
 1

Interoperability of home automation systems as a
critical challenge for IoT

Vittorio Miori
Institute of Information Science and

Technologies “A. Faedo” (ISTI)
National Research Council of Italy

(CNR)
Pisa, Italy

vittorio.miori@isti.cnr.it

Dario Russo
Institute of Information Science and

Technologies “A. Faedo” (ISTI)
National Research Council of Italy

(CNR)
Pisa, Italy

dario.russo@isti.cnr.it

Luca Ferrucci
Institute of Information Science and

Technologies “A. Faedo” (ISTI)
National Research Council of Italy

(CNR)
Pisa, Italy

luca.ferrucci@isti.cnr.it

Abstract— The spread of enabling technologies for the
Internet of Things allows the creation of new scenarios in which
home automation plays a significant role. Platforms for smart
cities and communities, which must include applications for
energy efficiency, health, mobility, security, etc., cannot ignore
the use of data gathered directly from homes. In order to
implement such scenarios, all the related technological
infrastructure and home systems must be able to understand
each other and exchange information. In this work, we present
a new platform that achieves interoperability between
heterogeneous home automation systems. It allows different,
incompatible technologies to cooperate inside and outside the
home, thus creating a single ecosystem. In order to achieve tins
goal, specific problems need to be solved to be able to construct
"bridges" between the various home automation networks
currently in use. In this regard, some specific solutions adopted
for integrating two different technologies (KNX and MyHome)
within a home automation platform are illustrated.

Keywords— Domotics, IoT, Interoperability, Home
Automation, KNX, MyHome, Home Gateway

I. INTRODUCTION
With the spread of increasingly fast and reliable

communication technologies such as 5G, the number and
functionalities of the components available in Internet of
Things (IoT) solutions will soon grow exponentially [1]. New
real-time applications and smart city solutions will be able to
exploit these technologies to create a large new coherent
infrastructure able to connect people [2], homes, buildings,
and entire living areas [3]. More and more, Ambient
Intelligence (AmI), as envisioned by Mark Weiser, [4] is
becoming a reality. The technology surrounding people will
become invisible, and new innovative human-machine
interactions with autonomous and intelligent entities will act
in a fully interoperable main system to improve the everyday
life of humans unobtrusively and transparently.

In order to realise such a scenario, apart from the need for
a fast reliable channel such as that offered by 5G technology,
all devices and services must be able to understand each other
so that they can exchange information. To this end there are
currently two main options: (a) using the same language and
same transmission protocols to effect the communication
between all devices and services; (b) create an interoperability
mechanism to enable the exchange of data regardless of the
underlying incompatible communication protocols. With the
former, the use of a single language and protocol limits
implementation choices to devices belonging to a single (often
proprietary) technology. The latter solution overcomes this
limit by means of the interoperability feature [5], which

enables two or more systems (in the case at hand, home
automation systems) interact with each other to exchange
information originally gathered, stored and processed in
different formats.

There is moreover a need for special entities, such as
software agents or other intelligent systems [6], able to
coordinate the sharing of data generated by the various devices
in the overall system. The source of their ‘intelligence’ may
be on board the devices themselves, on Edge [7] or the Cloud
[8].

The scientific community has proposed a number of
different frameworks for realising such an IoT scenario by
creating both mechanisms for information exchange between
devices and solutions for data processing. Most of these
enable systems to read values from sensors and to store them
in the cloud for future analysis, but rarely include native
support for various domotic technologies [9]. The European
Community has also funded many projects on IoT
development, especially with the Seventh Framework and the
subsequent Horizon 2020 Research programmes. However, in
these cases, the result was the creation of some IoT
frameworks specific for vertical areas of competence and
scenarios such as transport and logistics, mobile health and
wellness, smart grid and smart factories. Most of these IoT
solutions implement proprietary communication mechanisms,
devices, and resource control protocols, using a single
communication technology. Thus, these frameworks are
poorly interoperable with each other.

