
GDup: De-duplication of
Scholarly Communication Big Graphs

Claudio Atzori, Paolo Manghi, Alessia Bardi
Istituto di Scienza e Tecnologie dell’Informazione ”A. Faedo” - CNR

Via Moruzzi 1, Pisa, Italy
Email: {name.surname}@isti.cnr.it

Abstract—Today, several online services offer functionalities to
access information from big scholarly communication graphs,
which interlink entities such as publications, authors, datasets,
organizations, etc. Such graphs are often populated over time
as aggregations of multiple sources and therefore suffer from
entity duplication problems. Although deduplication of graphs
is a known and actual problem, solutions tend to be dedicated
and address a few of the underlying challenges. In this paper,
we propose the GDup system, an integrated, scalable, general-
purpose system for entity deduplication over big information
graphs. GDup supports practitioners with the functionalities
needed to realize a fully-fledged entity deduplication workflow
over a generic input graph, inclusive of Ground Truth support,
end-user feedback, and strategies for identifying and merging
duplicates to obtain an output disambiguated graph. GDup is
today one of the core components of the OpenAIRE infras-
tructure production system, monitoring Open Science trends
on behalf of the European Commission.

Keywords-deduplication; information graphs; big data; schol-
arly communication

I. INTRODUCTION

A large number of online services offer today access to
very large information graphs obtained as integration of
distributed data sources. Their intent is typically that of
providing integrated and enhanced access to such sources
by applying a set of harmonisation and enrichment pro-
cesses to the original data, e.g. harmonization of properties,
identification of links between objects, named entity recog-
nition (e.g. author identifiers). Examples in the scholarly
communication domain are the Google Scholar graph1, the
Microsoft Academic graph2, and the OpenAIRE scholarly
communication graph3, which collect from various sources
(e.g. libraries, publication repositories, publishers, author
directories) and build a graph whose objects are authors,
organizations, publications, etc.. Due to the heterogeneity
and overlap of the original sources, which naturally keep
publications relative to the same authors and organizations,
such graphs suffer from disruptive duplication rates and
adequate countermeasures must be taken. Data curators can
find today several tools supporting duplicate identification

1Google Scholar: http://scholar.google.com
2Microsoft Academic Graph https://academic.microsoft.com
3OpenAIRE scholarly communication graph, http://api.openaire.eu

for large “flat” collections of objects. Those tools can typi-
cally be adapted to efficiently deduplicate objects of specific
types in arbitrarily large collections. However, such solutions
do not naturally extend to the problem of deduplication
of very large graphs. In order to implement a full entity
deduplication workflow for “Big Graphs” data curators end-
up realizing patchwork systems, tailored to their graph data
model, often bound to their physical representation of the
graph, expensive in terms of design, development, and main-
tenance, and in general not reusable by other practitioners
with similar problems in different domains.
In this paper, starting from the experiences and solutions for
duplicate identification in big data collections, we address
the broader and more complex problem of entity deduplica-
tion in big information graphs. By graph we denote any
digital representation of a set of entity types (structured
properties) and relationships between them. By big we
mean that duplicate identification over the objects of such
entity types require parallel-oriented approaches to scale up
to arbitrary numbers and still perform in reasonable time.
By entity deduplication we mean the combined process of
duplicate identification and graph disambiguation. Duplicate
identification has the aim of efficiently identifying pairs of
equivalent objects of the same entity type; graph disam-
biguation has the goal of removing the duplication anomaly
from the graph, while semantically preserving the topology
of the graph.
To support practitioners facing the need of realizing a full
entity deduplication workflow on top of a custom big graph,
we have realized an integrated, scalable, general-purpose
system for entity deduplication over big graphs called GDup.
GDup is intended to support data curators with the out-of-
the-box functionalities they require to support a fully-fledged
entity deduplication workflow over an generic input graph,
inclusive of “ground truth” support, end-user feedback, and
strategies for identifying and merging duplicates to obtain
an output disambiguated graph. As such, GDup is not about
better recall/precision for given deduplication problems, but
rather about provision of tools enabling data curators to
concentrate on modeling and customizing their deduplica-
tion solutions without bothering about the extra conceptual
and technical challenges that such task necessarily imply.



This work formally describes the underlying challenges by
providing a graph type and object language, defining the
functions (semantics and configuration) required to manip-
ulate the input graph through its deduplication phases, and
eventually explaining how the resulting conceptual architec-
ture has been implemented in practice into a real production
system. GDup is today in use in the production system of
the OpenAIRE infrastructure.4 The infrastructure populates a
scholarly communication big graph, whose goal is to support
monitoring of Open Science trends and research impact for
funders, institutions, and researchers in specific disciplines.
GDup is used to deduplicate publications and organizations
to ensure sensible statistics are delivered.
Outline: Section II describes the OpenAIRE infrastructure
use-case to draw the general requirements that a big graph
deduplication system should meet and analyses the state-of-
the-art to highlight the limits of current solutions. Section III
formally presents the functional architecture of GDup, while
Section IV describes its technical implementation and gives
an example of its usage in the OpenAIRE infrastructure.

II. DEDUPLICATION OF BIG INFORMATION GRAPHS

To describe the problem of big graph deduplication we in-
troduce the OpenAIRE infrastructure system, whose services
populate a big graph of scientific publications, datasets, orga-
nizations, authors, and other related entities, and whose size
and deduplication challenges are representative of this class
of problems. The use-case highlighted the lack of solutions
in the literature capable of addressing such challenges and
provided input for the definition of functional and non-
functional requirements leading to the realization of GDup.

