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Abstract

Objectives Radiomics-based analyses encompass multiple steps, leading to ambiguity regarding the optimal
approaches for enhancing model performance. This study compares the effect of several feature selection methods,
machine learning (ML) classifiers, and sources of radiomic features, on models’ performance for the diagnosis of
clinically significant prostate cancer (csPCa) from bi-parametric MRI.

Methods Two multi-centric datasets, with 465 and 204 patients each, were used to extract 1246 radiomic features per
patient and MRI sequence. Ten feature selection methods, such as Boruta, mRMRe, ReliefF, recursive feature
elimination (RFE), random forest (RF) variable importance, L1-lasso, etc., four ML classifiers, namely SVM, RF, LASSO, and
boosted generalized linear model (GLM), and three sets of radiomics features, derived from T2w images, ADC maps,
and their combination, were used to develop predictive models of csPCa. Their performance was evaluated in a
nested cross-validation and externally, using seven performance metrics.

Results In total, 480 models were developed. In nested cross-validation, the best model combined Boruta with
Boosted GLM (AUC= 0.71, F1= 0.76). In external validation, the best model combined L1-lasso with boosted GLM
(AUC= 0.71, F1= 0.47). Overall, Boruta, RFE, L1-lasso, and RF variable importance were the top-performing feature
selection methods, while the choice of ML classifier didn’t significantly affect the results. The ADC-derived features
showed the highest discriminatory power with T2w-derived features being less informative, while their combination
did not lead to improved performance.

Conclusion The choice of feature selection method and the source of radiomic features have a profound effect on
the models’ performance for csPCa diagnosis.

Critical relevance statement This work may guide future radiomic research, paving the way for the development of
more effective and reliable radiomic models; not only for advancing prostate cancer diagnostic strategies, but also for
informing broader applications of radiomics in different medical contexts.
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Key Points
● Radiomics is a growing field that can still be optimized.
● Feature selection method impacts radiomics models’ performance more than ML algorithms.
● Best feature selection methods: RFE, LASSO, RF, and Boruta.
● ADC-derived radiomic features yield more robust models compared to T2w-derived radiomic features.

Keywords Radiomics, Prostate cancer, Machine learning, MRI

Graphical Abstract

Boruta, RFE, L1-lasso, and RF variable importance were the top performing feature selection
methods, while the choice of machine learning classifier didn't significantly affect the
results. The ADC-derived features showed the highest discriminatory power.
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Introduction
Prostate cancer (PCa) is a prevalent male disease and early
diagnosis is the cornerstone of effective treatment, with
the estimated 10-year survival rate reaching 99% [1].
Although a definite diagnosis of PCa is possible only
through biopsy, magnetic resonance imaging (MRI) plays
a pivotal role in the preliminary assessment and locali-
zation of suspicious areas [2].
Radiomics leverages the capabilities of artificial intelli-

gence (AI) to harness non-invasive quantitative bio-
markers extracted from medical images, linked to tumor
heterogeneity and biological characteristics, aiding in the
detection, diagnosis, and characterization of various dis-
eases, including PCa [3–7]. A radiomics analysis com-
prises of several methodically interconnected steps,
including image acquisition, region of interest (ROI)
delineation, extraction of hundreds to thousands of

radiomic features, feature selection, and model develop-
ment [8].
Feature selection plays a pivotal role in the reliability

and generalizability of radiomics workflows [9]. This is
because redundancy and multicollinearity among the
variables can have a detrimental impact on machine
learning (ML) models, leading to misleading outcomes,
overfitting, and reduced interpretability [10]. Prior efforts
to address issues related to excessive feature dimensions,
overfitting, and improving the predictive performance of
ML classifiers, have focused on standardizing imaging
biomarkers and addressing radiomic feature reproduci-
bility and stability. Despite numerous advancements,
there remains a critical gap in rigorously evaluating the
performance of various feature selection methods and ML
classifiers in radiomics, particularly in the context of PCa
diagnosis [11].
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Various feature selection methods have been proposed
to reduce large radiomic datasets into a reasonable
number of features that sufficiently describe the most
relevant and predictive imaging characteristics for the
classification task in question [12, 13]. The feature selec-
tion methods are divided into three methodological
categories, including filter, wrapper, and embedded
methods, each offering distinct approaches to identifying
the most informative features while mitigating issues such
as overfitting and dimensionality reduction [14]. Different
feature selection methods may identify different features
as relevant, and the choice of method can affect the per-
formance of the radiomics model [13].
Several studies have also investigated the effect of

