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The challenges posed by the new scenarios of railway transportation (liberalization, distinction 

between infrastructure and operation, high speed, European interoperability, etc.) have a 

dramatic impact on the safety issues. This impact is counterbalanced by a growing adoption of 

innovative signalling equipment (most notable example is ERTMS/ETCS) and monitoring 

systems (such as on board and wayside diagnosis systems). Each one of these devices includes 

some software, which in the end makes up the major part of their design costs; the malleability of 

software is paramount for the innovation of solutions. On the other hand, it is notorious how 

software is often plagued by bugs that may threaten its correct functioning: how can the high 

safety standards assumed as normal practice in railway operation be compatible with such 

threats? 

This chapter wants to briefly summarize the current answers to such a question. Although the 

question regards the whole software life cycle, we concentrate on those aspects that are peculiar 

of the development of safe railway-related software: in a sense, we consider that generic 

Software Engineering best practices are already known to the reader.  In particular in Section 

46.1 we introduce the safety guidelines in effect for software development in this domain, in 

Section 46.2 we introduce the foundations of software testing, in Section 46.3 we introduce 

formal methods, with their applications in the railway domain in Sect. 46.4, and in Sect. 46.5 we 

introduce model-based software development. 
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46.1 CENELEC EN50128 standard, principles and criteria for software development 

In safety-critical domains software development is often subject to a certification process,  that in 

general has the aim to verify that the products have been developed in conformity with specific 

software safety guidelines, domain-specific documents issued by national or international 

institutions.  

The definition of these guidelines is a very long and complex process that needs to mediate 

between different stakeholder, such as: 

l manufacturers, interested to keep development costs low, but also paying attention to 

safety of their products in order not to run the risk of losing clients because of accidents 

due to failures of their products;  

l certification bodies that take the responsibility to certify that the product is safe with a 

reasonably high certainty, according to the running laws and norms, so tend to give less 

priority to production costs;  

l clients (often themselves service providers to final users, as is the case of railway 

operators), who are interested to balance cost containment with safety assurance.  

Due to the contrasting interests of the stakeholders, the guideline production is a slow process 

that goes through necessary tradeoffs. Typically, a new edition of guidelines takes about ten 

years: once issued, they become a reference standard for the particular domain until the next 

edition; also for this reason, the railway signalling sector has been historically reluctant to 

technological innovation compared to other domains, especially for those functions that have 

significant impact on the safety of the railway. 

46.1.1 Process and product certification 
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A first distinction to be done when speaking of computerized systems (and in particular, of 

software) certification is between process and product certification. Process certification is 

aimed to guarantee that the production process has followed given guidelines and norms, that 

have been adopted in order to guarantee that the process can deliver products of an expected 

quality level. Instead, product certification wants to guarantee that a particular product has been 

designed and developed according to determined quality guidelines. 

Safety certification focuses more on product certification, but also it usually requires that the 

development process does comply to some quality and maturity standards. 

The CENELEC safety standards for the railway sector  (EN 50126, EN 50128, EN 50129), have 

much in common with the IEC 61508 standard for embedded systems, but they reflect the 

peculiar railway safety culture, that has a history that goes back more than one century. 

EN 50126 defines RAMS (Reliability, Availability, Maintainability and Safety) concepts in 

relation to railway signalling. EN 50129 gives guidelines for the design of safety in hardware, 

while EN 50128 gives the guidelines for software production. Notice that EN 50128, as well the 

other ones of the family, have been issued for railway signalling systems. Although their use has 

spread beyond, to a full range of railway applications, new specific standards are emerging, such 

as prEN50657 intended for software on board of rolling stock. 

46.1.2  Software development Cycle 

EN 50128 (CENELEC 2011) does not mandate any specific software development method, but 

rather it describes the generic phases that the software development process should follow, and 

the attached documentation. One of the examples that are given about a possible software life 

cycle is the so called V-model (Fig. 1), where every design phase (left branch of the V) 
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corresponds to a verification phase (right branch of the V). The dotted arrows represent the 

relation between the tests carried on in the right branch and the artefacts produced in each phase 

of the left branch. 

 

Place/Insert Figure 17.1 Here 

 

Figure 1. The V-model for the software life-cycle of safety-critical railway systems 

The focus on verification and testing activities, typical of the safety guidelines, is well 

represented by the V-model, that graphically makes evident that verification and testing costs are 

comparable with the costs of design and development, and that the former activities need to be 

prepared during the latter ones. 

Indeed, EN50128 does very little guidance on technical choices, e.g. how to develop a suitable 

software architecture for the composition of separate software components (apart from a specific 

section dedicated to the possible usage of Object-Oriented Design), but is more concerned on 

which impact the different usual software engineering techniques can have on the safety of 

produced software. For this reason we will concentrate in the following section on those 

techniques that more directly can help to avoid the presence of bugs in produced software. 

It is also worth noticing that EN50128  requires that verification and testing activities are carried 

out independently, and accurately defines the different roles involved in such activities, 

according to the Safety Integrity Level of the software component under development. 

46.1.3  Safety Integrity level 

The software Safety Integrity Level (SIL) is defined by EN 50128 as an attribute of a software 
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component that indicates its required robustness degree in terms of protection w.r.t. software 

faults. SIL has a value between 0 and 4: the higher the SIL, the higher should be the assurance 

that the software is free from faults. The SIL is assigned to components by a system safety 

assessment and SIL apportionment process on the basis of the impact on safety a failure of the 

component can have (see Chapter 7). Hence, the most serious consequences a failure of a 

component can have, the highest the SIL:  SIL 0 is the level of a component with no effect on 

safety, SIL 4 is the level of a highly safety critical component1. 