A. The OpenAIRE Information Space Graph

The OpenAIRE infrastructure is an initiative [1] funded by
the European Commission (soon to become a Legal Entity)
whose purpose is to facilitate, foster, and support Open
Science in Europe. The infrastructure has been operational
for almost a decade and successful in linking people, ideas
and resources for the free flow, access, sharing, and re-use of
research outcomes. On the one hand, OpenAIRE manages
and enables an open and participatory network of people
willing to identify the commons and forums required to
foster and implement Open Science policies and practices
in Europe and globally. On the other hand, it supports
the technical services required to facilitate and monitor
Open Science publishing trends and research impact across
geographic and discipline boundaries.
The OpenAIRE service infrastructure consists of metadata
aggregation services and information inference services
whose purpose is to populate the OpenAIRE scholarly
communication graph [2]. Its main entities are Research
Products (datasets, publications, and software), Persons,

4OpenAIRE infrastructure, http://www.openaire.eu

Organizations, Funders, Funding Streams, Projects, and
Provenance Data Sources (from which entity information
is collected):
Products are intended as the outcome of research activities

and may be related to Projects, Persons or Organizations
(when the link to the person is not available). OpenAIRE
supports three kinds of research outcome: Datasets, Soft-
ware, and Publications. As a result of merging equivalent
objects collected from separate data sources, a Result object
may have several physical manifestations, called instances;
instances indicate URL(s) of the fulltext, access rights, and
a relationship to the data source that hosts the file;

Persons are individuals that have one (or more) role(s)
in the research domain, such as authors of a Result or
coordinator of a Project;

Organizations include companies, research centers or insti-
tutions involved as project partners or that are responsible
for operating data sources;

Funders are Organizations (e.g. European Commission,
Wellcome Trust, FCT Portugal, Australian Research Coun-
cil) responsible for a list of Funding Streams (e.g. FP7
and H2020 for the EC), which are strands of investments.
Funding Streams identify the strands of funding managed
by a Funder and can be nested to form a tree of sub-funding
streams (e.g. FP7-IDEAS, FP7-HEALTH);

Projects are research projects funded by a Funding Stream
of a Funder. Investigations and studies conducted in the
context of a Project may lead to one or more Products;

Data Sources are the web sources from which OpenAIRE
collects the metadata of the objects populating the Open-
AIRE graph; e.g. publication/dataset/software repositories,
journals, publishers. Each object is associated to the data
source from which it was collected.

On top of the graph OpenAIRE offers, beyond a search
and browse portal, a number of applications, called Dash-
boards, in support of researchers (Research Community
Dashboard5), organizations (Institutional Dashboard), fun-
ders (Funder Dashboard6), and project coordinators (Project
Dashboard). The dashboards allow users to access statistics
relative to Open Access trends and research impact for orga-
nizations, funders, and projects. Deduplication of products
and organization is therefore crucial to deliver meaningful
statistics to dashboard users.

B. Object deduplication in OpenAIRE

The OpenAIRE information space graph suffers from heavy
duplication phenomena. The main causes are content dupli-
cation in the harvested data sources and the low adoption
by those of global persistent identifiers for the entities
involved. Indeed, although scholarly communication has
agreed on some best practices for PIDs (e.g. DOI for

5Funder Dashboard, http://provide.openaire.eu
6Funder Dashboard, http://monitor.openaire.eu

http://www.openaire.eu
http://provide.openaire.eu
http://monitor.openaire.eu


scientific articles, ORCID identifiers for authors, ISNI for
organizations, FundRef for funders) in the majority of the
cases either such identifiers are not yet adopted or, when
they are, are not made available through the object metadata.
As a consequence, OpenAIRE aggregation services generate
“stateless” unique object identifiers (i.e. IDs that can always
be identically re-generated from the same object) for each
publication, author, or organization extracted from the meta-
data. The strategy is to generate unique OpenAIRE objects
when harvesting from data sources and subsequently rely in
the deduplication process to merge the equal ones.
Duplication may be of two main kinds: “intra-data source”,
i.e. duplicates generated by records from one data source,
or “cross-data source”, i.e. duplicates generated by records
from different data sources. In particular, objects of the
entity types publication and organization are affected by
both forms of duplication, which in turn lead to specific
big graph deduplication challenges:

Publications Intra-data source publication duplicates are
very common in aggregators (e.g. NARCIS, CORE-UK,
etc.), and in some rare cases also in institutional reposito-
ries, due to the lack of curation of the data source managers.
Not all aggregators collect from other aggregators, but
this is indeed the case for OpenAIRE, which is trying
to maximize the number of publications minimizing the
number of sources to actively harvest (today around 1100).
Cross-data source duplicates are very common as we can
at least expect all co-authors of a publication to deposit in
the respective institutional repositories, which will likely
be OpenAIRE data sources. Besides, the publication can
be further deposited in thematic repositories (e.g. arxiv,
PubMed, Repec) or be collected by aggregator services
collected by OpenAIRE. In general duplication rate is not
high, since the same publication is expected to be deposited
a few times, ideally by the authors.

Organizations Organizations are mainly collected from
CRIS systems and entity registries, such as project
databases from the European Commission (CORDIS) or
other funders today included in OpenAIRE (around 20).
Their duplication can be due to both intra-data source and
cross-data source issues. Some data sources provide unique
identifiers for organizations in the metadata, others pro-
vide unique names, but not identifiers, and others provide
organization names inserted by users, hence potentially
different for the same organization within the same data
source. To further increase the chaos there is no best-
practice on “granularity” for organization names (i.e. some
provide a department, some the principal institution, some
provide both), on the language to be used, and on the
specific structure (e.g. University of Warsaw and Warsaw
University). Finally organizations change names over time.