algorithm choice on radiomics performance, and it has
been found that model performances may vary greatly
[15]. While tree-based methods, predominantly random
forest (RF), tend to perform best, some studies have
concluded the superiority of support vector machine
(SVM) and linear models, as well [16–20]. Nevertheless,
the impact of the choice of ML on radiomics models for
the diagnosis of PCa remains elusive.
The objective of this study was to comprehensively

assess the impact of several commonly used feature
selection methods and ML classifiers, as well as bipara-
metric MRI (bpMRI) sequences, in the context of
radiomics-based PCa diagnosis, using different validation
settings. While prior studies have explored individual
aspects of radiomic analysis [16, 21–26], a comprehensive
comparison of diverse feature selection techniques and
predictive models has been lacking. This study aims to fill
this gap by systematically evaluating these methods to
enhance the performance and reliability of radiomics
models in PCa research.

Methods
The workflow of the radiomics analysis, divided into four
distinct steps, is presented in Fig. 1.

Study population and outcome definition (step 1)
Two populations were used; the ProstateNET [27], which is
a multi-centric, multi-vendor PCa dataset, and the publicly
available ProstateX2 dataset [28]. The ProstateNET con-
tains thousands of PCa multiparametric MRI (mpMRI)
images acquired using different models of Siemens, Philips,
and GE vendors, collected from 12 clinical centers across 8
European countries. For the purpose of our study, a total of
465 retrospectively collected patient data with manual
lesion segmentations, acquired without an endorectal coil,
were available. The ProstateX2 dataset consists of 204
patient mpMRI, acquired on two types of Siemens 3-T
scanners, using a turbo spin echo sequence without an
endorectal coil. The corresponding manually generated

lesion segmentations [29, 30] are publicly available (https://
github.com/rcuocolo/PROSTATEx_masks).
The clinical characteristics of the two datasets are

provided in Table 1. Clinically significant prostate cancer
(csPCa) was histologically determined through a biopsy or
prostatectomy, and was defined as Gleason grade ≥ 2,
based on the European Association of Urology guidelines,
which corresponds to a Gleason score of ≥ 7 [31, 32].
Based on this definition, 74% of patients in the Prostate-
NET were diagnosed with csPCa, and 25% in the
ProstateX2.

Preprocessing and feature extraction (step 2)
First, bias field correction was applied to all T2w images to
compensate for intensity non-uniformities using the N4
Bias Field Correction algorithm [33] and the Python
package SimpleITK (version 2.2.12.0.0). All the subsequent
pre-processing steps, including resampling to isotropic
voxel, the normalization of pixel intensity values, and dis-
cretization, were performed using functions embedded
within the open-source PyRadiomics library (version 2.2.0)
[34]. The exact configuration is given in Supplementary
Table 1. All scans were resampled to 1mm in-plane reso-
lution and slice thickness using b-spline interpolation. The
ROIs were also resampled to the apparent diffusion coef-
ficient (ADC) maps. Intensity normalization was per-
formed, scaling the values by a factor of 100. For histogram
discretization, the absolute discretization approach (fixed
bin size) was adopted as it tends to preserve a higher
number of reproducible features for MRI compared to
relative discretization [35]. The optimal bin width was
defined so that the number of bins in each image histogram
would range from 30 to 128 bins [36].
From each 3D ROI, representing the tumor volume,

radiomic features were extracted from T2w scans and
ADC maps. Feature extraction included shape, first order,
gray level co-occurrence matrix, gray level run length
matrix, gray level size zone matrix, gray level dependence
matrix, and neighboring gray-tone difference matrix fea-
tures. Beyond the original image domain, higher-order
features were extracted from transformed images, after
applying a Gradient filter, Laplacian of Gaussian filter
with kernel sizes from 2mm to 5mm, and Wavelet filters
with all the combinations of high- and low-pass filters on
each image dimension. This process resulted in 1246
features being extracted per patient and MRI sequence.