Domotics [9] is the first application domain for IoT.
Underlying domotic technologies have been steadily been
moving beyond the mere control and connection of appliances
in an isolated home, to a global connection and integration of
the house with the services available around the world. Even
Google Inc. [10], Amazon Inc. [11] and Apple Inc. [12] have
launched products in the home automation field, and have
become big players in this market nowadays. Integration of
the home automation world with the global Internet of Things
still presents a specific research challenge: there is a lack of
standardization in communication systems and protocols. This
lack is due to the persistence of business models towards
closed proprietary solutions that strongly limit the possibility
of integrating devices and services belonging to different
home automation systems.

To date, this lack of interoperability is still an open issue
that severely limits the full potential of Smart Home
technologies within the IoT world.

 2

II. RELATED WORKS
The literature proposes several definitions of IoT

interoperability. Generally, from a technical point of view,
interoperability is mainly classified into three levels [13]:

• basic connectivity interoperability: allows for the
exchange of data between two or more heterogeneous
systems by establishing a communication link. It requires
common agreement on the means of data transmission,
low-level data encoding, and access rules;

• network interoperability: enables the exchange of
messages between systems deployed in different
networks. It defines the agreement on the transfer of
information between heterogeneous systems through
multiple communication links;

• syntactic interoperability: defines rules to manage the
format and structure of the encoded information
exchanged between two or more heterogeneous
intelligent systems to make them understandable by all
the components involved, translating data from one
format to another.

There are currently some open source interoperability
frameworks with explicit support for domotic technologies
that implement interoperability up to the syntactic level.
Freedomotic [14] is an event-based framework with a
decentralised peer-to-peer network. It furnishes support
replication of services across different servers exploiting a
load balance mechanism. DomoNet [15] is an event-based
framework leveraging SOA [16]. It can manage different
instances of the framework located in different places at the
same time, and it assigns IPv6 addresses to each domotic
device, even if they do not possess native Internet addressing
capabilities. Dog gateway is an OSGi semantic framework
based on an ontology named DogOnt [17], which
taxonomizes devices and environments and defines their
functions and characteristics. IoTSys [18] is a Seventh
Framework Programme project. It allows IPv6 addresses to
be mapped to objects and it moreover addresses security,
discovery, and scalability issues. It exploits oBIX [19] at the
API level to discover services and devices, their setup and
invocation.

This work proposes a solution which, unlike other
existing frameworks, aims to create an IoT framework for
domotic interoperability that has been designed and
developed to be:

• modular ‒ the system enables choosing the functional
modules that are included as part of each instance of the
system according to users’ needs and the computing
capacity of the hosting machine(s);

• highly scalable (both downwards and upwards) ‒ the
solution’s modular implementation makes it possible to
deploy the software framework on a wide variety of
electronic systems, from those with even limited
computing capacity up to powerful servers and
workstations;

• flexible ‒ the modularity and scalability of the system
provide a solution suitable for: (a) small facilities (e.g. a
single room, an apartment, a single house, etc.); (b) large
facilities (e.g., a house or a building consisting of several
apartments, etc.); (c) industrial settings (e.g., one or more
industrial buildings of a single organization); (d) mission-
critical situations (e.g., hospitals or facilities where
malfunctions are unacceptable, even temporarily).

III. THE SHELL FRAMEWORK
Shell is an open, free and accessible interoperability IoT

framework. It acts as the backbone that enables tools for
creating vertical solutions for managing energy efficiency,
thermo-hygrometric comfort, security and safety, and the
sharing of data generated by the home with the IoT.

In this way, the home is set to become a functional and
interoperable node of a larger Smart Community, open to the
new opportunities of Smart Cities.

The Shell framework implements a conceptual model
aiming at:

• addressing a variety of smart ambient automation
scenarios, ranging from houses to large buildings and
smart cities;

• allowing the integration of heterogeneous appliances and
devices in a uniform data space where the functionalities
of devices are defined at a high level of abstraction,
independently of the actual technologies used (e.g.,
communication protocols, hardware, etc.);

• being general, open, and compatible with existing smart-
home models and systems.

A. Shell Architecture
Each node of the Shell framework is called a host. A host

(Figure 1) is an embedded geolocalized system having an IP
address and connected both to a private LAN, where the
domotic devices it manages reside, and to the Internet, to
allow communication with the outside world. The host
contains an internal representation of its domotic devices
(Shell devices) that can access other hosts or external services.