From this analysis it is clear that deduplication of the Open-
AIRE graph requires specific deduplication techniques for

the types above. For the sake of our investigation we will fo-
cus on publications and organizations, whose features cover
a wide range of challenges in this field. For publications
numbers can be very high, in the order of 100Mi, and grow
every day generally of a small fraction: this means computa-
tional performance is an issue as heuristics alone cannot mit-
igate the time to compute over such large collection; to cope
with evolution, deduplication should count on an incremental
approach where deduplication can be executed by adding the
new records, without running deduplication on the whole
collection; finally, humans must be able to provide feedback
to the system in order to permanently fix the inevitable
glitches of an automated approach, which leads to false
positives or negatives. For organizations cardinality is not
an issue as we are talking about hundreds of thousands, but
deduplication suffers from the lack of informative metadata
and the lack of best practices mentioned above. Accordingly,
humans play an important role in providing feedback to
the results of deduplication, and the possibility to count on
existing “ground truth” of organizations provided by other
organizations, such as isni.org and grid.ac, becomes crucial.
Ground truth of organizations are curated by humans and
for each organization they keep a number of “aliases” that
can be very useful to deduplicate otherwise mismatching
organization names or acronyms collected in OpenAIRE.
Finally, both for publications and organizations, once the
groups of similar objects have been identified, specific
merging techniques must be adopted that replace groups with
one “representative object” for the group and associate the
relationships of the merged objects to such representative.

C. State of the art and motivations

The deduplication of a graph of the size and features of
OpenAIRE’s requires a system capable of supporting an end-
to-end workflow, which initially focuses on the identification
of duplicates for the different entity types and concludes with
the construction of a de-duplicated graph. More specifically,
a system capable of supporting such workflow should tackle
the following high-level challenges:
• Graph orientation: should be able to represent and manage

graph-shaped information spaces, hence handle multiple
entity types and relationships between them;

• General purpose-ness: should be customizable and config-
urable in order to cope with graphs of any type and whose
entities can manifest different deduplication scenarios;

• Ground Truth: should be able to import ground truth sets
as well as generate ground truth sets from deduplication
results;

• Scalability: deduplication is a challenging task per-se,
especially in terms of computational cost; in order to
process large graphs the system should ground on parallel
computing techniques;

• Data curators feedback: no machinery will ever replace
human ability to judge whether two objects of the same

isni.org
grid.ac


entity are indeed duplicates or should never be regarded as
such; to this end such system must allow domain experts
to evaluate the results and provide feedback to the system.

Looking up the literature, it is clear that deduplication
research has a long history [3], [4], and it is ironically af-
fected by forms of ambiguity as there are different common
names used to refer to this research topic. Among these
we can mention: record linkage, entity resolution, dupli-
cate detection, co-reference resolution, object consolidation,
reference reconciliation, fuzzy match, object identification,
object consolidation, entity clustering, merge/purge, identity
uncertainty, etc.. Many techniques developed in such re-
search field resulted into respective deduplication tools over
the years [5], [6], [7], [8]. Among existing approaches some
address the problem of record linkage or entity resolution
for “big” flat collections, some consider specific problems in
the disambiguation of “graphs”, but to our knowledge none
has proposed systems for the deduplication of big graphs.
Among the first category we can mention Dedoop7 [10],
PACE [6], and Dedupalog [11]. The first two tools are
built on distributed column stores, respectively Hadoop
MapReduce and Cassandra, and allow to efficiently process
large collections to identify duplicates. The latter focuses on
deduplication optmization based on preconditions. However,
non of these address graphs deduplication and merging
of objects. On the side of graphs, approaches have been
explored but not effectively implemented, such as [13]
and [14] which include semantics of graph links as input
of deduplication and disambiguation. As a consequence,
practitioners in the need of disambiguate big graphs end
up reusing existing tools or techniques and assemble them
to build custom deduplication solutions for their graphs.
Such ad-hoc solutions are typically expensive to maintain
and hardly reusable in different contexts.

III. GDUP ARCHITECTURE

We have designed and implemented a system for graph
deduplication called GDup [12] whose aim is to address
the general lack of tools capable of addressing a complete
graph deduplication workflow, from the graph input phase
to the materialisation of the disambiguated graph, enhanced
by end user feedback and supported by ground truth. The
architecture of system is depicted in Figure 1, whose main
functional areas support an end-to-end workflow enabling
data curators at:

1) Importing their graph in the system;
2) Configuring for each entity type the relative duplicate

identification “configurations”;
3) Managing Ground Truth generation and injection;
4) Configuring graph disambiguation strategies;
5) Supporting data curators at manually fixing the results

of deduplication;

7Dedoop http://dbs.uni-leipzig.de/dedoop

Figure 1. GDup: architecture of de-duplication workflow (and related
technologies in current OpenAIRE implementation)

6) Exporting a disambiguated graph, i.e. devoid of dupli-
cate nodes.

In the following we will first describe the type and object
language of GDup based on the Property Graph Model [15],
then formally introduce the individual areas of the architec-
ture and the relative functionalities.

A. GDup graph model

The workflow depicted in Figure 1 takes an input “raw”
graph GR and applies a number of functions that change
the topology of the initial graph by adding or removing
objects and edges to yield its “deduplicated” version GD.
To semantically describe this workflow, GDup’s data model
must be able to represent (i) the type schema of the input
graphs, since duplicate conditions are formulated at the level
of entities and based on the properties of such entities, and
(ii) different logical views (in the following “overlays”)
of the graph, since the transition of the graph from one
workflow stage to the next will be logical. Among known
models for graph representation, the Property Graph Model
(PGM) [16] has become quite popular in graph databases
implementations due to its expressiveness, which subsumes
several and simpler forms of graphs types, and its extensions
to match specific representation challenges. Of interest to our
work are the Extended PGM graphs (EPGM), described as
a set of vertices and edges [17] where:
• Vertex: an object that has a unique identifier, a label that

denotes its type (i.e. properties) and potentially incoming
and outgoing edges;

• Edge: an object that connects two vertices, may have
properties, has a label that denotes the type of relationship
between the two vertices, and has a direction, i.e. head
vertex and tail vertex;

• Properties: are a set of key/value pairs associated to a
vertex;



• Overlays: are labels tagging vertices and edges in order to
define “logical graphs”, i.e. subset of vertexes and edges
bound together by some logic; the same vertices and edges
may belong to different logical graphs.