Feature selection (step 3)
Prior to feature selection, we removed highly correlated
features and variables irrelevant to the outcome. Low var-
iance features were excluded using a variance threshold of
0.01 and multicollinear features were eliminated using a
Pearson correlation threshold of 0.85. If two variables had a
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correlation surpassing the threshold, we removed the one
with the largest mean absolute correlation with other
variables. Subsequently, supervised feature selection was
applied solely to the training data to prevent data leakage.
To retain only features correlated with the outcome, a
Wilcoxon rank sum test was performed with a significance
threshold of 0.1, allowing us to prioritize a subset of fea-
tures for further feature selection. This approach sig-
nificantly reduced the number of features (< 150 variables),
facilitating a more exhaustive feature selection.
Some of the most commonly employed feature selection

techniques were implemented, including four filter meth-
ods, three wrapper methods, and three embeddedmethods.

Filter methods

● Minimum redundancy maximum relevance
ensemble (mRMRe): uses mutual information to

select features correlated with the outcome
(relevance) while minimizing the correlation
between features (redundancy).

● ReliefF: evaluates feature importance based on
instance learning, by assessing differences in
feature values among different classes. A feature
score is assigned to each feature based on differences
between nearest neighbor instance pairs.

● Correlation-based feature selection with forward
selection strategy (CorrSF): a forward selection
strategy based on correlation coefficients to
progressively include pertinent features while
accounting for their interrelationships.

● Statistically equivalent multiple feature subsets
(SES): a forward-backward feature selection, that
assesses feature relevance through univariate
association and conditional independence tests,
ranking features based on statistical significance.

Wrapper methods

● Boruta: based on RF, features are selected by
comparing their importance with that of shadow
features (randomly permuted). The top-ranked
features undergo p-value correction via the
Benjamin Hochberg method [37], with those
surpassing the threshold being selected.
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Fig. 1 The workflow of the study in four steps

Table 1 Characteristics of the two study populations

Population characteristics ProstateNET ProstateX2

Number of patients 464 204

Age at diagnosis, (mean ± SD; years) 65.03 ± 7.9 63.47 ± 7.1

PSA total, (mean ± SD; ng/mL) 11.45 ± 18.89 13.62 ± 9.18

Lesion volume, (mL) 3.15 ± 6.8 1.42 ± 0.41

Patients with csPCa—Gleason score ≥ 7 74% 25%
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● Recursive feature elimination (RFE): fits a model
with all the features, and iteratively removes the
weakest one. Herein, SVM was utilized for RFE-
based feature selection.

● Genetic algorithm (GA): mimicking genetic
evolution, it evaluates various feature subsets,
evolves them over generations through genetic
operations, and assesses their fitness using a
predefined criterion.

Embedded methods

● L1-lasso: the least absolute shrinkage and selection
operator (lasso) with L1-regularization is applied to
linear models, penalizing the absolute coefficients to
promote feature sparsity, driving some coefficients to
zero [38].

● HSIC-lasso: integrates the Hilbert-Schmidt
independence criterion (HSIC) [39] into the lasso
framework. Unlike L1-lasso it measures the
independence between the features and the
outcome. It can be viewed as a convex variant of the
mRMR feature selection algorithm.

● Random Forest variable importance (RF-imp):
leverages the tree minimal depth methodology
within an RF framework to evaluate the importance
of features.

Model construction and performance assessment (step 4)
Two experimental settings were considered for training
and validating the predictive models [40]. In setting 1, a
nested cross-validation (CV) on the ProstateNET dataset
was performed with 3 outer folds, ensuring that the dis-
tribution of the target class and clinical sites was the same
across folds. In setting 2, models were trained on the
ProstateNET dataset and validated externally using the
ProstateX2.
Regarding the imaging source of radiomics features,

three scenarios were examined: (i) using T2w-derived
features, (ii) using ADC-derived features, and (iii) com-
bining T2w and ADC features (bpMRI).
For building the radiomics-based models, we selected

four well-established and methodologically diverse ML
classifiers, namely the RF, LASSO, and SVM with radial
basis function, and boosted generalized linear models
(Boosted GLM). Each classifier was trained with 20 times
repeated 5-fold CV to tune the hyper-parameters.
Downsampling was applied to balance the classes and
parameter tuning was obtained through a grid search and
adaptive resampling of the parameter grid.
Model performance was estimated based primarily on

the area under the receiver operating characteristic curve
(AUC) and the F1 score, but other metrics were also

computed, including balanced accuracy (BA), negative
predictive value (NPV), positive predictive value (PPV)/
precision, sensitivity/recall, and specificity.