The assignment of the SIL level to a software component implies that it should be developed and 

verified using specific techniques that are considered suitable for that level. Although the 

techniques for software development in EN 50128 are relevant to cope with all types of software 

errors, special emphasis is on safety relevant errors. EN 50128 lists the techniques in a series of 

tables related to the software development phases, classified on the strength of suggestion of 

their usage, graduated along the SIL, as: 

M =  Mandatory  

HR = Highly Recommended (which means that if not used, it should be justified in a proper 

document) 

R =  Recommended   

-  =  No indication in favour or against 

NR = Not Recommended (which means that its usage should be justified in a proper document) 

Every entry of the table, that is, every listed technique, gives a reference, either to a description 
 

1  Besides SIL 0, there is software without any relevance for safety, which is not in the scope of the EN50128 
standard. 
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text or to a sub-table which details the technique. Many tables include also notes that give 

indications on the recommended combination of techniques. We will give examples of 

recommendations in the following sections. 

It is worth noticing that, besides software SIL levels, the EN50128 standard provides a 

classification also for the tools that are used along the development of the software, including 

tools for testing and formal verification. According to the norm, tools of class T1 do not generate 

output that can directly or indirectly contribute to the executable code (including data) of the 

software; tools of class T2 support test or verification, and errors in the tools can fail to reveal 

defects in the software or in the design, but cannot directly generate errors in the executable 

software; tools of class T3 generates outputs that can directly or indirectly contribute to the 

executable code (including data) of the safety related system. For each class, the norm lists the 

evidence that shall be provided about the actual role of each tool in the process, and about its 

validation. 

46.2. The testing of software 

Testing activities consist in the systematic research of faults in the software. In the railway 

safety-critical domain, testing is fundamental to ensure system safety, and its cost is comparable 

to the cost of the actual software coding. In this chapter, we will first give some preliminary 

definitions that are useful to understand the remainder of the sections, and then we will discuss 

the different types of testing activities, at different degrees of granularity (unit testing, 

integration testing, system testing) and in different development phases (regression testing, 

mutation testing), that are normally carried out in the railway domain. We give here a brief 

account on the foundations of testing, which is actually a separate discipline inside software 
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engineering, with many reference textbooks (see, e.g., Myers et al. 2011). 

46.2.1 Preliminary Definitions 

A program P can be in principle represented as a function 𝑃:𝐷 → 𝑅 , in which D is the space of 

the input data, and R is the space of the results. Correctness of a program could be then defined 

as a Boolean function 𝑜𝑘(𝑃, 𝑑), applied on the program P, with the input data d. The function 

returns true if P produces the expected value for the input d, and false otherwise.  

A test T (also called test suite, or test set) is a subset of the input data D. Furthermore, any 𝑡 ∈ 𝑇 

is a test case. A program P is correct for a test T, if for each 𝑡 ∈ 𝑇, we have 𝑜𝑘(𝑃, 𝑡) = 𝑡𝑟𝑢𝑒.  

A test T is considered passed if it does not reveal any fault - i.e., if the program is correct for the 

test T - and it is considered failed otherwise.  

A selection criterion C for a program P is a set of predicates on D. We say that a test T is 

selected if the following conditions hold: 

● ∀𝑡 ∈ 𝑇∃𝑐 ∈ 𝐶: 𝑐(𝑡) = 𝑡𝑟𝑢𝑒. This means that each test case satisfy at least one of the 

predicates of the selection criterion. 

● ∀𝑐 ∈ 𝐶∃𝑡 ∈ 𝑇: 𝑐(𝑡) = 𝑡𝑟𝑢𝑒. This means that each predicate selects at least one test case. 

An exhaustive test is given by a criterion that selects all possible input values (T = D). A passed 

exhaustive test implies that the program is correct for all input values. Since it is usual 

impossible to exhaustively test a program, the selection of a test has the aim to approximate 

exhaustivity with the lowest possible cost (that is, number of test cases). Indeed, it can be 

demonstrated that the testing of a program can reveal faults, but cannot prove their absence. 

Notice also that the above definition assume that ok(P, d) is known, which means that for each 

test case the requirements tell the expected outcome of the execution: this is the meaning of the 
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horizontal links between the two sides of the V-model in Fig. 1. 

Given these minimal definitions, we can start discussing the different types of tests that are 

normally used in the railway domain. 

46.2.2 Unit Testing 

Unit testing aims to verify whether a code unit (i.e., a function, a module, or a class) is correct 

with respect to its expected behaviour. Depending on the selection criteria adopted to define the 

test cases, we distinguish among functional testing, structural testing and statistical testing. 

Functional Testing 

Functional testing, also known as black box testing, or requirement-based testing, is performed 

on the basis of the functional requirements that determine which features are implemented by the 

unit under test. Functional testing does not look at the code of the unit, but only at its 

input/output behaviour. Commonly used criteria to select the tests are: 

● Equivalence Class Partitioning (ECPT): the input domain of the unit is partitioned into 

equivalence classes, with the hypothesis that one test case for each class represents all the 

values for the same class.  

● Boundary Value Analysis (BVAN): test cases are selected based on the boundary values 

of the equivalence classes. This enables to check typical programming errors, in which, 

e.g., a less or equal condition is erroneously replaced with a less condition. 