In order to impose an expected structure to vertexes and
edges, we defined the Structured Property Graph Model
(SPGM) as an extension of EPGM which includes the notion
of graph schema. A graph schema associates a vertex type
VT as defined in EPGM to a given set of properties and to
a set of expected edge types:

VT =< [l1, . . . , ln], {↔ VT1
, . . . ↔ VTm

} >

Accordingly, an SPGM graph is an EPGM graph whose
nodes conform, i.e. respect the structure, of a given graph
schema.

Figure 2. Structured Property Graph: from raw graph to deduplicated
graph

Figure 2 illustrates an example of an SPGM graph instance
with GR and GD overlays, which includes objects of type
Article:

Article = < [identifier, title, authors, date, subjects],
{↔ Authors} >

The graph shows how objects 1 and 2 have been detected as
equal (they have the same identifier) and merged into one
representative object dedup 1. The overlay dedupGraph
identifies the nodes in the final deduplicated graph. In the
following, by “adding the object/relationship to a graph” we
imply the object/relationship is decorated with the overlay
of the target graph.

B. Deduplication Workflow Overview

In this section we illustrate more in detail the functional
architecture of GDup by presenting the functional break-
down of the deduplication workflow it implements. More
specifically, it is composed of the following phases:
1) Graph Import: The import phase is responsible of im-
porting a graph expressed according to known standards,
such as RDFG and JSON-LD, into the graph database of
GDup, defined according to a given graph schema. Data

curators are responsible for mapping standard exchange
format for graphs onto their SPGM representation (mappings
onto the PGM model were proposed in [15], [18]).
2) Candidate identification and matching: This phase op-
erates over an anchor graph GA, obtained by “injecting”
ground truths for each type VT to the raw graph GR, to
identify pairs of equivalent objects. For simplicity, we will
assume that GA = GR as if no ground truth was injected, and
introduce the benefits of ground truth later on. Data curators
fire this phase by selecting, for each type VT , a configuration
for candidate detection and for candidate matching of the
objects in VT . Candidate identification consists of a set
of duplicate identification configurations, while candidate
matching fine tunes the similarity function to be applied
to determine equivalence of two objects in terms of their
properties. Precision and recall of a solution depend on the
ability of data curators to fine-tune such configurations.
Candidate identification Deduplication systems often em-
bed techniques to reduce the inefficiency of quadratic com-
plexity derived by the pairwise comparisons between the
objects. To this aim GDup provides a selection of clustering
hash functions, which group objects into “blocks” of likely
similar objects. The purpose of such functions h is to
associate objects o ∈ VT to the same “block” Bh(o) (or
canopy [9], [19]) if the objects are potential duplicates,
in order to limit the comparisons to the worthy ones and
achieving logarithmic complexity. The main challenge is
therefore to define a function h that for all objects o, o′ ∈ VT

analyses their properties and sends them to the same block
Bk (namely when h(o) = h(o′) = k) maximizing the
chances that o1 and o2 are equivalent; h should be tailored
to the semantic features of VT , in order to minimize false
positives, i.e. objects that are not equivalent and associated
to the same block Bk, and false negatives, i.e. equivalent
objects associated to different blocks. GDup allows to add
multiple clustering functions within the same configuration,
causing the same object to be included in more than one
block, hence minimizing false negatives. Examples of h are
functions calculating ngrams, fetching prefixes of words, etc.
Candidate matching Candidate matching is the phase in
the deduplication workflow that performs the comparison
between object pairs. The object matching operation in
GDup is defined as the computation of a similarity measure
Fsim between two objects, mapped in the range [0 . . . 1],
where 1 indicates perfect match. A match between a pair of
objects is considered positive, and the objects equivalent,
when the score obtained by a given similarity function
reaches a given configurable threshold Th ∈ [0 . . . 1]. GDup
supports fine tuning of candidate matching configuration, by
setting up a similarity function and the relative block sliding
window.
Similarity function The properties of an object can contribute
to the equivalence match in different ways. For example,
when matching publications, the title can be considered as



more relevant than the publisher. Hence, GDup can be con-
figured to associate to each property li a similarity function
fi with a weight wi. Given two objects o, o′ belonging to a
given Entity Type VT , the system calculates the similarity
Fsim(o, o′) as the weighted mean of the contributes from the
different similarity functions, as defined in the configuration:

Fsim(o, o′) =

n∑
i=1

(wifi(o.li, o
′.li))

n∑
i=1

wi

Where
n∑

i=1

wi = 1 and 0 <= fi <= 1 are respectively

the weights and the similarity functions w.r.t. to each object
property li. In order to adapt to different application do-
mains, GDup supports a predefined set of general purpose
and established similarity functions f , and a mechanism to
easily include new ones. The selection of such functions was
inspired by the work of Cohen, Ravikumar, and Fienberg
in [20] and the most relevant ones are: ExactMatch, JaroWin-
kler, Level2JaroWinkler, Level2Levenstein, Levenstein, Au-
thorSurnamesDistance, SortedJaroWinkler, SubStringLeven-
stein. Others have been added and obtained as specializations
of known similarity functions to adapt to special cases:
for example LevensteinTitle preprocesses the title strings to
“normalize” them before applying Levenstein distance.
Block sliding window Once the configuration of the similar-
ity functions for all interested types VT is set, GDup runs
pair-wise comparisons in all blocks B to identify equivalent
objects. Since the number of objects in B’s maybe very high,
as well as the number of blocks B generated for VT , GDup
allows to fine-grain configure a sliding window heuristic to
further reduce the number of matches [21]. The heuristics
sorts the objects in B using a sorting function sort then,
given a “window size” w, applies Fsim to the first element of
B with the following w objects; once finished, the algorithm
moves to the second element of B and repeats the matching
phase for another w objects. The algorithm ends when it
reaches the last element in B. Users can configure GDup
to specify which sorting function to use among a list of
functions (e.g. DESC, ASC, although custom functions can
be added) and to which property li it must be applied.
The duplicate identification phases generate a set of pairs of
equivalent objects, which in turn constitute the equivalence
graph GE . As a result of the matching, whenever the distance
between two objects o and o′ successfully passes the given
threshold, then the following actions are performed: (i) the
relationship equalTo between the two is added to the graph
and attached to the overlay equivalenceGraph, and (ii)
both objects are attached to the overlay equivalenceGraph.
Before moving to the next phase of duplicates grouping and
merging, the graph GE is further cleaned by applying the
data curator feedback assertions. As described in the relative
section 5) such assertions refine the de-duplicaiton process

