
A Recommendation System in a Collaborative

Digital Library Environment

M. Elena Renda and Umberto Straccia

Istituto di Elaborazione della Informazione -C.N.R.
Via G. Moruzzi,1 I-56124 Pisa (PI) ITALY

Number: 2002-TR-06 1

Abstract

We envisage a Digital Library not only as an information resource where users may
submit queries to satisfy their information need, but also as a collaborative working
and meeting space. We will present a personalized collaborative Digital Library en-
vironment, where users may organise the information space according to their own
subjective view, may become aware of each other, exchange information and knowl-
edge with each other, may build communities and may get recommendations. After
formalising the main concepts of the personalized collaborative environment, major
emphasis is given to the computational model for recommendation generation.

ACM Categories and Subject Descriptors: H.3.2 [INFORMATION STOR-
AGE AND RETRIEVAL]: Information Search and Retrieval - Information fil-
tering; H.3.4 [INFORMATION STORAGE AND RETRIEVAL]: Systems
and Software - User profiles and alert services;

1 Introduction

It is widely recognised that the internet is growing rapidly in terms of the
number of users accessing it, the amount of Digital Libraries (DLs) created
and accessible through it, and the number of times users use them in order to
satisfy their information needs. This has made it increasingly difficult for in-
dividuals to control and effectively seek for information among the potentially
infinite number of DLs available on the internet.

Typical available DLs provide a search or retrieval service to the web com-
munity at large. A common characteristic of most of these retrieval services

1 E-mail: {renda,straccia}@iei.pi.cnr.it

I.E.I. - C.N.R. Technical Report 28 May 2002

is that they do not provide any personalized support to individual users, or
poorly support them. Indeed, they are oriented towards a generic user. In
fact, they answer queries crudely rather than, for instance, learn the long-
term requirements idiosyncratic to a specific user. In practice, users use the
same information resource over and over and would benefit from customiza-
tion: the time consuming effort that the user put in searching documents and
possibly downloading them from the DL is is often forgotten and lost. Later,
the user may wish to perform a search about the same topic to find relevant
documents that have, e.g. appeared since the last time a search was performed.

This requires a repetition of the manual labour in searching and browsing
to find the documents just like the first time. Additionally, users are highly
interested in being able to organize the information space according to their
own subjective perspective (see e.g. [11,16]). The requirement of personal-
ized search in the context of DLs is already known and some DLs provide
related functionality (see e.g. [5,11,14,16,17,20,24,26]). Many of them fall in
the category of alerting services 2 , i.e. services that notify a user (by sending
an e-mail), with a list of references to new documents deemed as relevant.
Typically all these personalized services are based on the so-called notion of
user profile, which is a machine representation of the user’s information need.
It can be acquired either automatically (through the interaction of the user
with the system) or set-up manually (by the user). Technically, the acquisi-
tion of a user profile and the successive matching of documents against it,
in order to filter out the relevant ones, is known as Information Filtering or
Content-based Filtering [3,15].

Very seldom, except for few cases like e.g. [11], DLs are also considered as
collaborative meeting or working places, where users may become aware of each
other, open communication channels, and exchange information and knowl-
edge with each other or with experts. Indeed, usually users access a DL in
search of some information. This means that it is quite probable that users
may have overlapping interests if the information available in a DL matches
their expectations, backgrounds, or motivations. Such users might well profit
from each other’s knowledge by sharing opinions or experiences or offering
advice. Some users might enter into long-term relationships and eventually
evolve into a community if only they were to become aware of each other.
A service of this kind is important for a DL since it supplies very focussed
information. With respect to the information seek task the recommendation
of items based on preference patterns of others users is probably the most
important one. The use of opinions and knowledge of other users to predict
the relevance value of items to be recommended to each user in a community
is known as Collaborative Filtering or Social Filtering [4,6,9,18,19,25]. Col-

2 For instance, many publishing houses provide an alerting service (we omit the
long list).

2

laborative filtering methods are built on the assumption that a good way to
find interesting content is to find other users who have similar interests, and
then recommend items that those similar users like. In contrast to information
filtering methods, collaborative filtering methods do not require any content
analysis as they are based on aggregated user ratings of these items.

Both approaches share the common goal of assisting in the users’ search for
items of interest, and thus attempt to address one of the key research problems
of the information age: locating relevant information in a haystack that is
growing rapidly. Providing personalized information organisation and search
in the context of a collaborative DL environment as additional services to
the uniform and generic information search offered today, is likely to be an
important step to make relevant information available to people with minimal
user effort [1].