● Test Case by Error Guessing (TCEG): test cases are selected by domain experts, based 

on their intuition, experience on the code and on the application domain. 

 

Structural Testing and Coverage Criteria 
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With structural testing, the selection criterion is derived directly from the structure of the code 

unit, and in particular from its flow graph. The selected tests are those that exercise all the 

structures of the program. Hence, one must choose the reference structure (i.e., statement, 

branch, basic condition, compound condition, path), and a measure shall be used to indicate if all 

structures are exercised: this measure is called coverage.  

● Statement coverage is pursued by choosing the tests according to their ability to cover the 

code statements, that is, the nodes of the flow graph. The statement coverage value is 

calculated as the ratio between the number of statements executed and the total number of 

statements. A test is selected by this criterion if its coverage value is equal to 1 (100%). 

This ensures that all statements are executed at least once. 

● Branch coverage (or decision coverage) requires that all branches of the flow graph are 

executed, i.e., each branch belongs to at least one of the paths exercised by the test. The 

branch coverage value is calculated as the ratio between the number of branches executed 

and the total number of branches, and a test is selected if its coverage value is equal to 1. 

It is also referred as decision coverage since it exercises all the true/false outcomes of 

conditional statements, which are the sources of the branches in the flow graph. 

● Basic condition coverage requires that all the basic Boolean conditions included in 

conditional statements are exercised, which means that for all the basic conditions both 

true and false outcomes are exercised. This does not guarantee that branch coverage 

equals 1, since some combinations of basic condition values might not be exercised, and 

some branches might not be executed.  

● Compound condition coverage requires that all possible combinations of Boolean values 
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obtained from basic conditions are exercised at least once. This implies 2n test cases, 

where n is the number of basic conditions. 

● Modified condition decision coverage (MCDC) considers the Boolean values obtained 

from basic conditions in relation to their context in Boolean expressions. Boolean 

expressions are all those structures that fall in the syntactic category of Boolean 

expressions. This coverage is calculated as the ratio between the covered Boolean 

expressions, and the total number of Boolean expressions. Here, it is useful to consider an 

example: 

If ((x > 0)            cond1 

 && (y < -2  cond2 

 ||  y == 0  cond3 

 ||  y > 2)  cond4 

   ) 

Here, we have five Boolean expressions, i.e., four basic conditions, and the overall 

Boolean expression. The MCDC criterion selects the test cases shown in Table 1.  

Table 1 Selected test cases according to the MCDC criterion 

Test case cond1 cond2 cond3 cond4 Result 

1 F    F 

2 T T   T 

3 T F T  T 

4 T F F T T 

5 T F F F F 

 

Note that MCDC implies branch coverage, but with linear cost, instead of the exponential 

cost required by compound condition coverage.  
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Place/Insert Figure 17.2 Here 

 

Figure 2. Relations between the different coverage criteria 

● Path coverage requires that all paths of the program are exercised by the test. It is 

measured as the ratio between the number of paths exercised and the total number of 

paths. The total number of paths exponentially grows with the number of decisions that 

are independent and not nested, but such number becomes unbounded in case of cycles. 

Hence, when cycles are involved, the path coverage criterion considers a finite number of 

cycle executions (i.e., iterations). In this case, we speak about k-coverage, in which k is 

the number of iterations considered. Normally, k=1, which means that two test cases are 

defined, one in which no iteration is performed (the decision is false), and one in which 

one iteration is performed. Another way to reduce the exponential number of paths to be 

considered, is to evaluate the so-called McCabe number, defined as the number of paths 

in the flow graph that are linearly independent, which is equal to the number of decisions 

in the code, plus one. In this case, a test is selected if the number of paths that are linearly 

independent and that are exercised by the test is equal to the McCabe number. 

Sometimes, paths can be unfeasible, in the sense that they cannot be exercised by any 

input. Unfeasible paths are common in railway safety critical systems, due to the 

presence of defensive programming structures, which allow to cope with hardware or 

software failures. Due to the presence of unfeasible paths, path coverage might never be 

satisfied by a test. Hence, when evaluating path coverage, it is reasonable to limit it to the 
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feasible paths, and to evaluate the nature of the unfeasible paths through code inspection. 

Alternatively, one may consider error seeding in the code to force the software to execute 

these unfeasible paths. 

Fig. 2 shows the relations between the different coverage criteria. The criteria are partially 

ordered. The criteria at the bottom of the figure are those that are weaker, but also less expensive. 

At the top of the figure, appear the criteria that are stronger, but also more expensive. Other 

criteria have been proposed in the literature on testing, we have limited ourselves to the most 

common ones. 

Statistical Testing 

While in functional and structural tests the test data are provided by a deterministic criterion, in 

statistical tests instead they are random, and can be based on the generation of pseudo-random 

test data according to an expected distribution of the input data to the program. Note that in both 

cases of non-statistical test (functional and structural), the selection criteria are deterministic and 

define ranges of values for the test cases. The test data may be chosen randomly in these ranges: 

in practice this corresponds to combine the statistical test with the earlier ones. A common way 

to conduct the testing is to first apply a functional test, or a statistical test, or a combination of 

the two, and then to measure the coverage according to the desired coverage criterion. If the 

resulting coverage is considered sufficient for testing purposes, the unit test ends, otherwise new 

tests are defined to increase the coverage. 

