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Abstract— The spread of enabling technologies for the 
Internet of Things allows the creation of new scenarios in which 
home automation plays a significant role. Platforms for smart 
cities and communities, which must include applications for 
energy efficiency, health, mobility, security, etc., cannot ignore 
the use of data gathered directly from homes. In order to 
implement such scenarios, all the related technological 
infrastructure and home systems must be able to understand 
each other and exchange information. In this work, we present 
a new platform that achieves interoperability between 
heterogeneous home automation systems. It allows different, 
incompatible technologies to cooperate inside and outside the 
home, thus creating a single ecosystem. In order to achieve tins 
goal, specific problems need to be solved to be able to construct 
"bridges" between the various home automation networks 
currently in use. In this regard, some specific solutions adopted 
for integrating two different technologies (KNX and MyHome) 
within a home automation platform are illustrated. 

Keywords— Domotics, IoT, Interoperability, Home 
Automation, KNX, MyHome, Home Gateway 

I. INTRODUCTION 
With the spread of increasingly fast and reliable 

communication technologies such as 5G, the number and 
functionalities of the components available in Internet of 
Things (IoT) solutions will soon grow exponentially [1]. New 
real-time applications and smart city solutions will be able to 
exploit these technologies to create a large new coherent 
infrastructure able to connect people [2], homes, buildings, 
and entire living areas [3]. More and more, Ambient 
Intelligence (AmI), as envisioned by Mark Weiser, [4] is 
becoming a reality. The technology surrounding people will 
become invisible, and new innovative human-machine 
interactions with autonomous and intelligent entities will act 
in a fully interoperable main system to improve the everyday 
life of humans unobtrusively and transparently. 

In order to realise such a scenario, apart from the need for 
a fast reliable channel such as that offered by 5G technology, 
all devices and services must be able to understand each other 
so that they can exchange information. To this end there are 
currently two main options: (a) using the same language and 
same transmission protocols to effect the communication 
between all devices and services; (b) create an interoperability 
mechanism to enable the exchange of data regardless of the 
underlying incompatible communication protocols. With the 
former, the use of a single language and protocol limits 
implementation choices to devices belonging to a single (often 
proprietary) technology. The latter solution overcomes this 
limit by means of the interoperability feature [5], which 

enables two or more systems (in the case at hand, home 
automation systems) interact with each other to exchange 
information originally gathered, stored and processed in 
different formats. 

There is moreover a need for special entities, such as 
software agents or other intelligent systems [6], able to 
coordinate the sharing of data generated by the various devices 
in the overall system. The source of their ‘intelligence’ may 
be on board the devices themselves, on Edge [7] or the Cloud 
[8].  

The scientific community has proposed a number of 
different frameworks for realising such an IoT scenario by 
creating both mechanisms for information exchange between 
devices and solutions for data processing. Most of these 
enable systems to read values from sensors and to store them 
in the cloud for future analysis, but rarely include native 
support for various domotic technologies  [9]. The European 
Community has also funded many projects on IoT 
development, especially with the Seventh Framework and  the 
subsequent Horizon 2020 Research programmes. However, in 
these cases, the result was the creation of some IoT 
frameworks specific for vertical areas of competence and 
scenarios such as transport and logistics, mobile health and 
wellness, smart grid and smart factories. Most of these IoT 
solutions implement proprietary communication mechanisms, 
devices, and resource control protocols, using a single 
communication technology. Thus, these frameworks are 
poorly interoperable with each other. 

Domotics [9] is the first application domain for IoT. 
Underlying domotic technologies have been steadily been 
moving beyond the mere control and connection of appliances 
in an isolated home, to a global connection and integration of 
the house with the services available around the world. Even 
Google Inc. [10], Amazon Inc. [11] and Apple Inc. [12] have 
launched products in the home automation field, and have 
become big players in this market nowadays. Integration of 
the home automation world with the global Internet of Things 
still presents a specific research challenge: there is a lack of 
standardization in communication systems and protocols. This 
lack is due to the persistence of business models towards 
closed proprietary solutions that strongly limit the possibility 
of integrating devices and services belonging to different 
home automation systems. 