The contribution of our paper towards this step is as follows: (i) we will
formalise a simple collaborative DL environment, where users and communities
of users may search, share and organize their information space according to
their own personal view; and (ii) we will define recommendation algorithms
that profitably rely both on personalized information organisation and on the
users’ opinions. The underlying techniques used for recommendation fall in the
afore mentioned categories of content-based filtering methods, collaborative
filtering methods and their combination. Additionally to the quite general
and self-contained presentation of the environment and the computational
model for recommendation generation, we will present an instance of them as
the system currently being under development within the EU funded project
CYCLADES 3 .

The outline of the paper is as follows. In the next section we will formalise the
main concepts of our personalized collaborative DL environment. In Section 3
the recommendation methods will be presented, while in Section 4 we present
CYCLADES briefly. Finally, Section 5 concludes.

2 A personalized collaborative DL environment

Our personalized collaborative DL environment is made out by several con-
cepts, namely actors, objects and functionality: actors will be able to act on ob-
jects by means of the DL’s functionality. At first, we will give a brief overview
of the environment we have in mind and then move on to its formalisation.
Roughly, our collaborative environment is based on the folder paradigm, i.e.
users and communities of users may organise the information space into their

3 http://www.ercim.org/cyclades

3

own folder hierarchy, as e.g. may be done with directories in operating sys-
tems, bookmark folders in Web browser and folders in e-mail programs. The
idea of organising the information space into folders is not new within DLs.
For instance, in [11] users are allowed to define folders of bookmarks (i.e.
URLs). A folder becomes a holder of information items, which are usually
semantically related and, thus, implicitly determines what the folder’s topic is
about. Therefore, rather than speaking about a user profile, we will deal with
a folder profile, i.e. a representation of what a folder is about: the user’s set of
folder profiles represents the set of topics the user is interested in.

2.1 Actors

In the environment we have two types of actors: the set U of users u ∈ U
and the set C of communities C ∈ C. A community may be seen as a set
of users sharing a common (scientific, professional) background or view of
the world. In particular, within our collaborative environment, communities
are characterised by a shared interest in the information made available. We
postulate that a community C ∈ C has a membership function µC :U → {0, 1},
where µC(u) = 1 (for ease of presentation we will write u ∈ C) indicates that
the user u belongs to the community C. We do not require that a user has to
belong to at least one community, i.e. we assume that it is a user’s choice to
join a community or to leave it. A user may belong to different communities
as well. It is not our purpose to address the issue of how a community may
be created and which are the policies concerning to join and to leave it. We
simply assume that there is a community administrator (a user uC ∈ U) for
each community C ∈ C, who is in charge of defining these policies 4 .

2.2 Objects

We will consider three types of objects, which may be managed within the
environment by users and communities: data items, collections and folders.
The objects are organised according to a multilevel model.

Data Items. At the lowest level, we have the set D of data items d ∈ D.
The set D is the information space and the data items are the information re-
sources that a user is usually interested in discovering or searching for within
the DL. The data items may be e.g. papers, reports, journals, proceedings,

4 Similarly, we will not address the issue of becoming a community administrator
within the environment.

4

notes, annotations, discussions, URIs. A data item might also be just a meta-
data record, which consists of a set of attributes and related values specifying
features of a document, according to a specific schema, e.g. Dublin Core [12].
The set of data items D might well be distributed, heterogeneous in content,
format and media (video, audio).

Collections. At the next higher level, we allow the data items d ∈ D be
grouped into collections. A collection may be seen as a set of data items,
which are grouped together according to some relatedness criteria, e.g. the
set of data items created within the same year, or those created by the same
author, or those about the same topic, say “collaborative digital libraries”,
or, more obvious, the set of data items belonging to the same digital archive.
We assume that there is a set L of collections L ∈ L such that for each
collection L there is a membership function µL:D → {0, 1}, where µL(d) = 1
(for ease we will write d ∈ L) indicates that the data item d belongs to the
collection L. We also assume that there is at least one collection in L, called
universal collection and denoted L>, which includes all the data items d ∈ D,
i.e. ∀d ∈ D.d ∈ L>. Note that a data item may belong to several collections.
Furthermore, we do not specify whether the collections are materialised or
are just “views” over D. This does not play a significant role in our context.
Finally, like for communities, we will assume that for each collection L ∈ L
there is a collection administrator (a user uL ∈ U), who is in charge of defining
both the collection L and the access policies to it.