Figure 1: Shell architecture

Shell devices can be real or virtual. A real device is the
Shell’s representation of a smart object equipped with specific
hardware. Instead, a virtual device is a representation of a set
of software functionalities (e.g., a weather service on the Web)
without any hardware. Every device has an id (i.e.,
serial_number.model.producer) for identification and
addressing.

To accomplish communication between devices, each host
implements a naming service system that translates and maps
each id to the corresponding IP address. Devices are included
in environments called rooms. In turn, Rooms can also be real
(e.g., a geolocalized place such as a living room, a bathroom,

 3

etc.), or virtual (e.g., the room called "lamps" consist of a
group of objects with similar functions related to lighting).
Each group is controlled by a special device called a device
manager. It determines the functionality and purpose of the
group and manages its devices. A device can belong to one or
more groups. There is one predefined group called Home that
includes all the devices of the host. The manager of the Home
group is aptly named Home Manager and supervises all the
activities of the Host. Each host offers a set of special services
to the devices. By way of example, some of these services are:
(a) Clock: synchronizes devices to allow them to perform
actions simultaneously (e.g., at prefixed time intervals get the
status of all devices at the same instant); (b) KnowledgeBase
(KB): implements a database that classifies devices according
to type and their functionalities. In particular, it subdivides the
Shell commands into functional classes that are then
associated with each type of device. Moreover, it defines the
messages that the devices generate each time they change
state. For example, the device light has three commands
belonging to the functional class binaryLight: on, off and
getStatus. When switched on or off, a light device sends a
message setting the lightState parameter with the new value.
(c) System Logger (Log): keeps the sequence of events
occurring throughout the system up to date, and offers the
possibility to query and retrieve information; (d) Discovery
Service (DS): when a host starts, it announces to its external
network both its presence and the list and status of its devices.
This service thus broadcasts that a new host has become
available, and each host has a defined set of users who can
access it at the same time. The framework defines four levels
of users: (a) superuser: has access to all system functions; (b)
technician: has access to all configuration and installation
functions; (c) power user: has access only to some
configuration functions; (d) user: has access only to basic
system functions (e.g. user interface to pilot devices).

Attribute Description

id Unique identification of the message.

ts The timestamp associated with the message.

to Unique identification of the recipient device.

from Unique identifier of the sender device.

toIP IP address of the recipient device. Alternative for to

fromIP IP address of the sender device. Alternative for from

type Type of message.

cmd Command to execute, a signal or a notification.

params List of the parameters expressed in the form of key-values
required in order to correctly execute the request.

auth Reserved field. Used for possible implementations of
security systems (e.g. message signature etc.).

Table 1: JSON message fields

The choice of using the addressing system based on
standardised and well-established protocols such as IP and
HTTP guarantees Shell interoperability both at the basic and
network connectivity levels. The host directly manages
devices with Ethernet and/or wifi connectivity and configures
them using the Avahi/Bonjour Zero-conf mechanism [20]. The
Shell moreover provides syntactic interoperability based on a
lightweight, expressive and flexible messaging system
implemented in JSON format [21].

Table 1 shows the fields that compose a Shell JSON
message. Table 2 describes the possible values for the type
attribute.

Message type Description

Exec A command to be executed synchronously.

Dexec A command to be executed asynchronously.

Signal A signal (e.g., a notification or an event).

Response The answer to a request.

Table 2: Values for "type" attribute

Figure 2 shows an example of JSON message of exec type

(line 8) where a device manager (line 5) orders a light (line 4)
to switch on (line 9). Each command has an unique identifier
expressed as: <f-class>.<cmd>, where: f-class is the name of
the functional class of the command and cmd is the command
itself. In the example in figure 2, the command binaryLight.on
(line 9) means the light is to be switched on.

Figure 2: Example message

However, if specific models of smart objects have
functions that do not have a match in any f-classes, the system
allows extending the Shell representation of the devices by
personalising them.