To date, this lack of interoperability is still an open issue 
that severely limits the full potential of Smart Home 
technologies within the IoT world. 
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II. RELATED WORKS 
The literature proposes several definitions of IoT 

interoperability. Generally, from a technical point of view, 
interoperability is mainly classified into three levels [13]: 

• basic connectivity interoperability: allows for the 
exchange of data between two or more heterogeneous 
systems by establishing a communication link. It requires 
common agreement on the means of data transmission, 
low-level data encoding, and access rules; 

• network interoperability: enables the exchange of 
messages between systems deployed in different 
networks. It defines the agreement on the transfer of 
information between heterogeneous systems through 
multiple communication links; 

• syntactic interoperability: defines rules to manage the 
format and structure of the encoded information 
exchanged between two or more heterogeneous 
intelligent systems to make them understandable by all 
the components involved, translating data from one 
format to another. 

There are currently some open source interoperability 
frameworks with explicit support for domotic technologies 
that implement interoperability up to the syntactic level. 
Freedomotic [14] is an event-based framework with a 
decentralised peer-to-peer network. It furnishes support 
replication of services across different servers exploiting a 
load balance mechanism. DomoNet [15] is an event-based 
framework leveraging SOA [16]. It can manage different 
instances of the framework located in different places at the 
same time, and it assigns IPv6 addresses to each domotic 
device, even if they do not possess native Internet addressing 
capabilities. Dog gateway is an OSGi semantic framework 
based on an ontology named DogOnt [17], which 
taxonomizes devices and environments and defines their 
functions and characteristics. IoTSys [18] is a Seventh 
Framework Programme project. It allows IPv6 addresses to 
be mapped to objects and it moreover addresses security, 
discovery, and scalability issues. It exploits oBIX [19] at the 
API level to discover services and devices, their setup and 
invocation. 

This work proposes a solution which, unlike other 
existing frameworks, aims to create an IoT framework for 
domotic interoperability that has been designed and 
developed to be: 

• modular ‒ the system enables choosing the functional 
modules that are included as part of each instance of the 
system according to users’ needs and the computing 
capacity of the hosting machine(s); 

• highly scalable (both downwards and upwards) ‒ the 
solution’s modular implementation makes it possible to 
deploy the software framework on a wide variety of 
electronic systems, from those with even limited 
computing capacity up to powerful servers and 
workstations; 

• flexible ‒ the modularity and scalability of the system 
provide a solution suitable for: (a) small facilities (e.g. a 
single room, an apartment, a single house, etc.); (b) large 
facilities (e.g., a house or a building consisting of several 
apartments, etc.); (c) industrial settings (e.g., one or more 
industrial buildings of a single organization); (d) mission-
critical situations (e.g., hospitals or facilities where 
malfunctions are unacceptable, even temporarily). 

III. THE SHELL FRAMEWORK 
Shell is an open, free and accessible interoperability IoT 

framework. It acts as the backbone that enables tools for 
creating vertical solutions for managing energy efficiency, 
thermo-hygrometric comfort, security and safety, and the 
sharing of data generated by the home with the IoT. 

In this way, the home is set to become a functional and 
interoperable node of a larger Smart Community, open to the 
new opportunities of Smart Cities. 

The Shell framework implements a conceptual model 
aiming at: 

• addressing a variety of smart ambient automation 
scenarios, ranging from houses to large buildings and 
smart cities; 

• allowing the integration of heterogeneous appliances and 
devices in a uniform data space where the functionalities 
of devices are defined at a high level of abstraction, 
independently of the actual technologies used (e.g., 
communication protocols, hardware, etc.); 

• being general, open, and compatible with existing smart-
home models and systems. 

A. Shell Architecture 
Each node of the Shell framework is called a host. A host 

(Figure 1) is an embedded geolocalized system having an IP 
address and connected both to a private LAN, where the 
domotic devices it manages reside, and to the Internet, to 
allow communication with the outside world. The host 
contains an internal representation of its domotic devices 
(Shell devices) that can access other hosts or external services. 

 

 
Figure 1: Shell architecture 

 

Shell devices can be real or virtual. A real device is the 
Shell’s representation of a smart object equipped with specific 
hardware. Instead, a virtual device is a representation of a set 
of software functionalities (e.g., a weather service on the Web) 
without any hardware. Every device has an id (i.e., 
serial_number.model.producer) for identification and 
addressing. 