Folders. At the third level, we have folders. A folder is a container for data
items. A folder should be seen as the main environment in which users will
carry out their work. Folders may be organised by users according to their own
folder hierarchy, i.e. a set of hierarchically organised folders, each of which is a
repository of the user’s selected data items. Each folder typically corresponds
to one subject (or discipline, or field) the user is interested in, so that it may
be viewed as a thematic repository of data items. In order to accomplish a
truly personalized interaction between user and system, this correspondence is
implemented in a way which is fully idiosyncratic to the user; this means that
e.g. a folder named Knowledge Representation and Reasoning and owned
by user Tim will not correspond to any “objective” definition or characterisa-
tion of what “knowledge representation and reasoning” is, but will correspond
to what Tim means by “knowledge representation and reasoning”, i.e. to his
personal view of (or interest in) “knowledge representation and reasoning”. As
we will see later on, this user-oriented view of folders is realised by learning
the “semantics of folders” from the current contents of the folders themselves.
We will allow two types of folders: (i) private folders, i.e. a folder owned by
a user only. This kind of folder can only be accessed and manipulated by its
owner. For other users, they are invisible; and (ii) community folders, which

5

D
s
d1

s
d2

s
d3

s
d4

s
d5

s
d6

L
�� ��L1

�� ��L>

�� ��L3

B
B
BB

�
�

��

b
b

b
b

b

@
@

@

B
B
BB

�
�

��

�
�

�

"
"

"
"

"

@
@

@

�
�

��

F

nF1

nF2
nF3

�� @@

nF4

nF5

@@

�
�
�
�
�

U u1 u2aaaaaa

C
�� ��C1

�
�

@
@

Fig. 1. personalized information space organisation.

can be accessed and manipulated by all members of the community who owns
the folder. Community folders are used to share data items with other users
and to build up a common folder hierarchy. Community folders may also con-
tain discussion forums (a kind of data item) where notes may be exchanged in
threaded discussions (similar to news groups). Formally, we assume that there
is a set F of (either private or community) folders F ∈ F . For each user u ∈ U ,
with 〈Fu,�u〉, we indicate the user’s folder hierarchy, where Fu ⊆ F , �u is a
tree-like order on Fu and with F u

> we indicate its home folder or top folder,
i.e. the root folder of the hierarchy 〈Fu,�u〉. Furthermore, given a folder
F ∈ F , we assume that (i) there is a membership function µF :U → {0, 1},
where µF (u) = 1 (for ease F ∈ u) indicates that the folder F belongs to the
user’s u folder hierarchy, i.e. F ∈ Fu; (ii) there is a membership function
µF : C → {0, 1}, where µC(d) = 1 (for ease F ∈ C) indicates that the folder
F is a community folder and belongs to the community C; and (iii) there is
a membership function µF :D → {0, 1}, where µF (d) = 1 (for ease d ∈ F)
indicates that the data item d belongs to the folder F . Figure 1 shows an
example of community, users and object organisation. In it, users u1 and u2

belong to the same community C1. User u2 has no private folders, while F4

and F5 belong to the same community C1.

2.3 Actions

A user may perform a certain set of actions, according to whether she is a
member of a community or not, and whether she is a collection administrator
or a community administrator. The actions are briefly described below. At
any time, the user performs her actions with respect to the current folder: at
the beginning, the user’s home folder is the current folder.

6

Folder management. A user can perform basic folder management actions
on the folders she has access to: (ii) with respect to “folder hierarchy”, folder
management operations include creating a new folder as a child of an existing
folder, deleting a folder, moving a subfolder from an existing parent folder
to a new parent folder (community administrators are allowed to manage the
folder hierarchy of a community); and (ii) with respect to “folder content”,
folder management actions include saving data items from a search session
in folders (see below), deleting, undeleting and destroying data items, moving
and copying data items from one folder to another, rating and annotating data
items, downloading and uploading data items.

Collection management. A collection administrator can create, edit, delete
and define the access policies of collections. New collections may be defined in
terms of others, e.g. using meet, join and refinement operators.

Collaborative support. Collaboration between users is supported through
the possibility of sharing community folders along with their contents and
folder structure. Discussion forums may be created within folders to allow in-
formal exchange of notes and arguments. Rating and annotation of data items
also may take the form of discussions among the members of a community. In
order not to loose shared activity in the collaborative DL environment, mu-
tual awareness may be supported through event icons (a kind of data item)
displayed in the environment. Activity reports that are daily received by email
may also be possible. Also, users may view the list of all existing communi-
ties so that they become aware of ongoing community activity. This does not
mean that they can look inside communities, but only e.g. the title, the de-
scription and the identity of the community administrator are available. To
become a member, users may directly join the community if this is allowed by
the community’s policy, or may contact the administrator to be invited to the
community. In summary, collaboration support concerns with inviting or re-
moving members to or from a community, leaving a community, viewing com-
munities, joining a community (only for communities open to subscription),
contacting community managers or other users (e.g. via email), creating dis-
cussion forums, adding notes to a discussion forum, editing event notification
preferences (icons, daily report) and rating data items.