by adding further relationships or removing relationships
from the equivalence graph GE as indicated by expert users.
3) Duplicate grouping and merging: Graph disambiguation
consists of two distinct phases. The first phase is duplicate
grouping and is in charge of identifying all connected
components (CC) in the equivalence graph GE with overlay
equivalenceGraph. The second phase is duplicate merge
and is responsible of, given all connected components,
generating a representative object and distributing the rela-
tionships of the merged objects to keep the graph topology
coherent with the newly created representative object.
Duplicates grouping Duplicate grouping consists in iden-
tifying the connected components in GE by exploiting the
transitivity of the equivalence’s relationship equalTo. For
example, if < o1, equalTo, o2 > and < o2, equalTo, o3 >
we can conlude that < o1, equalTo, o3 >. If no other object
in GE is reached via a relationship equalTo from o1, o2,
or o3, then the group of objects o1, o2, o3 is a connected
component and represents a set of equivalent objects, ready
to be merged into one object. The grouping phase distributes
equivalence relationships and adds them to the overlay of GE

until all its connected components are found. The problem
is typically solved using heuristics [22].
Duplicates merging Once duplicate grouping is completed
the deduplication workflow proceeds with the action of
merging the objects in each group. For each connected
component this phase builds a representative object, elected
to virtually replace all duplicates in the group. To this aim,
two issues must be tackled: representative object election
and distribution of relationships.
Representative object election In this phase, for each con-
nected component in GE , GDup builds a representative
object out of the information provided by the objects therein.
Important aspects involved in the process are (i) generating
a stateless identifier for the representative object (the same
identifier is produced from the same group of duplicates),
and (ii) merging strategy of the duplicate objects’ properties.
To this aim, GDup first elects a pivot object, which is the
object with the “smallest” identifier in the group, when
sorted in lexicographic ascending order. The representative
object identifier is generated by appending to a prefix
dedup to the identifier of the pivot object. The properties
of the representative object are then generated starting from
the pivot object and, for each other object in the group,
following the shadowing strategy as indicated by the user
for each property: ifMissing, if the pivot object does not
have a value for a property (e.g. date property), the merge
adds the first such property found in the the merged objects;
enrich, the pivot object is enriched with all values found in
the merged objects (e.g. subject properties).
Distribution of relationships The creation of a representative
object implies the dismissal of the objects it merges, hence
modifies the graph’s topology. To preserve the consistency
of the graph, relationships engaging merged objects must



be propagated to the representative object. GDup allows
users to pick one of the following relationship distribution
policies: ByType, i.e. all relationships with objects of the
type listed are to be redistributed to the representative object,
and ByPivot, i.e. for the given types, only the relationships
associated to the pivot object are kept and the ones of
the other objects in the group disregarded. In the example,
only the relationships to the authors of the pivot object are
regarded. This strategy is conservative as author object dedu-
plication is highly subject to errors and the very same author
may be represented multiple times in the graph, as different
objects. Applying a ByType technique for the Author type
would likely create article representative objects related with
redundant authors. Figure 2 shows one representative object
dedup 1 obtained from merging the nodes 1 and 2. dedup 1
inherits all properties of the two objects and its relationships.
The combination of duplicate grouping and duplicate merg-
ing generates a new dedup graph GD identified by the
overlay dedupedGraph. GD is created as follows:
• Adding the new representative objects obtained from each

group of duplicates;
• Adding the relationships created from and to the repre-

sentative object as specified in the configuration;
• Adding all objects in GR that are not in GE : objects

merged into a representative object should not be visible;
• Adding all relationships in GR that are not incoming or

outgoing an object in GE : all such relationships were
replaced by new and corresponding relationships to the
representative objects.

4) Ground Truth injection: A ground truth is a graph gtVT

representing a set of authority validated assertions about
groups of duplicate objects in the input raw graph GR.
Each assertion claims that a given set of objects in GR is
equivalent and provides the anchor object (i.e. a represen-
tative object that persists due to its high level of trust) for
them, with an identifier, properties and links to other objects.
Assertions are trees rooted in anchor objects and whose
leaves are the merged objects, reached by relationships
mergedBy, whose identifiers are those of the objects in GR.
The introduction of a Ground Truth approach changes the
perspective of the deduplication process, since part of the
deduplication can be pre-processed by replacing sets of
merged objects with the relative representative object in the
input graph GR.
In GDup a ground truth gtVT

is typically the subset of the
equivalence graph GE for a given type VT under a specific
deduplication configuration. As a good practice users may,
for example, run deduplication using highly successful con-
figurations (i.e. the “obvious” matches) to generate results
(representative objects) which are then stored as ground
truths for each type VT . This way, in subsequent rounds
of deduplication, the input graph GR can be injected with
the “obvious” ground truth matches and users can focus
on harder levels of deduplication configuration. This pre-

processing phase is also useful for two other reasons: (i)
reducing the computational time of entity deduplication by
limiting the identification of duplicates to the objects that
are not yet merged by the Ground Truth, and (ii) resolving
duplicates based on a Ground Truth knowledge, typically
validated by experts, rather than leaving it solely to a
mechanical process.
More specifically, for each ground truth gtVT

selected by
the user, the normalized anchor graph GA is obtained from
the raw graph GR by:

• Adding to all objects and relationships in GR to GA;
• Adding all anchor objects in gtVT

to GA;
• Adding all relationships incoming and outgoing the

anchor objects to GA;
• Removing from GA all objects in GR that are merged

by anchor objects, as well as their relationships to other
objects.