Performing Unit Tests 

To practically perform unit tests, one should define: 

● Driver: module that includes the function to invoke the unit under test, passing 
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previously defined the test cases; 

● Stub: dummy module that presents the same interface of a module invoked by the unit 

under test; 

● Oracle: an entity (program or human user) that decides whether the test passed or failed; 

● Code Instrumentation: inclusion in the code of instructions that allow to see if the 

execution of a test actually exercises the structures of the code, and that derive its 

coverage measure. 

46.2.3. Integration Testing 

After the coding phase, and after an adequate unit testing, it is appropriate to perform an 

integration test to verify the correctness of the overall program in order to be sure that there are 

no anomalies due to incorrect interactions between the various modules. Two methods are 

normally used: the non-incremental and the incremental approach.  

The non-incremental approach or big bang test, assembles all the previously tested modules and 

performs the overall analysis of the system. The incremental approach instead consists in testing 

individual modules, and then connecting them to the caller or called modules, testing their 

composition, and so on, until the completion of the system. This approach does not require all 

modules to be already tested, as required by the non-incremental approach. In addition, it allows 

to locate interface anomalies more easily, and to exercise the module multiple times. With this 

approach, one may adopt a top-down strategy in incrementally assembling the components, 

which starts from the main module to gradually integrate the called modules, or a bottom-up 

strategy, which begins to integrate the units that provide basic functionalities, and terminates 

with the main as last integrated unit. 
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Coverage criteria have been defined also for integration testing. In particular, a commonly used 

criterion is the procedure call coverage, which indicates the amount of procedure calls exercised 

by an integration test.  

46.2.4 System Testing 

When the integration test has already exercised all the functionality of the entire system, it may 

still be necessary to test certain global properties that are not strictly related to individual system 

features but to the system as a whole. This is the role of system testing, which typically includes: 

● Stress/overload test: checks that the system complies with the specifications and behaves 

correctly in overload conditions (e.g., high number of users, high number of connections 

with other systems). 

● Stability test: checks the correct behaviour of the system even when it is used for long 

periods of time. For example, if dynamic memory allocation is used, this test checks that 

stack overflow errors occur only after an established period of time. 

● Robustness test: the system is provided with unexpected or incorrect input data, and one 

checks its behaviour. A typical example is typing random input on the user interface to 

check whether the interface shows some anomalous behaviour. 

● Compatibility test: verifies the correct behaviour of the software when connected to 

hardware devices to which it is expected to be compatible. 

● Interoperability test: verifies the correct behaviour of the system when connected with 

other system of similar nature (e.g., other products provided by different vendors), once 

the communication protocol is established. 

● Safety test: verifies the correct behaviour of the system in presence of violations of its 
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safety conditions, e.g., when a violation occurs the system switches to fail-safe mode. 

Specialized instruments are often used to perform system testing of railway control systems. In 

particular, ad-hoc hardware and software simulation tools are normally employed to recreate the 

environment in which the software will be actually executed.  

46.2.5 Regression Testing 

When a novel version of the product is released, it is necessary to repeat the testing to check 

whether the changes to the product have introduced faults that were not present before. One 

speaks in this case of regression testing, which aims to minimize the cost of testing using the 

tests performed on previous versions. This can be done by reusing the same drivers, stubs, 

oracles and by repeating the test cases of the previous versions.  

Before performing regression testing, an impact analysis is explicitly required by EN50128. 

When the novel product is tested, one shall consider the changes introduced, and assess their 

impact in terms of testing. A small change should introduce minimal effort in terms of additional 

tests. However, one should consider that structural tests are often not incremental. Hence, even a 

small change could greatly impact on the coverage, and then one should define test cases that 

bring the coverage to the desired values. In case of even small changes to safety-critical railway 

systems, at least the safety tests have to be repeated completely. 

46.2.6 Mutation Testing 

Mutation testing helps to evaluate the ability of the performed tests to reveal potential errors. To 

this end, faults are intentionally introduced in the code. An ideal test should reveal those faults. If 

the previously defined tests do not reveal those faults, the test is not adequate, and more 

sophisticated tests have to be defined. The intentional introduction of faults is also used to 
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evaluate the robustness and safety of the software, and, in this case, it is referred as fault 

injection or fault based testing. 

46.2.7 Testing according to EN 50128 

We have already seen the importance of testing in the EN 50128 standard, exemplified by the V-

model. Recommendation for the mentioned testing techniques varies according to the SIL:  

l Functional/Black-box Testing is considered Mandatory by EN 50128 for software 

components at SIL3/SIL4, and Highly Recommended for software at SIL0/SIl1/SIL2. In 

particular, from SIL1 to SIL4, ECPT and BVAN are Highly Recommended.  

l Statement coverage is Highly Recommended from SIL1 to SIL4, while the mentioned 

finer coverage measures are moreover Highly Recommended for SIL3/SIL4. 

46.3. Formal Methods for the development and verification of software 

Testing cannot be used for definitely assuring the absence of bugs. Even if, in general, proving 

the absence of bugs is an undecidable problem, in many cases formal arguments can be used to 

demonstrate their absence. Nowadays, the necessity of formal methods as an essential step in the 

design process of industrial safety-critical systems is indeed widely recognized. 