Search data items. The user can issue queries. The result of a query q is
an ordered subset (the result list) of data items d ∈ D. The user is allowed
to store selected data items of the result list within her folder hierarchy. In
ad-hoc search a user u specifies a query q and the action of the system will be
to look for relevant data items within a set of user specified folders Fi ∈ Fu

(1 ≤ i ≤ |Fu|) she have access to, i.e. to search within {d ∈ D: d ∈ Fi}, or to

7

search within a specified collection C, i.e. to search within {d ∈ D: d ∈ C} 5 .
We further allow a kind of filtered search. Filtered search, is like to the usual
ad-hoc search, except that the user u specifies a query q and a folder F ∈ u,
and the action of the system will be to look for data items d ∈ D such that d
is relevant both to the query and to the folder F . Anyway, for both types of
search there exists widely known methods. Ad-hoc search is the usual task of
information retrieval (see e.g. [27]), while filtered search may be accomplished
in at least two ways: (i) through techniques of query expansions [8,22], i.e. we
expand the query q with significant terms of the folder profile f of F and then
submit the expanded query; or (ii) we first issue the query q as an ad-hoc query,
and then filter the result list with respect to the folder profile [2,3,7,15,23].

Recommendation. A user may get recommendations of data items, collec-
tions, users, and communities, which are issued to users based on other users’
(implicit or explicit) ratings, and on the perceived similarity between the in-
terests of the user, as represented by a given folder, and the interests of these
other users, as represented by their folders. All recommendations are specific
to a given user folder. This means that the recommendation has always to be
understood in the context not of the general interests of the user, but of the
specific interests (topic) of the user represented by a folder.

Without doubt, the above set of actions provides us an enhanced personalized
collaborative DL environment. Several of the items above are eligible to be the
subject of deeper investigations but, in this paper we will put more emphasis
to the recommendation issue.

3 Recommendation algorithms

A main feature of our personalized collaborative DL environment is that, (i)
by allowing users to organise the information space according to their own
subjective view; and (ii) by supporting a simple, yet powerful collaborative
environment, it is possible to provide a set of recommendation functionality
that, to the best of our knowledge, have not yet been investigated. Indeed,
the recommendations regard not only the data items and the collections made
available by the DL, but also the users and communities. After a section pre-
senting preliminary definitions, we will describe in detail the recommendation
algorithms. In our computational model, we will rely on well known techniques
for two reasons: (i) to illustrate the main concepts in the model by means of a
concrete example, leaving out unnecessary mathematical complications; and

5 We do not specify the syntax of queries. This depends on the indexing capabilities
of the underlying DL.

8

(ii) this is the computational model currently being implemented in the CY-
CLADES system.

3.1 Preliminaries

We introduce some notation. For ease of presentation, we will assume that
data items are pieces of text (e.g. text documents). It is worth noting that
our algorithms can be extended to manage data items of different media kind,
like audio and video.

By tk, dj, and Fi we will denote a text term, a data item, and a folder,
respectively. Terms are usually identified either with the words, or with the
stems of words, occurring in data items. For ease, following the well-known
vector space model [27], a data item dj is represented as a vector of weights
dj = 〈wj1, . . . , wjm〉, where 0 ≤ wjk ≤ 1 corresponds to the “importance
value” that term tk has in the data item dj, and m is the total number of
unique terms in the indexed universal collection L>.

The folder profile (denoted fi) for folder Fi is computed as the centroid of the
data items belonging to Fi; this means that the profile of Fi may be seen as a
data item itself [3] (i.e. the mean, or prototypical, data item of Fi) and, thus,
is represented as vector of weighted terms as well, i.e. fi = 〈wi1, . . . , wim〉. The
weights wik of term tk of the folder profile fi for folder Fi are then computed
as

wik =
1

|{dj ∈ Fi}|
·

∑
{dj∈Fi}

wjk (1)

Of course, more complicated approaches for determining the folder profile
may be considered as well, e.g. taking into account the hierarchical structure
of the folders (see, e.g. [13]). Conceptually, they do not change much in our
algorithm. In order to make the paper self-contained and the formalisation
as light as possible, we leave them out and rely on the well-known notion of
centroid.

Given a folder Fi, a data item dj ∈ Fi and an user uk ∈ U such that Fi ∈ uk,
by 0 ≤ rijk ≤ 1 we denote the rating given by user uk to data item dj relative
to folder Fi

6 . We further assume that whenever a data item dj belongs to a
folder Fi of a user uk, an implicit default rating r̆ is assigned. Indeed, the fact
that dj ∈ Fi ∈ Fuk is an implicit indicator of being dj relevant to folder Fi

6 Remember that a data item within a community folder, may be accessed (e.g.
read, annotated and rated) by many different users.

9

for user uk. Finally, we average out the ratings given by users relative to the
same data item–folder pair, by defining rij as

rij =
1

Uij

·
Uij∑
k=1

rijk

where Uij is the number of users for which the rating rijk is defined. Note that
if Fi is a private folder then Uij = 1.