5) Data Curators Feedback: GDup allows experienced
users to supervise the deduplication workflow, refine the
results, and then exploit such feedback in subsequent ap-
plications of the process to refine the candidate matching
phase. Data curators are provided with tools with which they
can search, browse and visualize the objects of any entity
type in the GD, in order to “repair” representative objects
that were not correctly created or create groups of duplicates
that were overlooked by the process. Such feedback results
in a set of assertions for each entity type, which can be of
two kinds:

• Equality assertion: an equality assertion is a group of
objects {o1, . . . on} of type VT in the graph GD, where
the objects can be representative objects or raw objects in
the graph. The assertion claims that all raw objects in the
input graph GR, directly or indirectly (via a representative
object) involved in the set, are equal. When such assertions
are applied after the candidate mathcing phase, the side
effect is to add a relationship < o, equalTo, o′ > for
each pair of objects o, o′ ∈ {o1, . . . on} to the equivalence
graph GE .

• Diversity assertion: a diversity assertion states that two
objects o and o′ are distinct. If either or both of the
objects are representative objects, the claim naturally
extends to all objects in GR merged by the representative
ones. When such assertions are applied after the candidate
matching phase, the side effect is to remove relationship
< o, equalTo, o′ > from the equivalence graph GE (if
they exist) for each pair of objects o, o′ that may be
produced by the assertion.

6) Graph export: Any time, data curators can opt to export
any of the overlay graphs populated in this process. The
export can follow, as for the input, a mapping from the
internal graph schema provided by data curators and one
of the standards supported by the GDup .



IV. GDUP IMPLEMENTATION

GDup implements the functionalities described in the previ-
ous section by assembling known Open Source technologies
(GDup Release 1.0 [23]), as shown in Figure 2. GDup is
today used in the production system of OpenAIRE to dedu-
plicate publications and organizations in the information
graph. In the following we give an high-level description
of the implementation and also report on numbers and
performances in the adoption of the tool.

A. Graph database

To achieve the intended objectives, GDup ’s graph database
should support, scalability of size, parallel processing, flex-
ibility of models, and efficient bulk read and write opera-
tions. Such conditions exclude the adoption of classic graph
databases, oriented to efficient graph traversal functionali-
ties [24]. Since the beginning of the project, back in 2010,
the OpenAIRE infrastructure based its solution and services
on HBase technology8 [25]. HBase is the open source ver-
sion of BigTable [26], the large volume distributed storage
system developed by Google: “a distributed storage system
for managing structured data that is designed to scale to [...]
petabytes of data across thousands of commodity servers”.
HBase is based on the Hadoop framework9, enabling large
scale distributed data processing and analytics based on Map
Reduce programming model [27], [28].
HBase represented the optimal candidate for bulk integrat-
ing, populating, storing, processing, deduplicating graphs
while addressing all non-functional requirements above;
since the average real-case we were confronted with is
characterized by low-density graphs, a representation of
graphs as adjacency lists was adopted. For the future, as
part of the OpenAIRE services road map, a solution based
on Apache Spark GraphX 10 is to be designed, covering all
the deduplication theory and methods described in this paper,
but also meeting the requirements of frequent metadata ag-
gregation and integration of graphs demanded by OpenAIRE
services.
The GDup graph is represented in HBase by associating each
object in the graph to an HBase row. Each row contains the
following columns: (i) the identifier of the entity, (ii) the
type of entity, (iii) the body of the entity (its properties and
values), and (iv) one column for each relationship, where the
name of the columns is constructed from the relationship
semantics (e.g. cites), and the ID of the target row. This
representation of the graph does not explicitly encode SPGM
graph overlays. Starting from the raw graph, the anchor
graph and the deduped graph are incrementally constructed
by adding representative object rows and “virtually deleting”
the rows/edges merged by these. This is modeled by adding

8HBase - https://hbase.apache.org
9Apache Hadoop, http://hadoop.apache.org
10Apache Spark GraphX, https://spark.apache.org/graphx

a deleted column to the row and a deleted flag in the cell
of the relationships to be removed. The equivalence graph
is represented by explicit relationships equalTo between the
rows. With respect to the deduplicated graph in Figure 2, the
objects dedup 1, 3, and 2 would be represented as depicted
in Figure 3. Since the deduplicated graph is obtained by
modifying the raw graph, GDup runs a “reset” Map job
before a new deduplication workflow is run, which restores
the original raw graph in HBase.

Figure 3. Graph object representation in HBase

B. Deduplication workflow: implementation

As suggested in Figure 2 the core phases of the deduplica-
tion workflow manipulate the graph in HBase via Hadoop
MapReduce processing jobs. Other technologies, such as
Solr and PostgresDB are used to implement the data curator
tools required to explore the deduplicated graph, to store
assertions and ground truths. The following sections provide
insights on the implementation of GDup for each phase of
the workflow.
1) Candidate identification and matching: The candidate
identification phase is implemented as a MapReduce job
that (i) in the Map phase applies the clustering function
to all rows of a given type to generated blocks of candidate
objects, and (ii) in the Reduce phase applies the candidate
matching function, while sorting of the objects in a block
is performed by exploiting the very same functionality as
offered by Hadoop. Blocks are independent and the Reduce
phase is therefore processed in parallel to perform pair-wise
matching over a sliding window. Overall, the parallel exe-
cution in combination with heuristics significantly optimizes
the execution time.
Precision, recall, and performance depend on configuration
parameters and must be fine-tuned by data curators. The
current GDup implementation does not yet implement user
admin interfaces for the configuration of the workflow
phases. Data curators need to edit the files containing JSON
representations of such configurations which reflect the ones
exemplified in the listings in the previous section. Users can
add new clustering functions, matching functions, etc. to the
system as instances of respective Java abstract classes.
2) Duplicate grouping and merging:

https://hbase.apache.org
https://spark.apache.org/graphx


3) Ground Truth injection: Ground truths are generated by
data curators, from the deduplicated graph, by indicating
an entity type VT whose representative objects are partic-
ularly reliable and must be preserved as a ground truth. A
ground truth is stored in a separate Hadoop HBase table,
which stores a copy of the deduplicated graph rows for
representative objects (body and relationships) and includes
columns of type merges :: objectID pointing to all objects
“merged” by the representative one. Since no user interface
is yet available, the creation of a ground truth can only be
activated manually by data curators via shell scripts.
The injection of a ground truth in the graph is performed
before the deduplication process is fired. This can happen
manually via shell scripts or via APIs (as in the case of
OpenAIRE, where data processing activities are managed
by D-NET orchestration workflows [31]). The process is
performed by Map jobs that scan the HBase table for the
given ground truth and for each row create a representative
row in the HBase graph table, virtually delete rows and
columns deprecated by the merging process, and adds the
inverse relationships towards representative objects.
4) Data Curators Feedback: The deduplicated graph is
indexed in a Solr (4.9.0) insallation which creates a single
shard collection for each deduplicated type VT of the graph.
Data curators can, through a GUI, explore the representative
objects generated by the process and create assertions to
refine the quality of the graph. Assertions are stored in a
PostgreSQL database and are applied, on request of the
data curator, after the duplicate identification. The process
is performed with two separate writing/delete phases, re-
spectively applying equality assertions, hence adding rela-
tionships equalTo, and diversity assertions, hence removing
such relationships.

C. GDup results in OpenAIRE

The major production instance of GDup is deployed as a
key service in the OpenAIRE infrastructure over an Hadoop
cluster featuring 16 worker nodes, totalling 160 CPU cores,
480GB of RAM, and 21TB of allocated HDFS disk space
– the cluster is used also for heavy full-text mining tasks.
In this context GDup is used to perform deduplication
of publication and organization entities in the OpenAIRE
scholarly communication graph.
Table I summarizes the results over the 30 million pub-
lications aggregated by the OpenAIRE production system
from around 1000+ data sources. Candidate identification
generates blocks grouping publications by DOI and by hash
keys produced from a normalized form of the publica-
tion’s title. Such keys are generated from the suffix and
the prefix of adjacent words and on the concatenation of
ngrams produced from adjacent words. From the 30 mil-
lion publications aggregated in OpenAIRE (June 2018) this
configuration produces 8Mi blocks, 5Mi of which contain
more than 1 object and will be therefore further processed in

subsequent candidate matching phase. Candidate matching
sorts publications with the title normalized by removing
punctuation, stopwords and numbers; it uses a sliding win-
dow of size 100 and a max number of elements of 2000.
The matching function takes into account the DOI for
equality preconditions, the diversity of numbers in the title
for diversity. Eventually, it applies a similarity function, with
a threshold of 0.98, matching the title of the articles, number
of authors, and an approximate author names match. Dates
are not regarded as their meaning is generally ambiguous.
GDup identifies 10.5M duplicates, merges them in 4.2M
representative records, to deliver a total of 24Mi records
visible today at http://www.openaire.eu. Interestingly, the
90% of representatives merges 2 and 3 duplicates.

Phase Execution time Output

Candidate
identification ∼ 1h25′ 8M blocks

Candidate
matching ∼ 3.5h 5B comparisons

& 10M equalsTo
relationships

Connected
components

∼ 1h20′ 4.2M connected
components

Repr. object election
& Rels distribution

∼ 1h45′ 4.2M repr. objects &
10.5M duplicates

Table I
PUBLICATIONS DEDUPLICATION STATISTICS (JUN 2018)

V. CONCLUSION

Among data challenges also entity deduplication is living
a period of Big Data renaissance. Extending this trend to
large graphs of interlinked objects opens further interesting
and actual questions. This paper has presented GDup, which
offers a production ready system an integrated and general-
purpose system for deduplication of big graphs. GDup is
today used in the production system of the OpenAIRE
infrastructure. Still, its completion is ongoing to make it a
fully user-friendly product, i.e. completion of data curators
GUI, and to address further functional scenarios, e.g. dedu-
plication by crowd-sourcing by delegating to a set of experts
the addition of assertions to clean deduplication results and
build ground truth.

ACKNOWLEDGMENT

This research was co-funded by the EC OpenAIRE2020
project (grant 643410, call H2020-EINFRA-2014-1) and
EC OpenAIRE-Advance project (grant 777541, call H2020-
EINFRA-2017-1).

http://www.openaire.eu


REFERENCES

[1] P. Manghi, N. Manola, W. Horstmann, and D. Peters, “An
infrastructure for managing ec funded research output-the
openaire project”, The Grey Journal (TGJ): An International
Journal on Grey Literature, vol. 6, no. 1, 2010.

[2] P. Manghi, N. Houssos, M. Mikulicic, and B. Jörg,
“The data model of the openaire scientific communica-
tion e-infrastructure,” in Metadata and Semantics Research.
Springer, 2012, pp. 168–180.

[3] I. P. Fellegi and A. B. Sunter, “A theory for record linkage”,
Journal of the American Statistical Association, vol. 64, no.
328, pp. 1183–1210, 1969.

[4] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity reso-
lution approaches on real-world match problems”, Proceedings
of the VLDB Endowment, vol. 3, no. 1-2, pp. 484–493, 2010.

[5] P. Jurczyk, J. J. Lu, L. Xiong, J. D. Cragan, and A. Correa,
“FRIL: A tool for comparative record linkage”, in AMIA
annual symposium proceedings, p. 440, 2018.