In its more general definition, the term formal methods encompasses all notations having a 

precise mathematical semantics, together with their associated analysis and development 

methods, that allow to describe and reason about the behaviour and functionality of a system in a 

formal manner, with the aim to produce an implementation of the system that is provably free 

from defects. The application of mathematical methods in the development and verification of 

software is very labor intensive, and thus expensive. Therefore, it is often not feasible to check 
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all the wanted properties of a complete computer program in detail. It is more cost effective to 

first determine what the crucial components of the software are. These parts can then be isolated 

and studied in detail by creating mathematical models of these sections and verifying them. 

In order to reason about formal description, several different notations and techniques have been 

developed. We refer to (Garavel and Graf 2013) (Gnesi and Margaria 2013) (Woodcock et al. 

2009) for more complete discussions over the different methods and their applications; in the 

following sections we give a brief introduction to the main different aspects and concepts that 

can be grouped under this term. 

46.3.1. Formal Specification 

The languages used for formal specifications are characterised by the ability to describe the 

notion of internal state of the target system, and by their focus on the description of how the 

operations of the system modify this state. The underlying foundations are in discrete 

mathematics, set theory, category theory, and logic. 

The B method 

The B method (Abrial 1996) targets software development from specification through 

refinement, down to implementation and automatic code generation, with formal verification at 

each refinement step: writing and refining a specification produces a series of proof obligations 

that need to be discharged by formal proofs. The B method is accompanied by support tools, 

such as tools for the derivation of proof obligations, theorem provers, and code generation tools. 

The Z notation 

The Z notation (Spivey 1989) is a formal specification language used for describing and 

modelling computing systems. Z is based on the standard mathematical notation used in 
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axiomatic set theory, lambda calculus, and first-order predicate logic. All expressions in Z 

notation are typed, thereby avoiding some of the paradoxes of naive set theory. Z contains a 

standardized catalog (called the mathematical toolkit) of commonly used mathematical functions 

and predicates.  The Z notation has been at the origin of many other systems as for example 

Alloy2 (Jackson 2012) and its related tool Alloy Analyser, which adapts and extends  Z to bring 

in fully automatic (but partial) analysis. 

Automata-Based Modelling 

In this case it is the concurrent behaviour of the system being specified that stands at the heart of 

the model. The main idea is to define how the system reacts to a set of stimuli or events. A state 

of the resulting transition system represents a particular configuration of the modelled system. 

This formalism, and the derived ones such as Statecharts (Harel 1987) and their dialects, are 

particularly adequate for the specification of reactive, concurrent, or communicating systems, 

and also protocols. They are however less appropriate to model systems where the sets of states 

and transitions are difficult to express. 

Modelling Languages for Real-Time Systems  

Extending the simple automata framework gives rise to several interesting formalisms for the 

specification of real-time systems. When dealing with such systems, the modelling language 

must be able to cope with the physical concept of time (or duration), since examples of real-time 

systems include control systems that react in dynamic environments. At this regard we can 

mention Lustre (Halbwachs et al. 1991) that is a (textual) synchronous dataflow language, and 

 

2  http://alloy.mit.edu/alloy/  
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SCADE3 (Berry 2007), a complete modelling environment that provides a graphical notation 

based on Lustre. Both provide a notation for expressing synchronous concurrency based on data 

flow. 

Other graphical formalisms have proved to be suitable for the modelling of real-time systems. 

One of the most popular is based on networks of timed automata (Alur and Dill 1994). Basically, 

timed automata extend classic automata with clock variables (that evolve continuously but can 

only be compared with discrete values), communication channels, and guarded transitions.  

46.3.2. Formal verification 

To ensure a certain behaviour for a specification, it is essential to obtain a rigorous 

demonstration. Rather than simply constructing specifications and models one is interested in 

proving properties about them.  

Model Checking 

A formal verification technique that has recently acquired popularity also in industrial 

applications is Model Checking (Clarke et al 1999), an automated technique that, given a finite-

state model of a system and a property stated in some appropriate logical formalism (such as 

temporal logic), checks the validity of this property on the model. Several temporal logics have 

been defined for expressing interesting properties. A temporal logic is an extension of the 

classical propositional logic in which the interpretation structure is made of a succession of states 

at different time instants. An example is the popular CTL (Computation Tree Logic), a 

branching time temporal logic, whose interpretation structure (also called Kripke structure) is the 
 

3  http://www.esterel-technologies.com   
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computation tree that encodes all the computations departing from the initial states. 

Formal verification by means of model checking consists in verifying that a Kripke structure M, 

modelling the behaviour of a system, satisfies a temporal logic formula  φ, expressing a desired 

property for M. A first simple algorithm to implement model checking works by labelling each 

state of M with the subformulae of φ that hold in that state, starting with the ones having length 

0, that is with atomic propositions, then to subformulae of length 1, where a logic operator is 

used to connect atomic propositions, then to subformulae of length 2, and so on. This algorithm 

requires a navigation of the state space, and can be designed to show a linear complexity with 

respect to the number of states of M. One of the interesting features of model checking is that, 

when a formula is found not to be satisfied, the subformula labeling collected on the states can be 

used to provide a counterexample, that is, an execution path that leads to the violation of the 

property, thus helping the debugging of the model. 

The simple model checking algorithm sketched above needs to explore the entire state space, 

incurring in the so called exponential state space explosion, since the state space often has a size 

exponential in the number of independent variables of the system.  