In summary, we may represent (i) the data items as a 2-dimensional matrix,
where a row represents a data item dj and a column represents a term tk. The
value of the cell is the weight wjk of term tk in the data item dj; (ii) the folder
profiles as a 2-dimensional matrix, where a row represents a folder profile fi

and a column represents a term tk. The value of the cell is the weight wik of
term tk in the folder profile fi; and (iii) the ratings as a 2-dimensional matrix,
where a row represents a folder Fi and a column represents a data item dj.
The value of the cell is the rating rij. The three matrixes are shown in Table 1,
where v = |F| is the number of folders and n = |L>| in the number of data
items.

We define the content similarity of two data items d1 and d2 (denoted CSim(d1, d2))
as the cosine of the angle that separates the vectors representing d1 and d2,
i.e.

CSim(d1, d2) =

∑m
k=1 w1k · w2k√∑m

k=1 w2
1k ·

√∑m
k=1 w2

2k

(2)

The smaller the angle, the closer (more similar) the vectors, the closer to 1
is the similarity value. This formula also allows us to determine the content
similarity of a data item dj and a folder profile fi, since this latter is, mathe-
matically speaking, also a data item. Similarly, the content similarity between
two folder profiles fi and fh can be determined. Indeed, these similarities are
CSim(fi, dj) and CSim(fi, fh), respectively. Note that the content similarity
between two data items, or between a data item and a folder profile, or be-
tween two folder profiles is the computation of the similarity among two rows
within the matrixes (a) and (b) of Table 1.

Content similarity does not take into account ratings. For accomplish this,
we follow a well-known approach for collaborative filtering [6,9,19]. We define
the rating similarity of two folders F1 and F2, written RSim(F1, F2), as the
Pearson correlation coefficient of the ratings given in the folders F1 and F2,
i.e.

RSim(F1, F2) =

∑
dj∈D(r1j − r1) · (r2j − r2)

σ1 · σ2

(3)

10

t1 . . . tk . . . tm

d1 w11 . . . w1k . . . w1m

d2 w21 . . . w2k . . . w2m

.

dj wj1 . . . wjk . . . wjm

.

dn rn1 . . . wnk . . . wnm

t1 . . . tk . . . tm

f1 w11 . . . w1k . . . w1m

f2 w21 . . . w2k . . . w2m

.

fi wi1 . . . wik . . . wim

.

fv wv1 . . . wvk . . . wvm

(a) (b)

d1 . . . dj . . . dn

F1 r11 . . . r1j . . . r1n

F2 r21 . . . r2j . . . r2n

.

Fi ri1 . . . rij . . . rin

.

Fv rv1 . . . rvj . . . rvn

(c)

Table 1
(a) The data item matrix. (b) The folder profile matrix. (c) The folder-data item
rating matrix.

where ri is the mean of the ratings ri1, . . . , rin, and σi is their standard devia-
tion. Note that, similarly to content similarity, rating similarity between two
folders is the computation of the similarity between two rows of the matrix
(c) in Table 1.

Given the two similarity measures CSim and RSim, we may define a new sim-
ilarity measure, which takes into account both the content and collaborative
aspects, as follows. The similarity Sim(F1, F2) between two folders F1 and F2

will be determined as a linear combination between their content similarity
and their rating similarity, i.e.

Sim(F1, F2) = α · CSim(f1, f2) + β ·RSim(F1, F2) (4)

11

where α, β ≥ 0. From now on, we will simply speak of the similarity of two
folders to mean the similarity defined in Equation 4.

We have now all ingredients to define our recommendation algorithms. All rec-
ommendation algorithms follow a similar four-step schema described roughly
below. In all algorithms that follow, let F ∈ u be a folder of a user u for which
the recommended items should be found. The sketch of the algorithm is as
follows:

(1) Select most similar folders. At first, select a set of most similar folders
Fi to F ∈ u;

(2) Create a pool of recommendable items. Second from this set, de-
termine a pool of possible recommendable items;

(3) Compute recommendation scores. Third, for each of the items in the
pool compute a recommendation score;

(4) Select items to recommend. Fourth, select as items to be recom-
mended a subset of items with highest score, and not yet recommended
to the target folder F ∈ u.

We proceed with a more detailed description of the above algorithm, spe-
cialised for the four cases: recommend users, communities, collections and
data items.

3.2 Recommendation of users, communities and collections

The four step algorithms for recommending users, collections and communities
are quite similar, so we present them together. For the recommendation of
users we have

(1) Select most similar folders. Compute the similarity Sim(F, Fi) (ac-
cording to Equation 4) between the target folder F ∈ u and each other
folder Fi ∈ F , and rank the folders Fi in descending order according to
their similarity value with respect to F . From this rank list, select the
top k folders or those having similarity above a certain threshold 7 . Let
MS(F) be the set of selected folders.