B. Interoperability
To implement interoperability, we introduce the concept

of Signal. A signal is a special type of Shell message that
provides notification of the occurrence of an event related to
a device. In order to classify and manage them, the
Knowledge Base in the host defines the signals for each type
of device. A typical example of a signal message is a change
in the state of a light. When such a state change occurs, the
system emits a signal regarding the specific "light" device in
question. The configuration file of the device to which the
signal refers specifies the modalities for implementation of
interoperability between devices.

In the example in Figure 3, when the device in question
emits a signal message which sets the lightState parameter to
true (line 9), then, for a dimmable light, the system creates a
new exec message (line 12) which sets lightDimmerState to
100%.

 1. {
 2. "id": "198800003467190012378-76630133-31191013",
 3. "ts": 14559594800,
 4. "to": "100000000002.light.semedia",
 5. "from": "100000000001.manager.semedia",
 6. "toIP": "192.168.65.181",
 7. "fromIP": "192.168.65.180",
 8. "type": "exec",
 9. "cmd": "binaryLight.on",
10. "params": {},
11. "auth": ""
12. }

 4

Figure 3: Example of interoperability configuration

IV. SHELL DRIVERS

The Shell allows incorporating technologies involving
devices that use protocols and languages which are not
natively compatible with the Shell framework. This can be
achieved by using special software that provides gateway
functions, named drivers. Thus, there is a driver for any and
every "external" domotic system that one might want to
include. Each driver is structured in two parts: the first acts
directly on the Shell, the other physically interfaces the
devices belonging to the external network. Each Driver
performs the following operations: (a) creating the physical
connection with the domotic bus; (b) auto-configuration
according to the device to be managed; (c) ensuring
correspondence between external devices and Shell devices;
(d) translating Shell messages into messages that comply with
the external domotic protocol; (e) and notification of events
that occur within the external system by creating appropriate
Shell messages of type signal.

Shell drivers also provide the Shell framework with access
to every single feature of each device it manages, thereby
making such features utilizable. Both the discovery and
implementation of services are different for each driver, as
they are strictly dependent on the technology of the different
external systems. Any smart object is addressed from inside
and outside the framework using the unique id assigned to
each Shell device. In order to maintain consistency between
the different addressing spaces of the different external
subnetworks, a global routing mechanism associates each
unique Shell device identifier with each actual device,.

By way of example, the drivers named KNXDriver and
MyHomeDriver, which allow integrating within the system
two existing commercial domotic technologies, KNX [22] and
MyHome [23],, are described below.

A. KNXDriver
KNX main features are: (a) coexistence of products and

applications from different manufacturers under the same
umbrella; (b) good reliability ‒ the KNX Association regularly
checks manufacturers' production and certifies its quality; (c)
standardized functionality ‒ the KNX Association integrates

different application profiles for both home and building
automation into its domotic system.

The KNX architecture provides for distributing the
onboard intelligence of the individual devices. Wiring is
simple and economical, and the probability of failure low. On
the other hand, this involves rather high costs per device.

KNXDriver exploits three main technology features: the
individual address, the group address and the datapoint.
KNX uses an individual address both to identify a device and
to indicate its position in the network topology. It consists of
three dot-separated numbers (e.g., 1.1.1). A group address
identifies a KNX domotic function available to the network
(e.g., switching off a light). It involves at least two devices
and makes it possible to establish a logical connection
between them. It consists of three slash-separated numbers
(e.g. 1/1/1). A datapoint is represented by a variable
indicating the value of a domotic function implemented in the
network. Group address and datapoint are two strictly
interrelated features, that is, each group address has its
datapoint. Note that the datapoint defines how to code the
value of the variable. Variables are standardised, which is
fundamental in order to allow devices from different KNX
manufacturers to communicate with each other.

To ensure a physical connection with the KNX bus,
KNXDriver depends on a special system component named
IP Gateway. Dedicated software, called ETS (Engineering
Tool Software) [24], is used to program the devices and
supervise the bus. KNXDriver exploits the Calimero 2 API
[25] libraries to interact with a KNX network. It enables read
and write operations and the datapoints management.

The driver auto-configures at startup time. It associates
the instances of Shell devices with the real devices, using the
information found in the device configuration files. Figure 4
shows an example of the device configuration file for a light.