Statistical analysis
Descriptive statistics were reported as mean values and
standard deviation. Models’ performance in terms of ROC
AUC was compared using DeLong’s test, and p-values less
than 0.05 were considered significant. Due to multiple
comparisons, Bonferroni correction was used to adjust the
significance threshold and control the overall Type I error
rate. The effect of different factors and their interactions
on models’ performance was quantified through a multi-
factor analysis of variance. We tested the null hypothesis
that there were no significant differences in the models’
AUC performance attributed to the factors under con-
sideration. Specifically, we evaluated the main effects of
feature selection, ML classifier, and MRI sequence, as well
as their interactions. Additionally, the most commonly
selected radiomic features across various feature selection
methods and settings were identified, providing insights
into the features that consistently contributed to pre-
dictive performance. Feature selection, predictive model-
ing, and statistical analyses were performed using R
(version 4.3.0).

Evaluation of radiomics research quality
To ensure credibility, reproducibility, and transparency of
radiomics research, this study adhered to the CheckList
for EvaluAtion of Radiomics Research (CLEAR) [41]
reporting guidelines, and its quality was assessed using the
METhodological RadiomICs Score (METRICS) [42]. In
total, 44 out of 58 items in the CLEAR checklist were
addressed (yes:44; no:10; and n/a: 4) and the METRICS
quality score was “Excellent” (81.7%). Details of the
CLEAR and METRICS scores are summarized in Sup-
plementary Tables S2 and S3.

Results
Given the different validation settings, MRI sequences,
feature selection methods, and ML classifiers, the study
resulted in a total of 480 radiomic models. Tables 2 and 3
show the average models’ performance (AUC and F1),
using different feature selection methods, for settings 1
and 2, respectively. In both cases, the ADC-derived
radiomic features resulted in a higher average perfor-
mance compared to T2w radiomic features, while the
combination of T2w and ADC features (bpMRI) did not
yield any noticeable improvements. In setting 1, the
mRMRe and RF-imp methods led to the highest average
AUC (0.74 ± 0.04) and F1 (0.78 ± 0.04), respectively. In
setting 2, the L1-lasso and RF-imp resulted in the best
AUC (0.74 ± 0.04), while RFE produced the highest F1
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(0.78 ± 0.04). Detailed performance assessment for each
classifier and feature selection method is provided in
Supplementary Figs. S1 and S2.
Considering the potential interactions between feature

selection methods and ML classifiers, we evaluated whe-
ther certain combinations work better than others. The
boxplots in Figs. 2 and 3 illustrate the mean performance
for each combination of feature selection method and ML
classifier, in settings 1 and 2, respectively. In setting 1, the
best model resulted from the combination of Boruta with
Boosted GLM (AUC= 0.71, F1= 0.76). Boruta, RFE, L1-
lasso, and RF-imp were among the top-performing feature
selection methods, usually in combination with Boosted
GLM and LASSO classifiers. Notably, models utilizing
mRMRe had the highest variability. The best model in
setting 2 resulted from the combination of L1-lasso with
Boosted GLM (AUC= 0.71, F1= 0.47). L1-lasso showed
the overall best performance regardless of the choice of

the classifier, while RFE, Boruta, and RF-imp were among
the top-performing feature selection methods.
Models that exhibited significantly superior perfor-

mance in setting 2, as determined by Delong’s test, after
correcting for multiple comparisons (p-adjusted= 0.
00042), are shown in Fig. 4. The x-axis indicates the fre-
quency of a specific model being significantly better than
others, while the models are listed on the y-axis in des-
cending order of occurrence. Out of the 120 models
trained and tested in the external validation setting, 62
exhibited at least once a significant superiority over other
models. The most frequent statistically significant differ-
ences arose from the combination of bpMRI features with
either RF-imp and Boosted GLM classifier, totaling 31
instances, or L1-lasso and SVM classifier, totaling 30
instances. The results of a grouping analysis, categorized
based on MRI sequence, feature selection method, and
ML classifier are presented in Supplementary Fig. S3.