(2) Create a pool of recommendable users. For each folder Fi ∈ MS(F),
consider the users for which the folder Fi belongs to their folder hierarchy,
i.e. compute the set of users PU = {u′ ∈ U :∃Fi.Fi ∈ MS(F), Fi ∈
u′} \ {u}, called pool of possible recommendable users.

(3) Compute recommendation scores. Compute the recommendation
score for each possible recommendable user, i.e. for each user u′ ∈ PU

7 The choice between the two methods of folder selection does not play an important
role in the algorithm.

12

determine the user hits factor h(u′) = |{Fi : Fi ∈ MS(F), Fi ∈ u′}| (the
number of folders Fi judged as similar to the target folder F belonging
to user u′). For each user u′ ∈ PU the recommendation score s(F, u′) is
computed as follow:

s(F, u′) = h(u′) ·
∑

Fi∈MS(F),Fi∈u′

Sim(F, Fi) (5)

(4) Select users to recommend. Rank the possible recommendable users
u′ ∈ PU in descending order according to their recommendation score
value. From this rank list, select the top k users u′ or those having score
above a certain threshold and recommends those ones not yet recom-
mended, checking against the list of users already recommended to the
target folder F ∈ u.

Some comments are in place. In order to determine a set of candidate users (our
pool PU of possible recommendable users) we exploit the similarity measure
among folders (Equation 4). The more a folder Fi ∈ u′ is similar to the target
folder F ∈ u, the more related, in terms of interests, are the users u′ and u.
This explains why we first compute the most similar set of folders and then
from this set we compute the set of users (PU), which are the candidates to
be recommended. Finally, concerning Equation 5, we would like to note that
we borrow an idea taken from [21]. It presents a model to combine into an
unique rank the rank lists of several search engines. The model is based on
the assumption that the more search engines retrieve the same document, the
more this document may be considered as relevant to a query. This assumption
can be rephrased in our context as: “the more folders Fi ∈ MS(F) belong to
user u′, the more u′’s interests are related to u”.

Recommendation of communities. The recommendation algorithm of
communities is similar to the one for recommending users. Step 1. is similar to
above, except that the target folder F ∈ u is matched against a folder Fi ∈ F ,
where Fi has to be a community folder. Once the set of most similar commu-
nity folders MS(F) has been determined, the pool of possible recommendable
communities is simply PC = {C ∈ C:∃Fi.Fi ∈ MS(F), Fi ∈ C} \ {C: F ∈
C, u ∈ C}. Finally, the computation of the recommendation score s(F, C) of a
community C ∈ PU and the selection of the communities to be recommended
is similar to the one for users (the notion of user hits factor is replaced with the
notion of community hits factor, i.e. h(C) = |{Fi : Fi ∈ MS(F), Fi ∈ C}|),
and is determined as

s(F, C) = h(C) ·
∑

Fi∈MS(F),Fi∈C

Sim(F, Fi) (6)

13

Recommendation of collections. Quite similar to the above two. The
only point which is worth to work out is the definition of pool of possible
recommendable collections, PL. Once MS(F) has been determined, like in Step
1. above, we compute PL as PL = {L ∈ L:∃Fi∃d.Fi ∈ MS(F), d ∈ Fi, d ∈ L}.
The recommendation score s(F, L) of a collection L ∈ PL is based on the
collection hits factor, i.e. h(L) = |{d : ∃Fi.Fi ∈ MS(F), d ∈ Fi, d ∈ L}|), and
is determined as

s(F, L) = h(L) ·
∑

d∈L,d∈Fi,Fi∈MS(F),

Sim(F, d) (7)

3.3 Recommendation of data items

We conclude this section with the data item recommendation algorithm. This
algorithm has much in common with those we have seen above. Additionally,
we will exploit the fact that data items are pieces of text and that there might
be ratings associated. Step 1. (select most similar folders) and Step 4. (select
items to recommend) are as for the “user case”, so we omit them. Step 2. (cre-
ate a pool of recommendable items), is quite similar as seen above: the pool
of possible recommendable data items is determined by the set of data items
belonging to the folders Fi ∈ MS(F), i.e. PD = {d ∈ D:∃Fi.Fi ∈ MS(F), d ∈
Fi} \ {d ∈ D:∃F ′ ∈ u, d ∈ F ′} (we do not want to recommend data items
already known to the user). Finally, Step 3. (compute recommendation scores)
is as follows. The recommendation score for dj ∈ PD with respect to F ∈ u
is computed as a linear combination of a content-based recommendation score
and a rating-based recommendation score. The content-based recommendation
score of data item dj ∈ PD with respect to the target folder F is (see Equa-
tion 2):

sC(F, dj) = CSim(f, dj) (8)

Note that f is the folder profile of F . The ratings-based recommendation score
of data item dj ∈ PD with respect to the target folder F is (see Equation 3):

sR(F, dj) = r +

∑
Fi∈MS(F)(rij − ri) ·RSim(f, fi)∑

Fi∈MS(F) ·RSim(f, fi)
(9)

where r is the mean of the ratings in the target folder F and for Fi ∈ MS(F),
ri is the mean of the ratings of folder Fi, i.e. the mean of {rik : 1 ≤ k ≤ n}.
Note that if dj 6∈ Fi, then rij is not defined and the correspondent term in the
sum must be omitted.