To accomplish communication between devices, each host 
implements a naming service system that translates and maps 
each id to the corresponding IP address. Devices are included 
in environments called rooms. In turn, Rooms can also be real 
(e.g., a geolocalized place such as a living room, a bathroom, 
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etc.), or virtual (e.g., the room called "lamps" consist of a 
group of objects with similar functions related to lighting). 
Each group is controlled by a special device called a device 
manager. It determines the functionality and purpose of the 
group and manages its devices. A device can belong to one or 
more groups. There is one predefined group called Home that 
includes all the devices of the host. The manager of the Home 
group is aptly named Home Manager and supervises all the 
activities of the Host. Each host offers a set of special services 
to the devices. By way of example, some of these services are: 
(a) Clock: synchronizes devices to allow them to perform 
actions simultaneously (e.g., at prefixed time intervals get the 
status of all devices at the same instant); (b) KnowledgeBase 
(KB): implements a database that classifies devices according 
to type and their functionalities. In particular, it subdivides the 
Shell commands into functional classes that are then 
associated with each type of device. Moreover, it defines the 
messages that the devices generate each time they change 
state. For example, the device light has three commands 
belonging to the functional class binaryLight: on, off and 
getStatus. When switched on or off, a light device sends a 
message setting the lightState parameter with the new value. 
(c) System Logger (Log): keeps the sequence of events 
occurring throughout the system up to date, and offers the 
possibility to query and retrieve information; (d) Discovery 
Service (DS): when a host starts, it announces to its external 
network both its presence and the list and status of its devices. 
This service thus broadcasts that a new host has become 
available, and each host has a defined set of users who can 
access it at the same time. The framework defines four levels 
of users: (a) superuser: has access to all system functions; (b) 
technician: has access to all configuration and installation 
functions; (c) power user: has access only to some 
configuration functions; (d) user: has access only to basic 
system functions (e.g. user interface to pilot devices). 

 
Attribute Description 

id  Unique identification of the message. 

ts  The timestamp associated with the message. 

to Unique identification of the recipient device. 

from Unique identifier of the sender device. 

toIP IP address of the recipient device. Alternative for to 

fromIP IP address of the sender device. Alternative for from 

type Type of message. 

cmd Command to execute, a signal or a notification.  

params List of the parameters expressed in the form of key-values 
required in order to correctly execute the request. 

auth Reserved field. Used for possible implementations of 
security systems (e.g. message signature etc.). 

Table 1: JSON message fields 

The choice of using the addressing system based on 
standardised and well-established protocols such as IP and 
HTTP guarantees Shell interoperability both at the basic and 
network connectivity levels. The host directly manages 
devices with Ethernet and/or wifi connectivity and configures 
them using the Avahi/Bonjour Zero-conf mechanism [20]. The 
Shell moreover provides syntactic interoperability based on a 
lightweight, expressive and flexible messaging system 
implemented in JSON format [21].  

Table 1 shows the fields that compose a Shell JSON 
message. Table 2 describes the possible values for the type 
attribute. 

 
Message type Description 

Exec A command to be executed synchronously. 

Dexec A command to be executed asynchronously. 

Signal A signal (e.g., a notification or an event). 

Response The answer to a request. 

Table 2: Values for "type" attribute 

 
Figure 2 shows an example of JSON message of exec type 

(line 8) where a device manager (line 5) orders a light (line 4) 
to switch on (line 9). Each command has an unique identifier 
expressed as: <f-class>.<cmd>, where: f-class is the name of 
the functional class of the command and cmd is the command 
itself. In the example in figure 2, the command binaryLight.on 
(line 9) means the light is to be switched on.  

 

 
Figure 2: Example message 

However, if specific models of smart objects have 
functions that do not have a match in any f-classes, the system 
allows extending the Shell representation of the devices by 
personalising them.  

 

B. Interoperability 
To implement interoperability, we introduce the concept 

of Signal. A signal is a special type of Shell message that 
provides notification of the occurrence of an event related to 
a device. In order to classify and manage them, the 
Knowledge Base in the host defines the signals for each type 
of device. A typical example of a signal message is a change 
in the state of a light. When such a state change occurs, the 
system emits a signal regarding the specific "light" device in 
question. The configuration file of the device to which the 
signal refers specifies the modalities for implementation of 
interoperability between devices.  

In the example in Figure 3, when the device in question 
emits a signal message which sets the lightState parameter to 
true (line 9), then, for a dimmable light, the system creates a 
new exec message (line 12) which sets lightDimmerState to 
100%. 
 