[6] P. Manghi, M. Mikulicic, and C. Atzori, “De-duplication of
aggregation authority files”, International Journal of Metadata,
Semantics and Ontologies, vol. 7, no. 2, pp. 114–130, 2012.

[7] P. Christen, “Febrl-: an open source data cleaning, deduplica-
tion and record linkage system with a graphical user interface”,
in Proceedings of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM, 2008,
pp. 1065–1068.

[8] H. Kang, L. Getoor, B. Shneiderman, M. Bilgic, and L. Li-
camele, “Interactive entity resolution in relational data: A
visual analytic tool and its evaluation”, Visualization and
Computer Graphics, IEEE Transactions on, vol. 14, no. 5, pp.
999–1014, 2008.

[9] L. Kolb, A. Thor, and E. Rahm, “Parallel sorted neighborhood
blocking with mapreduce”, arXiv arXiv:1010.3053, 2010.

[10] L. Kolb and E. Rahm, “Parallel entity resolution with De-
doop”, Datenbank-Spektrum, vol. 13, no. 1, pp. 23–32, 2013.

[11] A. Arasu, C. R, and D. Suciu, “Large-scale deduplication with
constraints using dedupalog”, in 2009 IEEE 25th International
Conference on Data Engineering, March 2009, pp. 952–963.

[12] C. Atzori, “gDup: an integrated and scalable graph dedupli-
cation system”, Ph.D. dissertation, University of Pisa, 2016.

[13] I. Bhattacharya and L. Getoor, “Deduplication and group
detection using links”, in Proc. of the 2004 ACM SIGKDD
Workshop on Link Analysis and Group Detection, 2004.

[14] A. Saeedi, E. Peukert, and E. Rahm, “Using link features for
entity clustering in knowledge graphs”, in The Semantic Web,
A. Gangemi, R. Navigli, M.-E. Vidal, P. Hitzler, R. Troncy,
L. Hollink, A. Tordai, and M. Alam, Eds. Cham: Springer
International Publishing, 2018, pp. 576–592.

[15] M. A. Rodriguez and P. Neubauer, “Constructions from dots
and lines”, Bulletin of the American Society for Information
Science and Technology, vol. 36, no. 6, pp. 35–41, 2010.

[16] I. Robinson, J. Webber, and E. Eifrem, Graph Databases:
New Opportunities for Connected Data. “O’Reilly Media,
Inc.”, 2015.

[17] M. Junghanns, A. Petermann, K. Gómez, and E. Rahm,
“Gradoop: Scalable graph data management and analytics with
hadoop”, arXiv arXiv:1506.00548, 2015.

[18] O. Hartig, “Reconciliation of rdf* and property graphs”, arXiv
arXiv:1409.3288, 2014.

[19] A. McCallum, K. Nigam, and L. H. Ungar, “Efficient cluster-
ing of high-dimensional data sets with application to reference
matching”, in Proceedings of the sixth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining.
ACM, 2000, pp. 169–178.

[20] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison
of string metrics for matching names and records”, in Kdd
workshop on data cleaning and object consolidation, vol. 3,
2003, pp. 73–78.

[21] Q. Wang, M. Cui, and H. Liang, “Semantic-aware blocking
for entity resolution”, IEEE Transactions on Knowledge and
Data Engineering, vol. 28, no. 1, pp. 166–180, Jan 2016.

[22] D. Tomaszuk and K. Pk, “Reducing vertices in property
graphs”, PLOS ONE, vol. 13, no. 2, pp. 1–25, 02 2018. [On-
line]. Available: https://doi.org/10.1371/journal.pone.0191917

[23] C. Atzori and P. Manghi, “gdup: a big graph entity dedupli-
cation system - Release 1.0”, Feb. 2017. [Online]. Available:
https://doi.org/10.5281/zenodo.292980

[24] M. A. Rodriguez and P. Neubauer, “The graph traversal
pattern”, arXiv preprint arXiv:1004.1001, 2010.

[25] L. George, HBase: the definitive guide. “O’Reilly Media,
Inc.”, 2011.

[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data”, ACM Trans.
on Computer Systems (TOCS), vol. 26, p. 4, 2008.

[27] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters”, Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[28] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon,
“Parallel data processing with mapreduce: a survey”, ACM
SIGMOD Record, vol. 40, no. 4, pp. 11–20, 2012.

[29] J. Lin and M. Schatz, “Design patterns for efficient graph
algorithms in mapreduce”, in Proceedings of the Eighth Work-
shop on Mining and Learning with Graphs, ser. MLG ’10.
New York, NY, USA: ACM, 2010, pp. 78–85. [Online].
Available: http://doi.acm.org/10.1145/1830252.1830263

[30] T. Jungblut, “Graph exploration with apache hadoop and
mapreduce” [Blog]

[31] P. Manghi, M. Artini, C. Atzori, A. Bardi, A. Mannocci, S. L.
Bruzzo, L. Candela, D. Castelli, and P. Pagano, “The d-net
software toolkit: A framework for the realization, maintenance,
and operation of aggregative infrastructures”, Program, vol. 48,
no. 4, pp. 322–354, 2014. 10.1108/PROG-08-2013-0045

https://doi.org/10.1371/journal.pone.0191917
https://doi.org/10.5281/zenodo.292980
http://doi.acm.org/10.1145/1830252.1830263
10.1108/PROG-08-2013-0045

	Introduction
	Deduplication of Big Information Graphs
	The OpenAIRE Information Space Graph
	Object deduplication in OpenAIRE
	State of the art and motivations

	GDup architecture
	GDup graph model
	Deduplication Workflow Overview
	Graph Import
	Candidate identification and matching
	Duplicate grouping and merging
	Ground Truth injection
	Data Curators Feedback
	Graph export


	GDup implementation
	Graph database
	Deduplication workflow: implementation
	Candidate identification and matching
	Duplicate grouping and merging
	Ground Truth injection
	Data Curators Feedback

	GDup results in OpenAIRE

	Conclusion
	References