Table 2 Average AUC and F1-score achieved with each feature selection method in setting 1, stratified by MRI sequence

Feature selection AUC F1 score

T2w ADC bpMRI T2w ADC bpMRI

Boruta 0.68 ± 0.04 0.71 ± 0.03 0.72 ± 0.03 0.74 ± 0.03 0.76 ± 0.03 0.77 ± 0.03

CorrSF 0.65 ± 0.03 0.72 ± 0.03 0.71 ± 0.02 0.72 ± 0.03 0.76 ± 0.04 0.74 ± 0.03

GA 0.66 ± 0.02 0.71 ± 0.04 0.67 ± 0.03 0.73 ± 0.03 0.76 ± 0.04 0.74 ± 0.02

HSIC-lasso 0.66 ± 0.04 0.71 ± 0.04 0.7 ± 0.03 0.73 ± 0.04 0.76 ± 0.05 0.75 ± 0.04

L1-lasso 0.68 ± 0.05 0.71 ± 0.06 0.69 ± 0.05 0.74 ± 0.05 0.77 ± 0.04 0.77 ± 0.02

mRMRe 0.62 ± 0.04 0.74 ± 0.04 0.72 ± 0.05 0.65 ± 0.04 0.76 ± 0.05 0.74 ± 0.04

SES 0.67 ± 0.06 0.7 ± 0.04 0.68 ± 0.05 0.74 ± 0.04 0.77 ± 0.04 0.77 ± 0.04

Relief 0.65 ± 0.05 0.7 ± 0.03 0.63 ± 0.03 0.74 ± 0.05 0.76 ± 0.04 0.76 ± 0.03

RF-imp 0.68 ± 0.04 0.72 ± 0.03 0.71 ± 0.02 0.74 ± 0.03 0.78 ± 0.04 0.76 ± 0.04

RFE 0.66 ± 0.04 0.72 ± 0.04 0.72 ± 0.02 0.73 ± 0.04 0.76 ± 0.04 0.77 ± 0.02

Table 3 Average AUC and F1-score achieved with each feature selection method in setting 2, stratified by MRI sequence

Feature selection AUC F1 score

T2w ADC bpMRI T2w ADC bpMRI

Boruta 0.63 ± 0.01 0.7 ± 0.01 0.71 ± 0.01 0.42 ± 0.02 0.47 ± 0.02 0.46 ± 0.02

CorrSF 0.62 ± 0.01 0.71 ± 0.02 0.71 ± 0.02 0.42 ± 0.01 0.46 ± 0.01 0.45 ± 0.01

GA 0.62 ± 0.01 0.73 ± 0.01 0.65 ± 0.03 0.42 ± 0.02 0.46 ± 0.02 0.46 ± 0.02

HSIC-lasso 0.6 ± 0.02 0.71 ± 0.03 0.71 ± 0.02 0.42 ± 0.02 0.47 ± 0.01 0.47 ± 0.01

L1-lasso 0.65 ± 0.01 0.73 ± 0.02 0.71 ± 0.01 0.42 ± 0.02 0.48 ± 0.01 0.48 ± 0.02

mRMRe 0.63 ± 0 0.68 ± 0.03 0.68 ± 0.02 0.41 ± 0.01 0.48 ± 0.01 0.46 ± 0.01

SES 0.62 ± 0.01 0.68 ± 0.01 0.68 ± 0.01 0.41 ± 0.01 0.46 ± 0.01 0.47 ± 0

Relief 0.62 ± 0 0.66 ± 0.02 0.71 ± 0.02 0.42 ± 0.01 0.47 ± 0.02 0.47 ± 0.01

RF-imp 0.62 ± 0.01 0.7 ± 0.04 0.73 ± 0.02 0.4 ± 0.03 0.47 ± 0.01 0.49 ± 0.01

RFE 0.63 ± 0.02 0.71 ± 0.01 0.72 ± 0.02 0.44 ± 0.01 0.5 ± 0.02 0.41 ± 0
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Fig. 2 Boxplots of the AUC and F1 score for all the combinations of feature selection methods and ML classifiers in setting 1. The average performance
(red points) is provided on the right side of the boxes
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Fig. 3 Boxplots of the AUC and F1 score for all the combinations of feature selection methods and ML classifiers in setting 2. The average performance
(red points) is provided on the right side of the boxes

Mylona et al. Insights into Imaging          (2024) 15:265 Page 8 of 16



Fig. 4 Models exhibiting statistically significant differences in ROC AUC in setting 2 and the frequency at which they outperformed other models in
Delong’s test
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Comparison across ML classifiers and MRI sequences
The performance of the ML classifiers for settings 1 and 2,
averaged across all the feature selection methods, is presented
in Tables 4 and 5, respectively. The Boosted GLM exhibited a
marginally improved performance in several cases, while a
slight superiority of RF was only noticed in setting 2. Never-
theless, no discernible trend emerged to suggest the consistent
superiority of any particular algorithm.