  1. { 
  2.      "id": "198800003467190012378-76630133-31191013", 
  3.      "ts": 14559594800, 
  4.      "to": "100000000002.light.semedia", 
  5.      "from": "100000000001.manager.semedia", 
  6.      "toIP": "192.168.65.181", 
  7.      "fromIP": "192.168.65.180", 
  8.      "type": "exec", 
  9.      "cmd": "binaryLight.on", 
10.      "params": {}, 
11.      "auth": "" 
12. } 
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Figure 3: Example of interoperability configuration 

 

IV. SHELL DRIVERS 

The Shell allows incorporating technologies involving 
devices that use protocols and languages which are not 
natively compatible with the Shell framework. This can be 
achieved by using special software that provides gateway 
functions, named drivers. Thus, there is a driver for any and 
every "external" domotic system that one might want to 
include. Each driver is structured in two parts: the first acts 
directly on the Shell, the other physically interfaces the 
devices belonging to the external network. Each Driver 
performs the following operations: (a) creating the physical 
connection with the domotic bus; (b) auto-configuration 
according to the device to be managed; (c) ensuring 
correspondence between external devices and Shell devices; 
(d) translating Shell messages into messages that comply with 
the external domotic protocol; (e) and notification of events 
that occur within the external system by creating appropriate 
Shell messages of type signal. 

Shell drivers also provide the Shell framework with access 
to every single feature of each device it manages, thereby 
making such features utilizable. Both the discovery and 
implementation of services are different for each driver, as 
they are strictly dependent on the technology of the different 
external systems. Any smart object is addressed from inside 
and outside the framework using the unique id assigned to 
each Shell device. In order to maintain consistency between 
the different addressing spaces of the different external 
subnetworks, a global routing mechanism associates each 
unique Shell device identifier with each actual device,.  

By way of example, the drivers named KNXDriver and 
MyHomeDriver, which allow integrating within the system 
two existing commercial domotic technologies, KNX [22] and 
MyHome [23],, are described below. 

A. KNXDriver 
KNX main features are: (a) coexistence of products and 

applications from different manufacturers under the same 
umbrella; (b) good reliability ‒ the KNX Association regularly 
checks manufacturers' production and certifies its quality; (c) 
standardized functionality ‒ the KNX Association integrates 

different application profiles for both home and building 
automation into its domotic system. 

The KNX architecture provides for distributing the 
onboard intelligence of the individual devices. Wiring is 
simple and economical, and the probability of failure low. On 
the other hand, this involves rather high costs per device. 

KNXDriver exploits three main technology features: the 
individual address, the group address and the datapoint. 
KNX uses an individual address both to identify a device and 
to indicate its position in the network topology. It consists of 
three dot-separated numbers (e.g., 1.1.1). A group address 
identifies a KNX domotic function available to the network 
(e.g., switching off a light). It involves at least two devices 
and makes it possible to establish a logical connection 
between them. It consists of three slash-separated numbers 
(e.g. 1/1/1). A datapoint is represented by a variable 
indicating the value of a domotic function implemented in the 
network. Group address and datapoint are two strictly 
interrelated features, that is, each group address has its 
datapoint. Note that the datapoint defines how to code the 
value of the variable. Variables are standardised, which is 
fundamental in order to allow devices from different KNX 
manufacturers to communicate with each other. 

To ensure a physical connection with the KNX bus, 
KNXDriver depends on a special system component named 
IP Gateway. Dedicated software, called ETS (Engineering 
Tool Software) [24], is used to program the devices and 
supervise the bus. KNXDriver exploits the Calimero 2 API 
[25] libraries to interact with a KNX network. It enables read 
and write operations and the datapoints management.  

The driver auto-configures at startup time. It associates 
the instances of Shell devices with the real devices, using the 
information found in the device configuration files. Figure 4 
shows an example of the device configuration file for a light.  

 

 
Figure 4: Example configuration for a KNX device 

In the example in the figure, the driver field specifies the 
following: the name of the driver managing the device, that 
is KNX (line 9); that the Shell device is a BinaryLight type, 
as defined in the Shell classification (line 7). In the example, 

  1.{ 
  2.   "actions":[ 
  3.      { 
  4.         "conditions":[ 
  5.            { 
  6.               "conditionType":"OUTPUT_PARAM_VALUE", 
  7.               "paramName":"lightState", 
  8.               "operator":"EQUAL", 
  9.               "value":true 
10.            } 
11.         ], 
12.         "actionType":"EXEC", 
13.         "name": "DimmerableOnlyLight.setLightDimmerState", 
14.         "to":"aeon.dimmerable-light.001", 
15.         "params":{ 
16.            "lightDimmerState":100 
17.         } 
18.      } 
19.   ] 
20.} 