14

For each data item d ∈ PD the recommendation score s(F, d) is then computed
as a linear combination of the recommendation based on content and the
recommendation based on ratings:

s(F, d) = α · sC(F, d) + β · sR(F, d) (10)

where α, β ≥ 0, and which completes the recommendation algorithms.

4 An application: CYCLADES

The model of a personalized collaborative DL environment we have presented,
is currently under implementation in the CYCLADES system [10]. The main
goal of CYCLADES is the development of a system, which provides an
open collaborative virtual archive environment, which (among others) sup-
ports users, communities (and their members) with functionality for (i) ad-
vanced search in large, heterogeneous, multidisciplinary digital archives (ii)
collaboration; and (iii) filtering and recommendation. With respect to the
model described in Section 2, a main feature of CYCLADES is that it will
use the protocol specified by the Open Archives Initiative 8 (OAI) to harvest
and index metadata records from any archive that supports the OAI stan-
dard. As a consequence, the set D of data items includes the set of metadata
records harvested from the OAI compliant archives. As a reminder, the OAI
is an agreement between several Digital Archives in order to provide inter-
operability. The specifications give data providers (individual archives, ≥ 60
to date) easy-to-implement mechanisms for making the documents’ metadata
records in their archives externally available. This external availability then
makes it possible for service providers to build higher levels of functionality.
The CYCLADES system is indeed such a service provider. From a logical
point of view we may depict the functionality of the CYCLADES system as in
Figure 2, Figure 3 shows a mock-up of the user interface, while Figure 4 shows
its architecture. It should be noted that from an architecture point of view
each box is a Web service distributed over the internet. The CYCLADES
system, which will be accessible through Web browsers, provides the user with
different environments, according to the actions the user wants to perform.

The Collaborative Work Service provides the folder-based environment for
managing metadata records, queries, collections, external documents, rat-
ings and annotations. Furthermore, it supports collaboration between CY-
CLADES users by way of folder sharing in communities.

The Search and Browse Service supports the activity of searching records

8 http://www.openarchives.org

15

Fig. 2. Logical view of CYCLADES functionality.

from the various collections, formulating and reusing queries, and browsing
schemas, attribute values, and metadata records.

The Access Service is in charge of interfacing with the underlying metadata
archives. In this project, only archives adhering to the OAI specification will
be accounted for; however, the system is extensible to other kinds of archives
by modifying the Access Service only.

Fig. 3. User interface (mock-up).

The Collection Service manages collections (i.e. their definition, creation, and
update), thus allowing a partitioning of the information space according to the
users’ interests, and making the individual archives transparent to the user.

The Filtering and Recommendation Service provides personalized filtering of
queries and query results, provides recommendations of records, collections,

16

Fig. 4. Architecture.

users, and communities.

The Mediator Service, the entry point to the CYCLADES system, acts as a
registry for the other services, checks if a user is entitled to use the system,
and ensures that the other services are only called after proper authentication.

All of these services interoperate in a distributed environment. Security and
system administration will be provided for centrally (by the Mediator Service).
The CYCLADES services can run on different machines, and will only need
a HTTP connection to communicate and collaborate.

5 Conclusions

We envisage a Digital Library not only as an information resource where users
may submit queries to satisfy their information need, but also as a collabora-
tive working and meeting space. Indeed, users looking within an information
resource for relevant data might have overlapping interests, which may turn
out to be of reciprocal interest for the users: users might well profit from
each other’s knowledge by sharing opinions and experiences. As such, we have
formalised a personalized collaborative Digital Library environment in which
the user functionality may be organised into four categories: users may (i)
search for information; (ii) organise the information space (according to the
“folder paradigm”); (iii) collaborate with other users sharing similar interests;
and (iv) get recommendations. We also described the CYCLADES system,

17

which is indeed an on going implementation of the environment. We are aware
that many concepts and techniques presented in this paper are eligible to be
the subject of further investigations, which we will address in the future.

Acknowledgements

This work is funded by the European Community in the context of the CY-
CLADES project IST-2000-25456, under the Information Societies Technol-
ogy programme.

References

[1] Giuseppe Amato and Umberto Straccia. User profile and applications to digital
libraries. In Proceedings of the 3rd European Conference on Research and
Advanced Technology for Digital Libraries (ECDL-99), number 1696 in Lecture
Notes in Computer Science, pages 184–197, Paris, France, 1999. Springer-
Verlag.