Performance variation explained
Figure 5 shows what percentage of the AUC variation can
be explained by different factors for all the experiments
combined (Fig. 5A), and for the two settings separately
(Fig. 5B). In total, the feature selection method, the clas-
sifier, the MRI sequence, and their interactions accounted
for 45% of the variation in AUC. The MRI sequence was
the most dominant source of variability as it explained
28.8% of the total variance in AUC scores (F= 4.17,

p < 0.05). Feature selection accounted for 5.8% (F= 92.83,
p < 0.05) and the interaction of feature selection and MRI
sequence explained another 5.7% of the total variation
(F= 2.02, p < 0.05). The effects of these factors/interac-
tions on AUC were all statistically significant. Contrarily,
the classifier and its interactions with other factors
accounted for less than 2% of the total variance each, and
the corresponding effects were non-significant. Notably,
in setting 2, the MRI sequence explained 73% of the
variation in AUC compared to 21% for setting 1.

Radiomic features
Considering the ADC-only radiomic feature set, Fig. 6A
shows the number of features selected with each feature
selection method and setting/fold. The number of fea-
tures ranged from 3 to 27, with the Boruta (18–26 fea-
tures) and RFE (17–22 features) selecting more features,
while SES (4–6 features) and RF-imp (7–8 features)

Table 4 Average performance (across feature selection methods and folds) for each ML classifier in setting 1

ML algorithm AUC Balanced accuracy F1 NPV PPV Sensitivity Specificity

T2w GLMboost 0.67 ± 0.04 0.62 ± 0.05 0.74 ± 0.05 0.38 ± 0.06 0.81 ± 0.06 0.68 ± 0.05 0.68 ± 0.06

LASSO 0.66 ± 0.04 0.61 ± 0.04 0.73 ± 0.05 0.37 ± 0.06 0.8 ± 0.05 0.68 ± 0.07 0.68 ± 0.07

RBF-SVM 0.66 ± 0.06 0.61 ± 0.06 0.71 ± 0.05 0.37 ± 0.08 0.81 ± 0.06 0.64 ± 0.04 0.64 ± 0.06

RF 0.66 ± 0.03 0.62 ± 0.03 0.72 ± 0.03 0.37 ± 0.07 0.82 ± 0.05 0.65 ± 0.03 0.65 ± 0.05

ADC GLMboost 0.72 ± 0.04 0.67 ± 0.04 0.76 ± 0.05 0.42 ± 0.06 0.84 ± 0.05 0.69 ± 0.07 0.64 ± 0.07

LASSO 0.71 ± 0.03 0.66 ± 0.04 0.77 ± 0.04 0.42 ± 0.05 0.84 ± 0.05 0.71 ± 0.05 0.62 ± 0.06

RBF-SVM 0.72 ± 0.05 0.68 ± 0.04 0.78 ± 0.03 0.43 ± 0.05 0.85 ± 0.05 0.71 ± 0.03 0.64 ± 0.06

RF 0.71 ± 0.03 0.66 ± 0.03 0.75 ± 0.03 0.41 ± 0.06 0.84 ± 0.06 0.68 ± 0.03 0.64 ± 0.06

bpMRI GLMboost 0.7 ± 0.04 0.66 ± 0.05 0.76 ± 0.04 0.41 ± 0.05 0.84 ± 0.06 0.7 ± 0.05 0.7 ± 0.05

LASSO 0.7 ± 0.04 0.65 ± 0.04 0.77 ± 0.03 0.42 ± 0.07 0.83 ± 0.05 0.72 ± 0.06 0.72 ± 0.06

RBF-SVM 0.7 ± 0.04 0.65 ± 0.04 0.75 ± 0.03 0.4 ± 0.07 0.83 ± 0.05 0.69 ± 0.05 0.69 ± 0.05

RF 0.68 ± 0.04 0.64 ± 0.03 0.74 ± 0.03 0.39 ± 0.06 0.83 ± 0.04 0.67 ± 0.04 0.67 ± 0.04

Table 5 Average performance (across feature selection methods) for each ML classifier in setting 2