  1.{ 
  2.  "id": "shell.knx-binary-light.0001", 
  3.  "friendlyName": "Simple KNX Light 1", 
  4.  "description": "KNX Simple Light", 
  5.  "location": "Bedroom Room", 
  6.  "internal": true, 
  7.  "classes": ["BinaryLight"], 
  8.  "drivers": [{ 
  9.    "driver": "KNX", 
10.    "driverParams":{ 
11.      "knx_individualAddress": "1.1.1", 
12.      "BinaryLight_getLightState_knx_groupAddress": "0/0/1", 
13.      "BinaryLight_getLightState_knx_datapoint": "DPTXlatorBoolean.DPT_SWITCH", 
14.      "BinaryLight_getLightState_shell_output_name": "lightState", 
15.      "BinaryLight_on_knx_groupAddress": "0/0/1", 
16.      "BinaryLight_on_knx_input_value": "on", 
17.      "BinaryLight_on_knx_datapoint": "DPTXlatorBoolean.DPT_SWITCH", 
18.      "BinaryLight_on_shell_output_name": "lightState", 
19.      "BinaryLight_on_shell_output_value": "on", 
20.      "BinaryLight_off_knx_groupAddress": "0/0/1", 
21.      "BinaryLight_off_knx_input_value": "off", 
22.      "BinaryLight_off_knx_datapoint": "DPTXlatorBoolean.DPT_SWITCH", 
23.      "BinaryLight_off_shell_output_name": "lightState", 
24.      "BinaryLight_off_shell_output_value": "off", 
25.      "BinaryLight_lightStateChanged_knx_groupAddress": "0/0/1", 
26.      "BinaryLight_lightStateChanged_knx_datapoint": "DPTXlatorBoolean.DPT_SWITCH", 
27.      "BinaryLight_lightStateChanged_shell_output_name": "lightState" 
28.      }, 
29.    "commands": [], 
30.    "signals":[] 
31.  }] 
32. } 
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we ensure correspondence between Shell device called 
shell.knx-binary-light.0001 (line 2), with the KNX device 
with individual address 1.1.1 (line 11). To translate Shell 
messages into KNX messages and vice versa, we use the 
information provided in driverParam (line 10), where there 
are a number of parameters needed to map Shell messages to 
KNX compliant messages and vice-versa. The KNXDriver 
implements the functionality to convert a KNX value to a 
SHELL value and vice versa, according to the respective 
datatype and datapoint. One example of this is the 
representation of a scale of values: in Shell a percentage scale 
has a range from 0 to 100, while in KNX its range is from 0 
to 255. Since the Shell value 90 does not correspond 
semantically to the KNX value 90, it is necessary to convert it 
appropriately using a proportion (resulting in a KNX value of 
229). 

The driver implements a listener to capture events 
occurring on the KNX bus. The events are embodied in two 
types of messages: (a) a synchronous message, as a reply 
message to a Shell request (e.g., the request  
binaryLight.getLightState, to obtain the state of a light as a 
reply), or (b) an asynchronous message, as notification that 
an event has occurred in the domotic bus and must be 
translated into a Shell message of type signal to achieve 
interoperability.  

B. MyHomeDriver 
MyHome is a domotic system produced by BTicino 

(Legrand group), a manufacturer of electrical components 
whose brand name is well-known in more than 60 countries 
around the world. MyHome is based on a distributed 
intelligence system. 

It offers services for: (a) comfort (lighting management, 
energy loads, sound diffusion and scenarios management); 
(b) security (technical alarms and anti-theft protection); (c) 
audio-video communication (video door entry system and 
video control); (d) local and remote equipment control.  

The protocol used to exchange data and send commands 
between a remote unit and the MyHome BTicino system is 
named OpenWebNet (OWN). The OWN language [26] allows 
communication independently of the physical means of 
communication used.  

The characters allowed in an OpenWebNet message 
belong to the following set Sym = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
*, #}. An OpenWebNet message starts with * and ends with 
##. The fields making it up are of variable length and 
separated by the special characters "*". Taking into account 
for simplicity only the command messages, these fields are 
WHO, WHAT, WHERE, DIMENSION, and VALUE. WHO 
contains the domotic function the message refers to (e.g., 1 
for the lighting system). WHAT identifies the type of action 
to be carried out (e.g., lights ON, lights OFF, dimmer 20%, 
shutters UP, set programme 1 in the temperature control unit, 
etc.).  