Figure 4: Example configuration for a KNX device

In the example in the figure, the driver field specifies the
following: the name of the driver managing the device, that
is KNX (line 9); that the Shell device is a BinaryLight type,
as defined in the Shell classification (line 7). In the example,

 1.{
 2. "actions":[
 3. {
 4. "conditions":[
 5. {
 6. "conditionType":"OUTPUT_PARAM_VALUE",
 7. "paramName":"lightState",
 8. "operator":"EQUAL",
 9. "value":true
10. }
11.],
12. "actionType":"EXEC",
13. "name": "DimmerableOnlyLight.setLightDimmerState",
14. "to":"aeon.dimmerable-light.001",
15. "params":{
16. "lightDimmerState":100
17. }
18. }
19.]
20.}

 1.{
 2. "id": "shell.knx-binary-light.0001",
 3. "friendlyName": "Simple KNX Light 1",
 4. "description": "KNX Simple Light",
 5. "location": "Bedroom Room",
 6. "internal": true,
 7. "classes": ["BinaryLight"],
 8. "drivers": [{
 9. "driver": "KNX",
10. "driverParams":{
11. "knx_individualAddress": "1.1.1",
12. "BinaryLight_getLightState_knx_groupAddress": "0/0/1",
13. "BinaryLight_getLightState_knx_datapoint": "DPTXlatorBoolean.DPT_SWITCH",
14. "BinaryLight_getLightState_shell_output_name": "lightState",
15. "BinaryLight_on_knx_groupAddress": "0/0/1",
16. "BinaryLight_on_knx_input_value": "on",
17. "BinaryLight_on_knx_datapoint": "DPTXlatorBoolean.DPT_SWITCH",
18. "BinaryLight_on_shell_output_name": "lightState",
19. "BinaryLight_on_shell_output_value": "on",
20. "BinaryLight_off_knx_groupAddress": "0/0/1",
21. "BinaryLight_off_knx_input_value": "off",
22. "BinaryLight_off_knx_datapoint": "DPTXlatorBoolean.DPT_SWITCH",
23. "BinaryLight_off_shell_output_name": "lightState",
24. "BinaryLight_off_shell_output_value": "off",
25. "BinaryLight_lightStateChanged_knx_groupAddress": "0/0/1",
26. "BinaryLight_lightStateChanged_knx_datapoint": "DPTXlatorBoolean.DPT_SWITCH",
27. "BinaryLight_lightStateChanged_shell_output_name": "lightState"
28. },
29. "commands": [],
30. "signals":[]
31. }]
32. }

 5

we ensure correspondence between Shell device called
shell.knx-binary-light.0001 (line 2), with the KNX device
with individual address 1.1.1 (line 11). To translate Shell
messages into KNX messages and vice versa, we use the
information provided in driverParam (line 10), where there
are a number of parameters needed to map Shell messages to
KNX compliant messages and vice-versa. The KNXDriver
implements the functionality to convert a KNX value to a
SHELL value and vice versa, according to the respective
datatype and datapoint. One example of this is the
representation of a scale of values: in Shell a percentage scale
has a range from 0 to 100, while in KNX its range is from 0
to 255. Since the Shell value 90 does not correspond
semantically to the KNX value 90, it is necessary to convert it
appropriately using a proportion (resulting in a KNX value of
229).

The driver implements a listener to capture events
occurring on the KNX bus. The events are embodied in two
types of messages: (a) a synchronous message, as a reply
message to a Shell request (e.g., the request
binaryLight.getLightState, to obtain the state of a light as a
reply), or (b) an asynchronous message, as notification that
an event has occurred in the domotic bus and must be
translated into a Shell message of type signal to achieve
interoperability.

B. MyHomeDriver
MyHome is a domotic system produced by BTicino

(Legrand group), a manufacturer of electrical components
whose brand name is well-known in more than 60 countries
around the world. MyHome is based on a distributed
intelligence system.

It offers services for: (a) comfort (lighting management,
energy loads, sound diffusion and scenarios management);
(b) security (technical alarms and anti-theft protection); (c)
audio-video communication (video door entry system and
video control); (d) local and remote equipment control.