Many techniques have been developed to attack this problem: among them, two approaches are 

the most prominent and most widely adopted. The first one is based on a symbolic encoding of 

the state space by means of boolean functions, compactly represented by Binary Decision 

Diagrams (BDD) (Bryant 1986). The second approach considers only a part of the state space 

that is sufficient to verify the formula, and within this approach we can distinguish local model 

checking and bounded model checking: the latter is particularly convenient since the problem of 

checking a formula over a finite depth computation tree can be encoded as a satisfiability 
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problem, and hence efficiently solved by current very powerful SAT-solvers (Biere et al. 1999). 

The availability of efficient model checking tools able to work on large state space sizes has 

favoured, from the second half of the nineties, their diffusion in industrial applications. The most 

popular model checkers of an academic origin are: 

1. SMV4 (McMillan 1993), developed by the Carnegie Mellon University, for the CTL 

logic, based on a BDD representation of the state space; 

2. NuSMV5 (Cimatti et al 2002), developed by Fondazione Bruno Kessler, a re-engineered 

version of SMV which includes a Bounded Model Checking engine; 

3. SPIN6 (Holzmann 2003), a model checker for the linear temporal logic LTL, developed 

at Bell Labs, for which the PROMELA language for the model definition has been 

designed. 

1 Software Model Checking 

The first decade of model checking has seen its major applications in the hardware verification 

domain; meanwhile, applications to software have been made at system level, or at early 

software design. Later, applications within the model-based development (see Section 46.5) have 

instead considered models at a lower level of design, closer to implementation. But such an 

approach requires an established process, hence excluding software written by hand directly 

 

4  http://www.cs.cmu.edu/~modelcheck/smv.html  
 

5  http://nusmv.fbk.eu  
 

6  http://spinroot.com/spin/whatispin.html  
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from requirements: indeed, software is often received from third parties, who do not disclose 

their development process. In such cases direct verification of code correctness should be 

conducted, especially when the code is safety-related: testing is the usual choice, but testing 

cannot guarantee exhaustiveness.  

Direct application of model checking to code is however still a challenge, because the 

correspondence between a piece of code and a finite state model on which temporal logic 

formulae can be proved is not immediate: in many cases software has, at least theoretically, an 

infinite number of states, or at best, the state space is just huge.  

Pioneering work on direct application of model checking to code (also known as Software Model 

Checking) has been made at NASA since the late nineties by adopting in the time two strategies: 

first, by translating code into the input language of an existing model checker – in particular, 

translating into PROMELA, the input language for SPIN. Second, by developing ad hoc model 

checkers that directly deal with programs as input, such as JavaPathFinder7 (Havelund and 

Pressburger 2000). In both cases, there is the need to extract a finite state abstract model from the 

code, with the aim of cutting the state space size to a manageable size: the development of 

advanced abstraction techniques has only recently allowed a large scale application of software 

model checking. JavaPathFinder has been used to verify software deployed on space probes. 

Some software model checkers, such as CBMC (CBMC), hide the formality to the user by 

providing ”built-in” default properties to be proven: absence of division by zero, safe usage of 

pointers, safe array bounds, etc. On this ground, such tools are in competition with tools based on 

 

7  http://javapathfinder.sourceforge.net  
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Abstract Interpretation, discussed in the next section.   It is likely that, in the next years, software 

model checking will gain a growing industrial acceptance also in the railway domain, due to its 

ability to prove the absence of typical software bugs, not only for proving safety properties, but 

also to guarantee correct behaviour of non safety related software.  Applying model checkers 

directly to production safety-related software calls for their qualification at level T2.  

Abstract Interpretation  

Contrary to testing, that is a form of dynamic analysis focusing on checking functional and 

control flow properties of the code, static analysis aims at automatically verifying properties of 

the code without actually executing it. In the recent years, we have assisted to a raising spread of 

abstract interpretation, a particular static analysis technique. Abstract interpretation is based on 

the theoretical framework developed by Patrick and Radhia Cousot in the seventies (Cousot and 

Cousot 1977). However, due to the absence of effective analyses techniques and to the lack of 

sufficient computer power, only after twenty years software tools have been developed for 

supporting the industrial application of the technology (e.g., Astree8 (Cousot et al 2005), 

Polyspace9). In this case the focus is mainly on the analysis of source code for runtime error 

detection, which means detecting variables overflow/underflow, division by zero, dereferencing 

of non-initialized pointers, out-of-bound array access and all those errors that, might them occur, 

bring to undefined behaviour of the program. 

 

8  https://www.absint.com/products.htm 
 
 

9  https://mathworks.com/products/polyspace/  
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Since the correctness of the source can be not decidable at the program level, the tools 

implementing abstract interpretation work on a conservative and sound approximation of the 

variable values in terms of intervals, and consider the state space of the program at this level of 

abstraction. The problem boils down to solve a system of equations that represent an over-

approximate version of the program state space. Finding errors at this higher level of abstraction 

does not imply that the bug also holds in the real program. The presence of false positives after 

the analysis is actually the drawback of abstract interpretation that hampers the possibility of 

fully automating the process (Ferrari et al. 2013a). Uncertain failure states (i.e., statements for 

which the tool cannot decide whether there will be an error or not) have normally to be checked 

manually and several approaches have been put into practice to automatically reduce these false 

alarms.  

Automated theorem proving  

Another possibility for the automatic verification of systems properties is by Theorem Proving. 

Theorem Provers favour automation of deduction rather than expressiveness. Construction of 

proofs is automatic, once the proof engine has been adequately parameterised. Obviously these 

systems assume the decidability of at least a large fragment of the underlying theory. Theorem 

Provers are powerful tools, capable of solving difficult problems and are often used by domain 

experts in an interactive way. The interaction may be at a very detailed level, where the user 

guides the inferences made by the system, or at a much higher level where the user determines 

intermediate lemmas to be proved on the way to the proof of a conjecture. 