WHERE contains the objects addressed by the message 
(single device or a group of them, such as the lights in group 
1). DIMENSION is used to request information about the 
value of a parameter belonging to a single device, a set of 
devices, or the entire system. The server responds to the size 
request by sending one or more messages containing one or 
more VALUE fields. Both fields are also used to modify the 
values of the parameters belonging to the devices. 

For every WHO message, there is a specific DIMENSION 
table containing the range of allowable VALUEs (this applies 
only to functionalities for which they are required).  

OpenWebNet has four types of messages: Command/Status, 
Status Request, Request/Read/Write Dimension, 
Acknowledge. 

To establish a connection with the MyHome bus, 
MyHomeDriver uses a particular device named Open Server. 
OpenServer is an OpenWebNet gateway that sees to 
interfacing with the MyHome system using the OWN 
language. MyHomeDriver communicates with the Open 
Server through the use of a customised version of the 
btcommlib library [26].  

MyHomeDriver initialises at startup using the 
configuration files related for Shell devices it manages. 
Figure 5 shows an example of the configuration for a light.  

 

 
Figure 5: Example configuration for a MyHome device 

Line 9 shows the driver that controls the MyHome device 
and line 11 specifies the Shell device type. By concatenating 
values in lines 12 and 13 we obtain the contents of the field 
WHERE of an OWN command, thus providing identification 
of that device within the MyHome system. To ensure a match 
between the Shell device and the real device, the driver 
associates these values with the Shell device identifier (line 
2). Figure 6 shows an extract of the configuration file used to 
specify the other fields of an OWN command. They are 
independent of the single device, but strictly related to the 
functionalities. For example, to invoke the Shell command 
named BinaryLight.on (lines 2 and 4), the driver fills in the 
WHO and WHAT fields with the value 1 (line 6 and 8).  

  1.{ 
  2.  "id":"shell.bticino-binary-light.0001", 
  3.  "friendlyName":"Simple BTicino Light 1",  
  4.  "description":"BTicino Simple Light",   
  5.  "location":"Bedroom Room", 
  6.  "internal": true, 
  7.  "classes": ["BinaryLight"], 
  8.  "drivers": [{  
  9.    "driver": "MyHome", 
10.    "driverParams":{ 
11.      "classes": ["BinaryLight"], 
12.      "ambient":"1", 
13.      "light_point":"1" 
14.    }, 
15.    "commands": [], 
16.    "signals":[] 
17.  }], 
18.  "mainImplementationJarFile" : "",  
19.  "mainImplementationJavaClass" : "" 
20.} 
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Figure 6: Configuration to map BinaryLight commands  

To send commands to MyHome bus and receive 
notifications from it, the driver creates two special threads to 
connect both the command and monitor sessions of the OWN 
gateway. The command session sees to sending commands, 
status requests and dimension requests.  

The monitor session allows capturing the asynchronous 
events of the MyHome network and decoding them using a 
grammatical parser LL(1) [27]. Then it translates them into 
Shell events using the information available in the 
configuration files. 
 

V. RESULTS AND CONCLUSIONS  
Figure 7 shows the exchange of messages between KNX 

and MyHome binary lights. The messages are the results of 
the operations implemented to achieve interoperability. 
Whenever the MyHome light is turned on, it sends a power-
up message to the KNX light, and receives notification of its 
status change. Then, when the MyHome light goes out, it 
sends a turn off message to the KNX light and receives its 
current status in reply. 

This work has illustrated the operating logic of Shell, the 
proposed middleware solution to allow effective non-
proprietary exploitation of the Internet of Things paradigm. 
This software is part of the Shell project which aims to create 
an open, freely accessible "interoperability framework" as a 
supporting structure and enabling tool for vertical solutions 
in diversified and multifunctional areas (energy, security, 
comfort). The project aims to transform the home into a set 
of shared, interoperable ecosystems, shaping the technology 
for smart environments that can gather information and 
produce actions tailored to its inhabitants. Although the Shell 
framework is still under development, its functional core is 
fully and freely available today.  

Thanks to the power of the Shell language, the framework 
implements a software abstraction layer that hides the 
technological complexities underlying natively incompatible 
devices.  

 

 
Figure 7: Interaction between a KNX and MyHome devices 
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