The protocol used to exchange data and send commands
between a remote unit and the MyHome BTicino system is
named OpenWebNet (OWN). The OWN language [26] allows
communication independently of the physical means of
communication used.

The characters allowed in an OpenWebNet message
belong to the following set Sym = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
*, #}. An OpenWebNet message starts with * and ends with
##. The fields making it up are of variable length and
separated by the special characters "*". Taking into account
for simplicity only the command messages, these fields are
WHO, WHAT, WHERE, DIMENSION, and VALUE. WHO
contains the domotic function the message refers to (e.g., 1
for the lighting system). WHAT identifies the type of action
to be carried out (e.g., lights ON, lights OFF, dimmer 20%,
shutters UP, set programme 1 in the temperature control unit,
etc.).

WHERE contains the objects addressed by the message
(single device or a group of them, such as the lights in group
1). DIMENSION is used to request information about the
value of a parameter belonging to a single device, a set of
devices, or the entire system. The server responds to the size
request by sending one or more messages containing one or
more VALUE fields. Both fields are also used to modify the
values of the parameters belonging to the devices.

For every WHO message, there is a specific DIMENSION
table containing the range of allowable VALUEs (this applies
only to functionalities for which they are required).

OpenWebNet has four types of messages: Command/Status,
Status Request, Request/Read/Write Dimension,
Acknowledge.

To establish a connection with the MyHome bus,
MyHomeDriver uses a particular device named Open Server.
OpenServer is an OpenWebNet gateway that sees to
interfacing with the MyHome system using the OWN
language. MyHomeDriver communicates with the Open
Server through the use of a customised version of the
btcommlib library [26].

MyHomeDriver initialises at startup using the
configuration files related for Shell devices it manages.
Figure 5 shows an example of the configuration for a light.

Figure 5: Example configuration for a MyHome device

Line 9 shows the driver that controls the MyHome device
and line 11 specifies the Shell device type. By concatenating
values in lines 12 and 13 we obtain the contents of the field
WHERE of an OWN command, thus providing identification
of that device within the MyHome system. To ensure a match
between the Shell device and the real device, the driver
associates these values with the Shell device identifier (line
2). Figure 6 shows an extract of the configuration file used to
specify the other fields of an OWN command. They are
independent of the single device, but strictly related to the
functionalities. For example, to invoke the Shell command
named BinaryLight.on (lines 2 and 4), the driver fills in the
WHO and WHAT fields with the value 1 (line 6 and 8).

 1.{
 2. "id":"shell.bticino-binary-light.0001",
 3. "friendlyName":"Simple BTicino Light 1",
 4. "description":"BTicino Simple Light",
 5. "location":"Bedroom Room",
 6. "internal": true,
 7. "classes": ["BinaryLight"],
 8. "drivers": [{
 9. "driver": "MyHome",
10. "driverParams":{
11. "classes": ["BinaryLight"],
12. "ambient":"1",
13. "light_point":"1"
14. },
15. "commands": [],
16. "signals":[]
17. }],
18. "mainImplementationJarFile" : "",
19. "mainImplementationJavaClass" : ""
20.}

 6

Figure 6: Configuration to map BinaryLight commands

To send commands to MyHome bus and receive
notifications from it, the driver creates two special threads to
connect both the command and monitor sessions of the OWN
gateway. The command session sees to sending commands,
status requests and dimension requests.

The monitor session allows capturing the asynchronous
events of the MyHome network and decoding them using a
grammatical parser LL(1) [27]. Then it translates them into
Shell events using the information available in the
configuration files.

V. RESULTS AND CONCLUSIONS
Figure 7 shows the exchange of messages between KNX

and MyHome binary lights. The messages are the results of
the operations implemented to achieve interoperability.
Whenever the MyHome light is turned on, it sends a power-
up message to the KNX light, and receives notification of its
status change. Then, when the MyHome light goes out, it
sends a turn off message to the KNX light and receives its
current status in reply.