The language in which the conjecture, hypotheses, and axioms (generically known as formulae) 

are written is a logic, often classical 1st order logic, but also non-classical logic or higher order 
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logic. These languages allow a precise formal statement of the necessary information, which can 

then be manipulated by a Theorem Prover.  

The proofs produced by Theorem Provers describe how and why the conjecture follows from the 

axioms and hypotheses, in a manner that can be understood and agreed upon by domain experts 

and developers. There are many Theorem Provers systems readily available for use, the most 

popular are Coq10 (Barras et al 1997), HOL11 (Nipkow et al 2002), and PVS12 (Owre 1992).  

Software verification is an obvious and attractive goal for Theorem Proving technology. It has 

been used in various applications, including diagnosis and scheduling algorithms for fault 

tolerant architectures, and requirements specification for portions of safety critical systems. 

46.4 Railway applications of formal methods and formal verification 

Formal methods since thirty years have promised to be the solution for the safety certification 

headaches of railway software designers. The employment of very stable technology and the 

quest for the highest possible guarantees have been key aspects in the adoption of computer-

controlled equipment in railway applications. EN50128 indicates Formal Methods as Highly 

Recommended for SIL3/4 and Recommended for SIL1/2 in the Software Requirement 

Specification phase, as well as in the Software Design phase. Formal proof is also HR for SIL3/4 

 

10  https://coq.inria.fr  
 

11  https://hol-theorem-prover.org  
 

12  http://pvs.csl.sri.com  
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and R for SIL1/2 in the Verification phase, and HR for SIL3/4 for configuration data preparation. 

Formal proof, or verification, of safety is therefore seen as a necessity. Moreover, consolidated 

tools and techniques have been selected more frequently in actual applications.  We mention just 

a few of them, with no claim of completeness. References (Flammini 2012) (Boulanger 2014) 

give more examples of railway applications. 

46.4.1 Formal Specification 
B method 

The B method has been successfully applied to several railway signalling systems. The SACEM 

system for the control of a line of Paris RER (Da Silva et al. 1993) is the first acclaimed 

industrial application of B.  B has been adopted for many later designs of similar systems by 

Matra (now absorbed by Siemens). One of the most striking applications has been the Paris 

automatic metro line 14. The paper (Behm et al. 1999) on this application of B reports that 

several errors were found and corrected during proof activities conducted at the specification and 

refinement stages. By contrast, no further bugs were detected by the various testing activities that 

followed the B development. The success of B has had a major impact in the sector of railway 

signalling by influencing the definition of the EN 50128 guidelines.  

46.4.2 Formal verification 

Model checking 

The revised EN50128 marks in 2011 the first appearance of model checking as one of the 

recommended formal verification techniques in a norm regarding safety critical software.  

Indeed, model checking is now a common mean to gain confidence in a design, especially 
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concerning the most critical parts. Safety verification of the logics of interlocking systems has 

been since many years an area of application of model checking by many research groups, see 

e.g., (Fantechi 2013), (Hansen et al. 2010), (James et al. 2014), (Vu et al. 2016), and is still an 

open-research area due to the difficulty of verification of large designs due to raising state space 

explosion problems that overcome the capacity of model checking tools.  

Abstract Interpretation 
Due to the recent diffusion of tools supporting static analysis by Abstract Interpretation, 

published stories about the application of this technology to the railway domain are rather 

limited, although static analysis is HR for SIL1 to SIL4 by EN50128.  (Ferrari et al., 2013a) 

provides one of the few contributions in this sense, showing how abstract interpretation was 

proficiently used in conjunction with model-based testing, to reduce the cost of the testing 

activities of a railway signalling manufacturer by 70%.   

46.5 Model-based Development 

Although several successful experiences on the use of formal methods in railway systems have 

been documented in the literature, formal methods are still perceived as experimental techniques 

by railway practitioners. The reasons are manifold. On the one hand, handling model checkers 

and theorem provers requires specialised knowledge that is often beyond the competencies of 

railway engineers. On the other hand, the introduction of formal methods requires a radical 

restructuring of the development process of companies, and does not allow to easily reuse code 

and other process artefacts that were produced with the traditional process. In addition, available 

formal tools are designed to be used by experts, and rarely have engineering-friendly interfaces 
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that could make their use more intuitive for practitioners. Hence, while it has taken more than 

twenty years for consolidating the usage of formal methods in the development process of 

railway manufacturers, the model-based design paradigm has gained ground much faster. 

Modelling has indeed the same degree of recommendation of formal methods by EN50128. The 

defining principle of this approach is that the whole development shall be based on graphical 

model abstractions, from which an implementation can be manually or automatically derived. 

Tools supporting this technology allows to perform simulations and tests of the system models 

before the actual deployment: the objective is not different from the one of formal methods, that 

is detecting design defects before the actual implementation, but while formal methods are 

perceived as rigid and difficult, model-based design is regarded as closer to the needs of 

developers, that consider graphical simulation as more intuitive than formal verification. This 

trend has given increasing importance to tools such as MagicDraw13, IBM Rational 

Rhapsody14, SCADE, and the tool suite Matlab/Simulink/Stateflow15. MagicDraw and 

Rhapsody provide capabilities for designing high-level models according to the well-known 

UML language, and provide support for SysML, which is an extension of the UML language for 

system engineering.  

