manages the programmer's
interaction. Within the debugger the programmer is able,
first of all, to inspect the state of the interpreter at the
point where it stopped. This means examining the
program through the editor, and accessing the semantic
domains through suitably defined abstract operations.
Furthermore, the programmer can, p'oasibly in a limited
way, modify the program or the state of a semantic
domain, and restart the interpreter.

Maore specifically, the dynamic debugger allows to
examine and alter the state of the program by on line
editing and executing source language statements
provided by the user. Thus, the value of variables can be
known through a "write" statement, and it can be altered
through an assignement statement.

Furthermore, the dynamic debugger allows to add, or
remove, properties (breaks, trace points, frequency
counts,...) to the internal representation of a program in

arder to monitor its execution.

6. CONCLUDING REMARKS

The above described programming tools, derived from a
formal definition of the programming language, must be

integrated with the language-independent tools, so as to

define a complete minimal environment. Integrability
strongly depends upon uniformity of tool interfaces and
upon the data base which contains, structures and
manages the informations about both tools and program
entities, providing the input to all the toals and storing
their outputs, e.g. program manipulations, analysis
results, etc.

The minimal toolset can be extended with new tools
defined in the programming language supported by the
environment, possibly through invocation of the basic
tools. This can be achieved only if the environment
defines a model for transmitting parameters and sharing
data between modules in the programming language and
modules of the implementation (meta-) language.

A final relevant integration mechanism is the command
language, which provides the basic user interactive
interface, and can be the same as the language supported
by the Each

command is entered through the editor, checked by the

environment. interactively supplied
static analysis tool, and executed by the interpreter.

The programming environment briefly described in this
paper is currently under development and will be hosted
on a DEC VAX-11/780. The first prototype will be tested

on a subset of ADA.

REFERENCES

1. Teitelman W. - INTERLISP Reference Manual -
XEROX Palo Alto Research Center, Technical
Report (1978).

2. Sandewall E. - Programming in the Interactive

Environment: the LISP Experience’ - ACM Comp.
Surveys 10 (1978) 35-71.

3. Ritchie D.M. and Thompson K. - The UNIX Time-
sharing System - Comm. ACM 17 (1974} 365-375.

4. lvie E.L. - The Programmer's Workbench: A Machine
for Software Development - Comm. ACM 20 (1977)
746-753.

5. Cheatham T.E., Townley J.A. and Holloway G.H. -A
System for Program Refinement - Proc. 4th Int'l
Conf. on Soft. Eng. (1979) 63-72.

6. Cheatham T.E. - Pragram Development Systems -
Center for Research in Computing Technology,
Harvard University, Technical Report (1979).

7. U.S. Department of Defense - Requirements for

ADA Language Integrated Computer Environments -

10.

11,

12.

13.

14.

15.

1e.

17.

STONEMAN (1980).
Hunke H. (ed.) - Software Engineering Environ-
ments, North-Holland Pub., Amsterdam (1981).

McCarthy J. - Towards a Mathematical Science of

Computation - Proc. IFIP Congress 1962, C.M.
Popplewell (ed.), North-Holland Pub., Amsterdam
(1963) 21-28.

Reynolds J.C. - Definitional Interpreters for Higher-
Order Programming Languages - Proc. ACM Nat.
Conf. (1972) 717-740.

Mosses P. - SIS: Semantics Implementation System,
Reference Manual and User Guide -Aarhus Univ.,
Computer Department, Internal Report DAIMI MD-
30.

Oppen D.C. - Prettyprinting - ACM Trans. on Prog.
L.ang. and Systems 2,465-483.

Bjorner D. -

Programming Languages: Formal
Development of Interpreters and Compilers - Int.
Comp. Symposium 1977, Morlet E. and Ribbens D.
(eds.), North-Holland Pub., 1-21.

Bjorner D. and Oest O.N. (eds.) - Towards a Formal

Description of ADA - Lect. Notes in Comp. Science,
98, Springer Verlag (1980).
Definition of the

Formal ADA Programming
Language - November 1980 edition, Honeywell Inc.,
Cii Honeywell Bull, INRIA (1980).

Gaudel M.C. - Compiler Generation from Formal
Definition of Programming Languages: A Survey -
Int. Coll. on

Formalization of Programming

Concepts, Lect. Notes in Comp. Science, 107,
Springer Verlag (1981) 97-114.

Asirelli P., Degano P., G., Martelli A,
Montanari U., Pacini G., Sirovich F. and Turini F. -A

Flexible Environment for Program Development

Levi

Based on a Symbolic Interpreter -Proc. 4th Int'l
Conf. on Soft. Eng., (1979) 251-263.

Roberto Barbuti, degree in Computer Science from the
University of Pisa in 1977, is presently interested in
programming languages and software engineering. Until
1981 he has been a research fellow at Istituto di
Elaborazione dell'Informazione C.N.R. in Pisa. Now he is
assistent professor at University of Pisa, Computer
Science Department.

Marco Bellia, degree in Computer Science from the
University of Pisa in 1975, has been research fellow at
Istituto di Elaborazione dell'Informazione C.N.R. in Pisa
until 1981. His present position is at Computer Science
Department, University of Pisa, as assistent professor.
His fields of interest include artificial intelligence and
software engineering.

Enrico Dameri, degree in Computer Science from the
University of Pisa in 1979, is a member of the research
staff of Systems & Management in Pisa. His main
professional interest is on software development tools
and programming languages.

Pierpaolo Degano, degree in Computer Science from the
University of Pisa in 1973, has been since then at the
Computer Science Department of University of Pisa first
as a research fellow and then as an assistent professor.
His work centers on programming languages and
software engineering.

Giorgio Levi, degree in Electrical Engineering from the
University of Padova in 1966, has been a researcher at
Istituto di Elaborazione dell'Informazione C.N.R. in Pisa
and now is a full professor at the Computer Science
Department of University of Pisa. He is presently
interested in programming languages and software
engineering.

Alberto Martelli, degree in Electrical Engineering from
the Politecnico of Milano in 1967, has been a researcher
of Istituto di Elaborazione dell'Informazione C.N.R. in
Pisa and now is full professor of Computer Seéience at
University of Torino. His work is concentrated on
programming languages and software engineering.
Carlandrea Simonelli, degree in Computer Science from
the University of Pisa in 1978, is a member of the
research staff of Systems & Management in Pisa. His
professional activity is mainly concerned with software

engineering and programming languages.