This work has illustrated the operating logic of Shell, the
proposed middleware solution to allow effective non-
proprietary exploitation of the Internet of Things paradigm.
This software is part of the Shell project which aims to create
an open, freely accessible "interoperability framework" as a
supporting structure and enabling tool for vertical solutions
in diversified and multifunctional areas (energy, security,
comfort). The project aims to transform the home into a set
of shared, interoperable ecosystems, shaping the technology
for smart environments that can gather information and
produce actions tailored to its inhabitants. Although the Shell
framework is still under development, its functional core is
fully and freely available today.

Thanks to the power of the Shell language, the framework
implements a software abstraction layer that hides the
technological complexities underlying natively incompatible
devices.

Figure 7: Interaction between a KNX and MyHome devices

ACKNOWLEDGMENT
The Shell project ("Shared and interoperable Home

Ecosystems for Sustainable, Comfortable and Safe Living
Environments" - CTN_00128_111357) of the Italian National
TAV Cluster - Technologies for Living Environments
(CTN_00128), has been financed by the MIUR (Italian
Ministry of Education, University and Research) with
Directorate Decree no. 1883 of 11/10/2013.

REFERENCES

[1] L. Shancang, D. X. Li e Z. Shanshan, "5G Internet of Things: A
survey" Journal of Industrial Information Integration, vol. 10, pp.
Pages 1-9, 2018.

[2] J. Miranda, N. Mäkitalo, J. Garcia-Alonso, J. Berrocal, T. Mikkonen,
C. Canal e J. M. Murillo, "From the Internet of Things to the Internet
of People" IEEE Internet Computing, vol. 19, n. 2, pp. 40-47, 2015.

[3] K. E. Skouby e P. Lynggaard, "Smart home and smart city solutions
enabled by 5G, IoT, AAI and CoT services" in International
Conference on Contemporary Computing and Informatics (IC3I),
Mysore, 2014.

[4] M. Weiser, "The computer for the twenty‐first century" Scientific
American, vol. 265, n. 3, pp. 94-104, 1991.

[5] T. C. I. 184, "ISO 14258:1998 - Industrial automation systems --
Concepts and rules for enterprise models" 2014. [Online]. Available:
https://www.iso.org/standard/24020.html.

[6] A. M. Mzahm, M. S. Ahmad e A. Y. C. Tang, "Agents of Things
(AoT): An intelligent operational concept of the Internet of Things

{
 "BinaryLight": {
 "commands": {
 "on": {
 "msg_type": "Request",
 "who": "1",
 "whatlist": [{
 "what": "1"
 }]
 },
 "off": {
 "msg_type": "Request",
 "who": "1",
 "whatlist": [{
 "what": "0"
 }]
 },
 "getLightState": {
 "msg_type": "RequestStatus",
 "who": "1"
 }
 }
 }
}

Sending Message >> {"id": "1", "to": "shell.knx-binary-light.0001",
"from": "shell.myhome-binary-light.01", "type": "EXEC", "cmd":
"BinaryLight.on", "ts": 1553104822734, "params": {"state":
"lightState"}}

Process Response << {"id": "1", "to": "shell.myhome-binary-light.01",
"from": "shell.knx-binary-light.0001", "type": "RESPONSE", "rcode":
0, "cmd": " BinaryLight.on", "ts": 1553104822819, "params":
{"lightState": true}}

Sending Message >> {"id": "2", "to": "shell.knx-binary-light.0001",
"from": "shell.myhome-binary-light.01", "type": "EXEC", "cmd":
"BinaryLight.getLightState", "ts": 1553104822740, "params": {"state":
"lightState"}}

Process Response << {"id": "2", "to": "shell.myhome-binary-light.01",
"from": "shell.knx-binary-light.0001", "type": "RESPONSE", "rcode":
0, "cmd": "BinaryLight.getLightState", "ts": 1553104822870,
"params": {"lightState": true}}

Sending Message >> {"id": "3", "to": "shell.knx-binary-light.0001",
"from": "shell.myhome-binary-light.01", "type": "EXEC", "cmd":
"BinaryLight.off", "ts": 1553104822744, "params": {"state":
"lightState"}}

Process Response << {"id": "3", "to": "shell.myhome-binary-light.01",
"from": "shell.knx-binary-light.0001", "type": "RESPONSE", "rcode":
0, "cmd": "BinaryLight.off", "ts": 1553104822905, "params":
{"lightState": false}}