Instead, SCADE and the tool suite Matlab/Simulink/Stateflow are focused on block-diagrams 

 

13  http://www.nomagic.com/products/magicdraw.html  
 

14  http://www-03.ibm.com/software/products/en/ratirhapfami  
 

15  http://www.mathworks.com/products/simulink/ 
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and on the statecharts formalism (Harel 1987), which is particularly suitable to represent the 

state-based behaviour of embedded systems used in railways. While the former tools are oriented 

to represent the high-level artefacts of the development process – i.e., requirements, architecture, 

design – the latter are more oriented to model the lower-level behaviour of systems.  

Without going into the details of each tool, in this section we discuss the main capabilities 

offered by the model-based development paradigm, and their impact in the development of 

railway safety-critical systems. The capability we discuss are: modelling, simulation, testing, 

code generation. 

46.5.1. Modelling 

Regardless of the tool adopted for modelling, it is first crucial to identify the right level of 

abstraction at which models are represented. The level of abstraction depends on what is the 

purpose of the model: if the model is used to define the architecture of the railway system, with 

different high-level sub-systems interacting one with the other, the use of high-level languages 

such as SysML, or UML is more suitable; instead, if the model is used to define the behaviour of 

the system, and one wants to generate executable code from it, statecharts or UML state 

machines are more suitable for the goal. One key step in both cases is a clear definition of the 

interfaces between systems, and between software components. For models that are going to be 

used for code generation, it is preferable to have interfaces that are composed solely of input and 

output variables, and not function calls. This eases decoupling among model components, and 

facilitates their testing, since one does not have to create complex stubs for external function 

calls. Another aspect to consider when modelling for code generation is the need to constrain the 

modelling language. Indeed, in railway systems, the generated code has to abide to the strict 
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requirements of EN 50128, which are normally internally refined by the companies, and that 

forbid the use of some typical code features, such as global variables, pointers, and dynamic 

memory allocation. To ensure that the generated code abides to the guidelines, the modelling 

language has to be restricted to a safe subset. For example, for Stateflow, a safe subset to be 

employed in railway applications was defined by (Ferrari et al. 2013b). 

46.5.2. Simulation 

One of the main benefits of having graphical models is the possibility of animating the models, 

i.e., observing their dynamic behaviour both in terms of input/output variables, and in terms of 

internal states dynamics. In this way, models become executable specifications, and the modeller 

can observe the system behaviour before the system is actually deployed, by providing 

appropriate stubs for input and output that simulate the environment of the specification. The 

simulation feature is available in all the mentioned platforms, and is particularly useful in the 

debugging phase. Indeed, the modeller is able to visualise where, in the model, an error actually 

occurred, and which is the context of execution of the model when the error occurred (i.e., the 

other states currently active in the model). This contextualised visualisation is something that is 

not possible when debugging code, and becomes useful also to detect faults in the model when a 

test on the model fails. 

46.5.3. Model-based Testing 

As mentioned before in this chapter, testing is one of the key activities in the development of 

railway systems. When using a model-based paradigm tests are normally executed on models, 

and existing tools give the possibility to automatically generate tests based on coverage criteria. 

For statecharts, coverage criteria are normally state coverage and transition coverage (equivalent 
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to statement coverage and branch coverage for code testing). While automatic test case 

generation can allow to easily reaching fixed coverage criteria, it does not ensure that the system 

actually complies with its requirements. For this reason, functional tests are defined and 

performed by means of ad-hoc stubs that generate the appropriate input signals for the models.  

If one wants to generate code from the models, one additional step is required: tests executed on 

the models have to be repeated on the generated code, and (a) the input/output behaviour of the 

code have to match with the behaviour of the models, and (b) the resulting coverage for a test 

have to match between models and code. In this way, one ensures that the generated code 

behaviour matches with the behaviour observed on models, and that the code generator 

introduces no additional behaviour. This step is often called translation validation (Conrad 

2009), and was applied in the railway domain by (Ferrari et al. 2013a). 

46.5.4. Code Generation 

With code generation, the code that will be deployed in the microprocessor(s) of the system is 

automatically generated from the models. Some modelling tools – normally those that allow to 

model statecharts or UML state machines – enable to generate the complete source code, while 

others – normally those that allow to define the architecture and high-level design of the software 

– generate skeletons for the classes or functions of the code, which have to be manually 

completed by the developer. Even in case of complete generation, the developer normally has to 

manually define glue code, i.e., an adapter module, to attach the generated code to the drivers. It 

is worth remarking that, for example, the code generator from SCADE is qualified16 for railway 

 

16  According to the  tool qualification process of EN50128:2011 the T3 most severe class of qualification is 
required for code generators. 
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systems, which, in principle, implies that the models exhibit the same behaviour of the code. In 

case nonqualified code generators are used, one has to ensure model-to-code compliance by 

means of translation validation, as mentioned in the previous section. 

46.6 Conclusions 

This chapter has given just a brief account of techniques that can be used to produce safe 

software for railway systems. Looking again at the EN50128 standard, one can see that, for space 

limits, we have not cited many techniques that are also commonly used (e.g. defensive 

programming, diversity, etc..) and we have not addressed the important distinction between 

generic and specific applications nor data preparation techniques, both used when a railway 

signalling application has to be deployed for a specific track or line layout. But we think that 

reading this chapter is a good introduction to the issue of developing safe software. 
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