ML algorithm AUC Balanced accuracy F1 NPV PPV Sensitivity Specificity

T2w GLMboost 0.62 ± 0.02 0.57 ± 0.01 0.42 ± 0.02 0.81 ± 0.02 0.29 ± 0.01 0.7 ± 0.06 0.39 ± 0.08

LASSO 0.63 ± 0.01 0.57 ± 0.01 0.42 ± 0.02 0.81 ± 0.02 0.29 ± 0.01 0.71 ± 0.08 0.39 ± 0.1

RBF-SVM 0.62 ± 0.02 0.55 ± 0.02 0.41 ± 0.01 0.8 ± 0.01 0.29 ± 0.02 0.72 ± 0.05 0.36 ± 0.08

RF 0.62 ± 0.02 0.59 ± 0.02 0.43 ± 0.02 0.81 ± 0.01 0.32 ± 0.01 0.67 ± 0.07 0.51 ± 0.05

ADC GLMboost 0.7 ± 0.04 0.64 ± 0.01 0.48 ± 0.01 0.87 ± 0.01 0.34 ± 0.01 0.8 ± 0.04 0.48 ± 0.05

LASSO 0.69 ± 0.02 0.62 ± 0.01 0.46 ± 0.02 0.87 ± 0.02 0.33 ± 0.01 0.8 ± 0.05 0.43 ± 0.06

RBF-SVM 0.7 ± 0.03 0.62 ± 0.02 0.47 ± 0.02 0.87 ± 0.02 0.33 ± 0.01 0.79 ± 0.04 0.44 ± 0.03

RF 0.71 ± 0.03 0.64 ± 0.02 0.48 ± 0.02 0.86 ± 0.01 0.35 ± 0.03 0.75 ± 0.04 0.47 ± 0.04

bpMRI GLMboost 0.7 ± 0.04 0.63 ± 0.02 0.47 ± 0.03 0.87 ± 0.04 0.33 ± 0.02 0.81 ± 0.08 0.45 ± 0.04

LASSO 0.69 ± 0.03 0.61 ± 0.02 0.46 ± 0.02 0.87 ± 0.03 0.32 ± 0.02 0.81 ± 0.07 0.4 ± 0.03

RBF-SVM 0.71 ± 0.03 0.62 ± 0.02 0.46 ± 0.02 0.86 ± 0.02 0.32 ± 0.02 0.79 ± 0.05 0.43 ± 0.05

RF 0.7 ± 0.02 0.63 ± 0.02 0.47 ± 0.03 0.85 ± 0.02 0.34 ± 0.03 0.74 ± 0.07 0.51 ± 0.09
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resulted in smaller feature subsets. The higher variability
across settings/folds was observed for the L1-lasso (11–27
features).
Figure 6B shows the ADC radiomic features that were

selected simultaneously in all settings/folds, along with
details on their selection frequency across methods. Of the
16 features that were selected in all the experiments with at
least one method, there was a good agreement regarding
the frequency of selection for the four most frequently
selected. Notably, the “wavelet.LLL.firstorder_Minimum”
was consistently chosen across all methods in setting 2 and
in 8 out of 10 methods in each fold of setting 1.

Discussion
This study offers a comprehensive assessment of the
impact of some of the most popular feature selection

methods and ML classification algorithms on different
combinations of bpMRI sequences, with a focus on PCa
diagnosis. The effect of feature selection methods on
models’ performance varied across experiments, while
different ML algorithms resulted in similar performance
scores. Therefore, the need for an informed approach to
feature selection emerges as a critical determinant in
optimizing the overall predictive performance in the
context of radiomic-based PCa analyses. RFE, L1-lasso,
RF-imp, and Boruta, demonstrated a consistent super-
iority for the majority of metrics. Similarly, in a recent
study, RFE was highlighted as the most effective feature
selection method for predicting csPCa from bpMRI [16].
Filter methods, such as mutual information-based

methods, apply statistical approaches to remove fea-
tures, usually on the basis of correlation or variance,