[2] Marko Balabanovic. An interface fro learning multi-topic user profiles from
implicit feedback. In AAAI-98 Workshop on recommender Systems, pages –,
1998.

[3] Nicholas J. Belkin and Bruce W. Croft. Information filtering and information
retrieval: Two sides of the same coin? Communications of the ACM, 35(12):29–
38, 1992.

[4] Daniel Billsus and Michael J. Pazzani. Learning collaborative information
filters. In Proc. 15th International Conf. on Machine Learning, pages 46–54.
Morgan Kaufmann, San Francisco, CA, 1998.

[5] Kurt Bollacker, Steve Lawrence, and C. Lee Giles. A system for automatic
personalized tracking of scientific literature on the web. In Digital Libraries 99
- The Fourth ACM Conference on Digital Libraries, pages 105–113, New York,
1999. ACM Press.

[6] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the 14th
Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), pages
43–52, Madison, Wisconsin, USA, 1998.

[7] Jamie Callan. Learning while filtering documents. In Proceedings of the 21th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (ACM SIGIR-98), pages 224–231, Melbourne, Australia,
1998.

18

[8] Claudio Carpineto, Renato De Mori, Giovanni Romano, and Brigitte Bigi.
An information-theoretic approach to automatic query expansion. ACM
Transactions on Information Systems, 19(1):1–27, 2001.

[9] Berkeley Workshop on Collaborative Filtering, 1996.
http://www.sims.berkeley.edu/resources/collab/.

[10] CYCLADES Home Page: http://www.ercim.org/cyclades/.

[11] Mariella Di Giacomo, Dan Mahoney, Johan Bollen, Andreas Monroy-
Hernandez, and Cesar M. Rouiz Meraz. Mylibrary, a personalization service
for digital library environments, 2001.

[12] DublinCore. Dublin core metadata element set:resource page:
http://purl.org/metadata/dublin core, WWW.

[13] Susan Dumais and Hao Chen. Hierarchical classification of web content.
In Proceedings of the 23rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (ACM SIGIR-00), pages
256–263, Athens, Greece, 2000.

[14] Daniel Faensen, Lukas Faulstich, Heinz Schweppe, Annika Hinze, and Alexander
Steidinger. Hermes: a notification service for digital libraries. In ACM/IEEE
Joint Conference on Digital Libraries, pages 373–380, 2001.

[15] Christos Faloutsos and Douglas W. Oard. A survey of information retrieval and
filtering methods. University of Maryland Technical Report CS-TR-3514, 1995.

[16] Lourdes Fernandez, J. Alfredo Sanchez, and Alberto Garcia. Mibiblio: personal
spaces in a digital library universe. In ACM DL, pages 232–233, 2000.

[17] Peter W. Foltz and Susan T. Dumais. Personalized information delivery:
An analysis of information filtering methods. Communications of the ACM,
35(12):51–60, 1992.

[18] David J. Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using
collaborative filtering to weave information tapestry. Communications of the
ACM, 35(12):61–70, 1992.

[19] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An
algorithmic framework for performing collaborative filtering. In Proceedings
of the 22th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (ACM SIGIR-99), pages 230–237,
Berkeley, CA USA, 1999.

[20] Information Filtering Resources.
http://www.enee.umd.edu/medlab/filter/filter.html.

[21] Joon Ho Lee. Analysis of multiple evidence combination. In Proceedings
of the 20th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (ACM SIGIR-97), pages 267–276,
Philadelphia,PA, July 1997.

19

[22] Mandar Mitra, Amit Singhal, and Chris Buckley. Improving automatic query
expansion. In Proceedings of the 21th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (ACM
SIGIR-98), pages 206–214, Melbourne, Australia, 1998.

[23] J. Mostafa, S. Mukhopadhyay, W. Lam, and M. Palakal. A multilevel approach
to intelligent information filtering: Model, system, and evaluation. ACM
Transactions on Information Systems, 15(4):368–399, 1997.

[24] Alexandros Moukas. Amalthaea: Information discovery and filtering using a
multiagent evolving ecosystem. In Proceedings Practical Applications of Agents
and Multiagent Technology, London, GB, 1996.

[25] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens:
An Open Architecture for Collaborative Filtering of Netnews. In Proceedings of
ACM 1994 Conference on Computer Supported Cooperative Work, pages 175–
186, Chapel Hill, North Carolina, 1994. ACM.

[26] Luis Mateus Rocha. Talkmine and the adaptive recommendation project. In
ACM DL, pages 242–243, 1999.

[27] Gerard Salton and J. Michael McGill. Introduction to Modern Information
Retrieval. Addison Wesley Publ. Co., Reading, Massachussetts, 1983.

20