Sending Message >> {"id": "4", "to": "shell.knx-binary-light.0001",
"from": "shell.myhome-binary-light.01", "type": "EXEC", "cmd":
"BinaryLight.getLightState", "ts": 1553104822748, "params": {"state":
"lightState"}}

Process Response << {"id": "4", "to": "shell.myhome-binary-light.01",
"from": "shell.knx-binary-light.0001", "type": "RESPONSE", "rcode":
0, "cmd": "BinaryLight.getLightState", "ts": 1553104822961,
"params": {"lightState": false}}

 7

(IoT)" in International Conference of Intelligent Systems and Design
and Applications, Bangi, 2013.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li e L. Xu, "Edge Computing: Vision
and Challenges" IEEE Internet of Things Journal, vol. 3, n. 5, pp.
637-646, 2016.

[8] M. Aazam, I. Khan, A. A. Alsaffar e E.-N. Huh, "Cloud of Things:
Integrating Internet of Things and cloud computing and the issues
involved" in 11th International Bhurban Conference on Applied
Sciences & Technology, Islamabad, Pakistan, 2014.

[9] G. M. Toschi, L. B. Campos e C. E. Cugnasca, "Home automation
networks: A survey" Computer Standards & Interfaces, vol. 50, pp.
42-54, 2017.

[10] P. Dempsey, "The teardown: Google Home personal assistant"
Engineering & Technology, vol. 12, n. 3, pp. 80-81, 2017.

[11] A. Purington, J. G. Taft, S. Sannon, N. N. Bazarova e S. H. Taylor,
"Alexa is My New BFF: Social Roles, User Satisfaction, and
Personification of the Amazon Echo" in Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing
Systems, Denver, Colorado, USA, 2017.

[12] D. Gack, Apple Homekit: The Beginner's Guide, vol. 1, Van
Helostein, 2017.

[13] T. Perumal, A. R. Ramli, C. Y. Leong, S. Mansor e K. Samsudin,
"Interoperability for smart home environment using web services"
International Journal of Smart Home, vol. 2, n. 4, pp. 1-16, 2008.

[14] "Freedomotic Open IoT Framework" [Online]. Available:
https://www.freedomotic-iot.com.

[15] V. Miori e D. Russo, "Domotic Evolution towards the IoT" in 28th
International Conference on Advanced Information Networking and
Applications Workshops, Victoria, BC, 2014.

[16] E. Newcomer e G. Lomow, Understanding SOA with Web services,
Addison-Wesley, 2005.

[17] D. Bonino e F. Corno, "DogOnt - Ontology Modeling for Intelligent
Domotic Environments" in The Semantic Web - ISWC 2008, 2008.

[18] "IoTSyS - Internet of Things integration middleware" [Online].
Available: http://www.iue.tuwien.ac.at/cse/index.php/projects/120-
iotsys-internet-of-things-integration-middleware.html.

[19] "oBIX" [Online]. Available: http://www.obix.org/.
[20] K. Wallis e C. Reich, "Secure Zero Configuration of IoT Devices - A

Survey" in W-CAR Symposium on Information and Communication
Systems (SInCom), Karlsruhe, Germany, 2016.

[21] T. Bray, Bray, Tim. The javascript object notation (json) data
interchange format, 2017.

[22] S. D. Bruyne, "Finding your way around the KNX Specifications" in
KNX Technoology Tutorial Workshop, Deggendorf, Germany, 2004.

[23] "Home automation" bticino, [Online]. Available:
http://www.bticino.com/solutions/home-automation.

[24] "About ETS - KNX Association" [Online]. Available:
https://www2.knx.org/en-us/software/ets/about/index.php.

[25] B. Malinowsky, G. Neugschwandtner e W. Kastner, "Calimero: Next
Generation" in Proceedings Konnex Scientific Conference, Dusiburg,
Germany, 2007.

[26] "Home Page - MyOpen" bticino, [Online]. Available:
https://www.myopen-legrandgroup.com.

[27] A. V. Aho, R. Sethi e J. D. Ullman, Compilers, principles, techniques,
Addison wesley, 1986.