Fig. 5 Variation of AUC explained by feature selection method, ML classifiers, and MRI sequence, and their interactions (A) for all settings, and (B) for
settings 1 and 2, separately
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Fig. 6 Comparative analysis of feature selection methods for ADC radiomic features across settings and folds. (A) Barplot depicting the number of selected features
for each method, and (B) Radar plot illustrating the selection frequency for each feature aggregated across the ten feature selection methods
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without applying any predictive modeling. This is a
popular choice for feature selection in radiomics studies
due to its simplicity and efficiency [43]. Wrapper meth-
ods, like Boruta [44] and RFE [45], create a subset of
features and apply this subset to a predictive model in
order to evaluate its performance. These methods offer
the advantage of taking into consideration correlations
and interactions among radiomic features, partly over-
coming the limitations of univariate filter methods, which
only investigate the statistical relationship between the
radiomics features. The main limitation of wrapper
techniques is the high computational cost of finding the
optimal set from a high-dimensional space, as well as the
increased risk of overfitting. Embedded methods combine
the advantages of filter and wrapper methods by per-
forming feature selection during the generation of the
ML model [46]. Examples of embedded feature selection
methods include tree-based algorithms such as the RF
classifier and the LASSO. The choice of feature selection
methods implemented and evaluated in this work was
guided by the need to encompass a comprehensive
methodological spectrum [47]. A variety of filter, wrap-
per, and embedded methods were included with a par-
ticular focus on techniques adept at handling high-
dimensional data, mitigating redundancy, and enhancing
model interpretability.
For the classification task, we evaluated some of the

most commonly utilized ML algorithms, ensuring meth-
odological diversity while also considering previous evi-
dence of their effectiveness in other radiomics-based
comparative studies [48–50]. Boosted GLM showed a
marginal superiority, but this trend lacked consistency. In
general, ML classifiers resulted in similar performance
scores across the experiments, suggesting that there is no
algorithm that stands out as more robust than others.
This aligns with existing literature, suggesting the choice
of feature selection methods has a greater impact on
prediction performance than the choice of the classifier
[13, 16].
Undoubtedly, the source of radiomic features had the

largest impact on the models’ performance. Combining
multiple MRI sequences for feature extraction is common
practice in PCa radiomics studies. Nevertheless, the added
value of combining T2w with ADC or DWI features
remains a topic of research [51]. Our study suggests that
using solely ADC radiomic features leads to the most
robust models, as the integration of T2w-derived features
did not yield any significant improvements. Similarly, in a
study comparing bpMRI sequences for distinguishing
high-grade PCa, there was no significant difference in
AUC between combined T2w-DWI models and DWI-
only models [52]. In another study, adding T2w

information to a PCa detection model even reduced
predictive performance compared to the ADC-based
model [53].
Certain limitations of our study should also be

acknowledged. Specifically, the effect of eliminating
redundant (within-feature correlation) and irrelevant (fea-
ture-outcome correlation) features, prior to the exhaustive
feature selection, was not evaluated. Additionally, it is
possible that incorporating clinical variables into radiomics
models or combining multiple feature selection methods
would lead to improved models’ performance.
While this work serves as a valuable resource for improving

radiomics workflows in diagnosing csPCa, caution is advised
in interpreting the results. Further research is needed to
determine which feature selection method and ML algorithm
are more robust, stable, and versatile for radiomics applica-
tions. Their efficacy should be confirmed on different MRI
datasets, not only for the diagnosis of csPCa, but ideally for
different clinical scenarios. Additionally, future research
efforts should prioritize the development and evaluation of
robust feature selection strategies to further advance the
reliability and generalizability of radiomics models. Particu-
larly, deep learning-based feature selection, such as unsu-
pervised techniques based on autoencoders [54, 55], is an
emerging topic in radiomics research that could potentially
improve classification results compared to conventional
methods [56].
Our findings may guide future radiomic research paving

the way for the development of more effective and reliable
radiomic models not only for advancing PCa diagnosis
strategies, but also for informing broader applications of
radiomics in different medical contexts.

Abbreviations
ADC Apparent diffusion coefficient
AI Artificial intelligence
AUC Area under the receiver operating characteristic curve
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CorrSF Correlation-based feature selection with forward selection
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csPCa Clinically significant prostate cancer
CV Cross-validation
GA Genetic algorithm
GLM Generalized linear model
HSIC Hilbert-Schmidt independence criterion
LASSO Least absolute shrinkage and selection operator
METRICS METhodological RadiomICs score
mpMRI Multiparametric MRI
mRMRe Minimum redundancy maximum relevance ensemble
NPV Negative predictive value
PCa Prostate cancer
PPV Positive predictive value
RF Random forest
RFE Recursive feature elimination
RF-imp Random forest variable importance
SES Statistically equivalent multiple feature subsets
SVM Support vector machine
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